用户名: 密码: 验证码:
燃气机热泵仿真与优化匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气机热泵是一种高效节能、经济环保的新型供热空调装置,国内对该装置的研究刚刚起步。本文对燃气机热泵进行了较为全面的理论与实验研究,旨在推动该技术在国内的研发及推广应用。主要研究内容如下:
    改造与完善了燃气机水-水热泵实验装置,对其进行了全面的性能测试。以实验台为原型,建立了完整的燃气机水-水热泵稳态仿真模型,开发了计算机仿真软件,计算与实验结果的主要性能参数误差在10%以内。利用仿真软件,对实验台的标准工况性能和变工况性能进行了模拟计算,结果表明燃气机热泵一次能源利用率明显高于其它常用的供热空调装置,并且具有良好的变容量调节能力和优越的部分负荷性能。对蒸发器、冷凝器和压缩机的匹配进行了研究,分析了总传热面积以及传热面积分配比例对机组性能的影响,提出了它们的确定原则。建立了燃气机与压缩机组优化匹配的理论与方法,提出经济性匹配与动力性匹配的基本原则,同时阐述了利用发动机万有特性、燃气机热泵功率平衡图、扭矩-工况图、应用范围图分析研究燃气机热泵动力性和经济性的方法。对烟-水换热器烟气侧的流动与传热特性进行仿真研究,发现烟气侧的非定常流动特征明显,提出应将动态方法用于发动机排烟换热器的匹配设计与模拟。利用所编制的替代工质最优化选择软件,对适合于燃气机热泵的绿色环保工质进行了优化筛选与模拟计算分析,从理论上研究了几种HCs和HFCs工质及其混合物应用于燃气机热泵的可行性。对由燃气发动机驱动的两种压缩/吸收联合制冷循环进行了理论优化研究,建立了以最大一次能源利用率为优化目标的数学模型,利用该模型能够根据使用条件合理匹配各换热器的传热面积。
    本文以实验和计算机仿真为主要研究工具,以优化匹配为主要研究目的,所采用的方法和得出的结论可供燃气机热泵研究和设计时参考。
The gas engine driven heat pump (GEHP) is a high performance and environment-friendly equipment that can provide heating or cooling, but at present the study on the GEHP is insufficient in China. To accelerate the process of research and develop in China, this paper conducted a theoretical and experimental investigation on the GEHP. The main contents of this paper are as follows:
    The GEHP test-bed was reconstructed, and its detailed performances were tested. An integrated mathematic model of gas engine driven water-to-water heat pump was established according to this test-bed, and a simulation program was developed accordingly. In comparison with experiment results, the simulation errors of main performance parameters were proved to be within 10%. Using the simulation program, the performances of the GEHP in standard conditions and variable conditions were calculated. The results indicate that the primary energy ratio (PER) of the GEHP is obviously higher than other conventional heating and cooling equipments, and the part load performance of the GEHP is excellent. Optimum matching of the evaporator, condenser and compressor was studied. The affect of the total heat transfer area of the evaporator and condenser and the area ratio between them to the unit's performance were analyzed. The method to determine the total area and area ratio was put forward. The optimum matching theory and method between the gas engine and the condensing unit was established, and the fundamental principles of economic match and dynamic match were put forward. At the same time the method to analyze the economic and dynamic performance of the GEHP with engine universal characteristic curve, GEHP power balance figure, torque-conditions figure, and application range figure were illustrated. The simulation for the exhaust gas heat exchanger indicates that the character of unsteady gas flow is obvious. So it is concluded that the dynamic method should be used in designing and simulating the exhaust gas heat exchanger. Using the software package developed in this work for optimal choice of alternative refrigerants, some possible environmentally friendly alternative refrigerants for GEHP were selected, and their performances used in GEHP were simulated. The feasibility of Some HCs, HFCs and their azeotropic mixtures used by the GEHP are analyzed theoretically. Two sorts of combined absorption/compression refrigeration
    
    
    cycles driven by a gas engine were discussed in the last chapter. An optimal mathematical model with an objective function of PER was put forward. Using this model, the heat exchange area for each heat exchanger can be assigned properly according to the given external situation.
    Optimum matching of the GEHP is main study object of this paper with the experiment and computer simulation as main tools. The methods and conclusions may be helpful for the investigation and design of the GEHP.
引文
[1]杨昭,张世钢,刘斌等,燃气热泵及其它供热空调系统的能源利用分析评价,太阳能学报,2001,22(2):171~175
    [2]戴永庆,耿惠彬,蔡小荣,燃气空调及其应用,机电设备,2003,2:15~21
    [3] P.E. Montagnon, AIL. Ruckloy. The festival hall heat pump. J Inst Fuel. 1953, 1: 318~321
    [4] Sam V. Shelton.Natural gas I.E. Engine driven heat pumps.6th heat pump technology conference.Tulsa,Oklahoma,1982:X-1~X-29
    [5] Eustace, V.A. Testing and applications of a high temperature gas engine driven heat pump. Journal of Heat Recovery Systems. 1984, 4(2): 257~263
    [6] Inada, M., Haramura, S., Momose, Y. Development of engines for gas engine heat pump system. Proceedings of the 1986 International Gas Research Conference. 1987, 648-657
    [7] D.D. Colosimo.Introduction to engine-driven heat pumps-concepts,approach,and economics.ASHRAE Transactions,1987,93(2.1):987-996
    [8] R.W. Rasmussen,J.W. MacArthur,E.W. Grald,etc.Performance of engine-driven heat pumps under cycling conditions[J].ASHRAE Transactions,1987,93(2.1):1078-1090
    [9] Ogura Masao, Kawasaki Toshimi, Motokawa Masaaki, etc. First commercialized direct-expansion type gas engine heat pump. Proceedings of the 1986 International Gas Research Conference. Government Inst Inc, 1987. 581-592
    [10] P. Welsby, P. J. Diggory, S. Devotta. Evaluation of microcomputer-based control system for a domestic sized engine-driven water-to-water heat pump. International Journal of energy research, 1988, 12: 275-291
    [11] J.R.Morgan,T.R.McNamara,B.B.Lindsay.Installation and operating experience of a gas engine-driven chiller with engine heat Recovery[J].ASHRAE Transactions,1989,95(1):953-959
    [12] R.P. Rusk,J.H. Van Gerpen,R.M. Nelson,etc.Development and use of a mathematical model of an engine-driven heat pump[J].ASHRAE Transactions,1990,96(2):282-290
    [13] T.Yokoyama.Design considerations for gas-engine heat pump[J].ASHRAE Transactions,1992,98(1):975-981
    
    [14] K. Taira.Development of a 2.5-RT multiple-indoor-unit gas engine heat pump[J].ASHRAE Transactions,1992,98(1):982-988
    [15] T. Kaneko,M. Obitani,T. Imura.The performance of a four-ton gas-engine-driven heat pump[J].ASHRAE Transactions,1992,98(1):989-993
    [16] G.A. Nowakowski,M.Inada,M.P. Dearing.Development and field testing of a high-efficiency engine-driven gas heat pump for light commercial applications[J].ASHRAE Transactions,1992,98(1):994-1000
    [17] Gary Nowakowski,Gerald Merten,John Brogan.Field performance of a 3-ton natural gas engine-driven heating and cooling system[J].ASHRAE Transactions,1995,101(2):1382-1388
    [18] Sherwood G.Talbert,William G.Atterbury,Thomas A.Klausing,etc.Relevance of existing heat pump testing and rating method assumptions to residential gas engine heat pumps[J].ASHRAE Transactions,1998,104(1B):1449-1462
    [19] Kirby S. Chapman, Peter J. Gorder, Edward Wagner. Development of an emissions test procedure for unitary combustion engine-driven heat pumps. ASHRAE Transactions,1998,104(1B):1463-1470
    [20] 吕灿仁,马一太,高顺庆,论京津发展燃气热泵节能.能源,1984,(6):17~18
    [21] 王飞波,马一太,吕灿仁,燃气热泵供热/致冷的节能分析和可行性研究,中国制冷学会余热制冷及热泵学术会议,无锡:1980,12
    [22] 马一太,王飞波,吕灿仁,低温地热燃气机热泵的能量指标分析和实验研究.新能源,1988,(1):35~40
    [23] 马一太,王飞波,李新国等,燃气机热泵的试验研究和节能效果分析.工程热物理学报,1988,(11):313~316
    [24] 吕灿仁,马一太,高顺庆等,供热/制冷型热泵用于京津地区公用建筑冷热供应的节能可行性分析[J].暖通空调,1984,(37):7~12
    [25] 杨昭,赵义,李丽新,马一太,五种供热空调系统的技术经济分析及建议.制冷学报,2000,(4):43~48
    [26]马一太,谢英柏,杨昭.燃气机热泵在我国的应用前景.流体机械,2002,39(1):55-58
    [27] 谢英柏,马一太,杨昭等,燃气机热泵的热电冷三联供系统分析,工程热物理学报,2002,23(3):528~530
    [28] 马一太,谢英柏,杨昭等,空气源燃气机热泵空调系统的应用研究,工程热物理学报,2002,23 (4):25~28
    
    [29] 杨昭,张世钢,程珩等,天然气发动机驱动的水-水热泵的实验研究,制冷学报,2002,24(1):9~12
    [30] 杨昭,张世钢,童春荣等,燃气机热电冷联供系统技术经济分析,热能动力工程,2002,17(5):502~505
    [31] Yang Zhao, Zhang Shigang, Zhao Haibe. Optimization study of combined refrigeration cycles driven by an engine. Applied energy, 2003, 76(4): 379-389
    [32] 王飞波,燃气机热泵的试验研究和节能效果分析:[硕士学位论文],天津;天津大学,1987
    [33] 刘万福,温室气体CO2减排机制及内燃机驱动热泵的研究,[博士学位论文],天津;天津大学,2002
    [34] 谢德强,单元式燃气压缩式热泵仿真与控制策略研究,[硕士学位论文],天津;天津大学,2001
    [35] 赵毅,燃气压缩式水-水热泵机组智能控制仿真研究,[硕士学位论文],天津;天津大学,2002
    [36] 童春荣,燃气压缩式热泵系统仿真研究,[硕士学位论文],天津;天津大学,2002
    [37] 谢英柏,燃气机热泵总能系统的理论分析与试验研究,[博士学位论文],天津;天津大学,2002
    [38] 刘芬宁,胡美丽,骆光明,内燃热泵的研究及其在工业上的应用,热泵在我国的应用与发展问题专家研讨论文集,中国科学院广州能源研究所,1988:125~130
    [39] 侯根富,王威,穆春峰,燃气热泵式冷热水机组运行特性分析,煤气与热力,2001,21(2):133~135
    [40] 侯根富,段常贵,马最良,风冷燃气机热泵驱动压缩式热泵冷热水机组运行特性试验研究,暖通空调,2001,31(3):5~8
    [41] 盛凯夫,饶如鳞,燃气机驱动冷热电联供系统的发展前景,煤气与热力,2002,22(6):510~514
    [42] 凌云,程惠儿,李明辉,天然气发动机驱动热泵装置利用效率的分析,煤气与热力,2003,23(1):11~14
    [43] 耿惠彬,燃气发动机驱动热泵性冷热水机组的部分负荷特性,制冷技术,2003,1:16~20
    [44] 丁国良,张春路,制冷空调装置仿真与优化,北京:科学出版社,2001
    [45] 陈芝久,阙雄才,丁国良,制冷系统热动力学,北京;机械工业出版社,1998
    
    [46] Srinivas, M.N. Computationally efficient model for refrigeration compressor gas dynamics. International Journal of Refrigeration, v2002, 25(8): 1083-1092
    [47] Popovic, Predrag; Shapiro, Howard N. Semi-empirical method for modeling a reciprocating compressor in refrigeration systems. ASHRAE Transactions, 1995, 101(2): 367-382
    [48] Hamitton, J.F.; Schwerzler, D.D. Computer aided design studies of a multiple cylinder refrigeration compressor. American Society of Mechanical Engineers (Paper), 1978, n 78-DE-16: 5p
    [49] Schwerzler, D.D.; Hamitton, J.F. Simulation and design studies of a multiple cylinder refrigeration compressor. National Bureau of Standards, Special Publication, 1974: p 5-12
    [50] Chatzidakis, Sot.K.; Rouvas, Alex.K.; Chatzidais, Kon.S. Compression simulation, heat transfer and work in reciprocating type refrigeration compressors. American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, v 37, Advanced Energy Systems Division, 1997: 469-476
    [51] Kim, Man-Hoe; Bullard, Clark W. Thermal performance analysis of small hermetic refrigeration and air-conditioning compressors. JSME International Journal, Series B: Fluids and Thermal Engineering, 2002, 45(4): 857-864
    [52] Van der Walt, N.R.; Unger, R. Simulation and design of a high efficiency, lubricant free, linear compressor for a domestic refrigerator. Proceedings of the International Compressor Engineering Conference, 1992: 1
    [53] Chen, Zhi-jiu; Lin, Wei-han. Dynamic simulation and optimal matching of a small-scale refrigeration system. International Journal of Refrigeration, 1991, 14(6): 329-335
    [54] Longo, Giovanni A.; Gasparella, Andrea. Unsteady state analysis of the compression cycle of a hermetic reciprocating compressor. International Journal of Refrigeration, 2003, 26(6): 681-689
    [55] Liu, Zheji; Soedel, Werner. Simulation of a variable speed compressor. American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, v 34, Heat Pump and Refrigeration Systems Design, Analysis and Applications, 1995: 143-155
    [56] 缪道平,活塞式制冷压缩机,北京:机械工业出版社,1992
    [57] Pettit, N.B.O.L.; Willatzen, M.; Ploug-Sorensen, L. General dynamic simulation model for evaporators and condensers in refrigeration. Part II: Simulation and control of an evaporator. International Journal of Refrigeration, 1998, 21(5): 404-414
    
    [58] Jung, D.S.; Radermacher, R. Performance simulation of single-evaporator domestic refrigerators charged with pure and mixed refrigerants. International Journal of Refrigeration, 1991, 14(4): 223-232
    [59] Liang, S.Y.; Wong, T.N.; Nathan, G.K. Numerical and experimental studies of refrigerant circuitry of evaporator coils. International Journal of Refrigeration, 2001, 24(8): 823-833
    [60] Willatzen, M.; Pettit, N.B.O.L.; Ploug-sorensen, L. General dynamic simulation model for evaporators and condensers in refrigeration. Part I: Moving-boundary formulation of two-phase flows with heat exchange. International Journal of Refrigeration, 1998, 21(5): 398-403
    [61] Csermely, Z.; Simon, F.; Timar, L. Refrigeration system simulation to reduce energy consumption. Hungarian Journal of Industrial Chemistry, 1987, 15(3): 341-347
    [62] Wu, Xiaomin; Min, Jingchun; Webb, Ralph L. A three-zone analytical model for performance prediction of a brazed aluminum evaporator operating under dehumidifying condition. Part 2. Verification of the computer code and examples of application. Proceedings of the International Conference on Energy Conversion and Application (ICECA'2001), 2001: 786-789
    [63] Khan, Jameel-ur-Rehman; Zubair, Syed M. Design and performance evaluation of reciprocating refrigeration systems. International Journal of Refrigeration, 1999, 22(3): 235-243
    [64] Bansal, P.K. Xie, G. Simulation model for evaporation of defrosted water in household refrigerators. International Journal of Refrigeration, 1999, 22(4): 319-333
    [65] Jia, X.; Tso, C.P.; Chia, P.K. Distributed model for prediction of the transient response of an evaporator. International Journal of Refrigeration, 1995, 18(5): 336-342
    [66] Domanski, P.A. Simulation of an evaporator with nonuniform one-dimensional air distribution. ASHRAE Transactions, 1991, n pt 1: 793-802
    [67] 丁国良,阙雄才,用于制冷系统仿真的冷凝器数学模型研究,流体工程,1990,9:50-53
    [68] 张琴舜,邹文进等,冷凝器动态数学模型和仿真研究,计算机工程,2001,27(2):186-187
    [69] 刘浩,张春路,结合人工神经网络的冷凝器稳态分布参数模型,上海交通大学学报,2000,34(9):1187-1190
    
    [70] 丁国良,张春路等,结合人工神经网络的翅片管式冷凝器快速仿真模型,工程热物理学报,2002,23(1):75-78
    [71] Nyers. Jozsef; Stoyan, Gisbert. Dynamical model adequate for controlling the evaporator of a heat pump. International Journal of Refrigeration, 1994, 17(2): 101-108
    [72] Jia, X.; Tso, C.P.; Jolly, P. Distributed steady and dynamic modelling of dry-expansion evaporators. International Journal of Refrigeration, 1999, 22(2): 126-136
    [73] Browne, M.W.; Bansal, P.K. Steady-state model of centrifugal liquid chillers. International Journal of Refrigeration, 1998, 21(5): 343-358
    [74] Han, Dong-Hyouck; Lee, Kyu-Jung; Kim, Yoon-Ho. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations. Applied Thermal Engineering, 2003, 23(10): 1209-1225
    [75] Gut, Jorge A.W.; Pinto, Jose M. Modeling of plate heat exchangers with generalized configurations. International Journal of Heat and Mass Transfer, 2003, 46(14): 2571-2585
    [76] Panchal, C.B. Condensation heat transfer in plate heat exchangers. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 1985, 44: 45-52
    [77] Tinaut, F.V.; Melgar, A.; Rahman Ali, A.A. Correlations for heat transfer and flow friction characteristics of compact plate-type heat exchangers. International Journal of Heat and Mass Transfer, 1992, 35(7): 1659-1665
    [78] Muley, Arun; Manglik, Raj M. Enhanced heat transfer characteristics of single-phase flows in a plate heat exchangers with mixed chevron plates. Journal of Enhanced Heat Transfer, 1997, 4(3): 187-201
    [79] Charre, O. Jurkowski, R.; Bailly, A. General model for plate heat exchanger performance prediction. Journal of Enhanced Heat Transfer, 2002, 9(5-6): 181-186
    [80] Hsieh, Y.Y.; Lin T.F. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. International Journal of Heat and Mass Transfer, 2002, 45(5): 1033-1044
    [81] Matsushima, Hitoshi; Uchida, Mari. Evaporation performance of a plate heat exchanger embossed with pyramid-like structures. Journal of Enhanced Heat Transfer, 2002, 9(5-6): 171-179
    [82] Goldfinch, Stephen. Role of the plate heat exchanger in refrigeration. Australian Refrigeration, Air Conditioning and Heating, 1994, 48(11): 33-36
    
    [83] Hsieh, Y.Y.; Chiang, L.J.; Lin, T.F. Subcooled flow boiling heat transfer of R-134a and the associated bubble characteristics in a vertical plate heat exchanger. International Journal of Heat and Mass Transfer, 2002, 45(9): 1791-1806
    [84] Han, Dong-Hyouck; Lee, Kyu-Jung; Kim, Yoon-Ho. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations. Applied Thermal Engineering, 2003, 23(10): 1209-1225
    [85] Jang, Jin-Yuh; Lin, Chien-Nan. Numerical analysis of three-dimensional heat transfer and fluid flow in chevron plate channels. ASHRAE Transactions, 2000, 106: 856-863
    [86] Kedzierski, Mark A. Effect of inclination on the performance of a compact brazed plate condenser and evaporator. Heat Transfer Engineering, 1997, 18(3): 25-38
    [87] 杨崇麟,板式换热器工程设计手册,北京:机械工业出版社,1994
    [88] 倪晓华,夏清等,板式换热器的换热与压降计算,流体机械,2002,30(3):22~25, 32
    [89] 王列科,杨强,板式换热器中蒸汽凝结换热特性,上海交通大学学报,1998,32(4):18-22
    [90] Shah, R. K., Focker, W. W., Plate heat exchangers and their design theory, heat transfer equipment design. Hemisphere, Washington, DC, 1988:227-254.
    [91] Yi-Yie Yan, Hsiang-Chao Lio, Tsing-Fa Lin. Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. International Journal of Heat and Mass Transfer. 1999, 42: 993-1006.
    [92] Y.-Y. Yan, T.-F. Lin. Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. Journal of Heat Transfer, Transactions ASME, 1999, 121(1): 118-127.
    [93] A. Muley, R. M. Manglik. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates. Journal of Heat Transfer, Transactions ASME, 1999, 121(1): 110-117
    [94] 张祉祐,制冷原理与设备,北京:机械工业出版社,1987
    [95] 白敏丽,沈胜强,内燃机传热全仿真模拟研究进展综述,内燃机学报,2000,18(1):96-99
    [96] Filipi, Zoran. Quasi-dimensional computer simulation of the turbocharged spark-ignition engine and its use for 2- and 4-valve engine matching studies. SAE Technical Paper Series, 1991, 910075, 17p
    
    [97] Liu, Hengqing; Chalhoub, Nabil G.; Henein, Naeim. Simulation of a single cylinder diesel engine under cold start conditions using Simulink. American Society of Mechanical Engineers, Internal Combustion Engine Division (Publication) ICE, v 28-1, Advanced Engine Simulations, 1997: 9-18
    [98] Zhao, H.; Calnan, P.; Ladommatos, N. Development of an engine simulation program and its application to stratified charge SI engines. International Journal of Vehicle Design, 1999, 22(3): 159-194
    [99] Morel, Thomas; Keribar, Rifat. Warmup characteristics of a spark ignition engine as a function of speed and load. SAE Technical Paper Series, 1990, 9p 900683
    [100] Aly, H.M. Prediction of internal combustion engine performance using microcomputer simulation. Computers in Engineering, Proceedings of the International Computers in Engineering Conference and, 1985, 2: 345-350
    [101] Rakopoulos, C.D. Evaluation of a spark ignition engine cycle using first and second law analysis techniques. Energy Conversion and Management, 1993, 34(12): 1299-1314
    [102] Dekanski, C.W.; Bloor, M.I.G.; Wilson, M.J. Parametric model of a 2-stroke engine for design and analysis. Computer Methods in Applied Mechanics and Engineering, 1996, 137(3-4): 411-425
    [103] Charlton, S.J.; Jager, D.J.; Wilson, M. Computer modelling and experimental investigation of a lean burn natural gas engine. SAE Technical Paper Series, 1990, 7p 900228
    [104] Ma, Jie; Allen, Robert; Bowen, Richard. Mathematical simulation of the transient performance of a petrol engine. SAE Special Publications, 1993: 17-23
    [105] 朱访君,吴坚,内燃机工作过程数值计算及其优化,北京:国防工业出版社,1997。
    [106] 刘永长,内燃机热力过程模拟,北京:机械工业出版社,2001。
    [107] 周龙保,内燃机学,北京:机械工业出版社,1999。
    [108] G.H. Abd Alla. Computer simulation of a four stroke spark ignition engine. Energy Conversion and Management. 2002, 43, 1043-1061
    [109] 高孝洪,内燃机工作过程数值计算,北京:国防工业出版社,1986.
    [110] Elbert Hendricks, Alain Chevaller, Michael Jensen, Modeling of the intake manifold filling dynamics. SAE 1996 transactions, Journal of engines. 1996, 122-146
    [111] 史美中,王中铮,热交换器原理与设计,南京:东南大学出版社,1989
    [112] 蒋能照,空调用热泵技术及应用,北京:机械工业出版社,1999
    
    [113] York International Corporation,燃气机驱动冷水机组样本,美国:1997
    [114] 杨昭,张世钢,郁文红等,空调用热泵系统热力学和热经济优化,太阳能学报,2002,23(5),586~589
    [115] 解可新,韩立兴,林友联,最优化方法,天津:天津大学出版社,1997
    [116] 薛履中,工程最优化技术,天津:天津大学出版社,1988.
    [117] Siddall, James N. Optimal engineering design: principles and applications, New York: M. Dekker, 1982.
    [118] 杨昭,张世钢,孙政等,地下水源热泵的最优化研究,太阳能学报,2002,23(6),687~691
    [119] 杨连生,内燃机性能及其与传动装置的优化匹配,北京:学术期刊出版社,1988
    [120] 中国内燃机学会,柴油机动力装置匹配,北京:机械工业出版社,2000
    [121] 马鹏飞,王彩琴,液力传动机械匹配及牵引计算的计算机辅助计算分析,机械科学与技术,1998,17(3):394-396,433
    [122] 蔡敬,分析发动机与液力变矩器的合理匹配,工程机械,2003,34(4):28-30
    [123] 张志亮,周云峰,三种汽油机在CN6590轻型客车上的使用分析,客车技术与研究,1995,17(3):144-147
    [124] 李高友,雷雨成,发动机和传动系的优化匹配研究,汽车研究与开发,2002,6:23-26
    [125] 彭天好,杨华勇,液压挖掘机泵与发动机匹配研究,中国公路学报,2001,14(4):118-120
    [126] Yasuhisa HASEGAWA, Koji SHIMOJIMA. Learning predictive control for GHP. IECON Proceedings (Industrial Electronics Conference) 3 Nov 29-Dec 3 1999 IEEE, 1277-1282
    [127] 俞炳丰,制冷与空调应用新技术,北京:化学工业出版社,2002。
    [128] 杨昭,空调热泵系统混合工质变浓度容量调节节能和R22的替代研究,[博士学位论文],天津;天津大学,1995。
    [129] 陈东,压缩式中高温热泵低环害循环工质的理论和实验研究,[博士学位论文],天津;天津大学,1997。
    [130] 田贯三,可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究,[博士学位论文],天津;天津大学,2000。
    [131] Yang Zhao, etc. Research on non-flammable criteria on refrigerants. Applied Thermal Engineering. 2000,20(14):1315-1320。
    
    [132] 张早校,郁永章,天然工质替代HCFCs的新趋势,流体机械,1995,23(11):50-62。
    [133] B. Purkayastha and P. K. Bansal. An experimental study on HC290 and a commercial liquefied petroleum gas (LPG) mix as suitable replacements for HCFC22. International Journal of Refrigeration. 1998, 21:3-17.
    [134] 张玉峰,吴挺,王建拴,R22替代物R290的理论分析与计算,中国工程热物理学会工程热力学与能源利用学术会议论文集,2002,中山:469-474。
    [135] 吴植华,阎琳等,在家用空调器中用丙烷(R290)替代R22的研究(二),制冷技术,1996,(4):10-12。
    [136] Antonopoulos, K.A.; Rogdakis, E.D. Combined absorption/mechanical compression refrigeration cycles. American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES. 1993, 30: 285-289
    [137] Fukuta, Mitsuhiro; Yanagisawa, Tadashi; Iwata, Hiroaki. Performance of compression/absorption hybrid refrigeration cycle with propane/mineral oil combination. International Journal of Refrigeration, 2002, 25(7): 907-915
    [138] Goktun, Selahattin. Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator. Applied Energy, 1999, 62(2): 67-79
    [139] Ayala, R.; Heard, C.L.; Holland, F.A. Ammonia/lithium nitrate absorption/compression refrigeration cycle. Part I. Simulation. Applied Thermal Engineering, 1997, 17(3): 223-233
    [140] Ayala, R.; Heard, C.L.; Holland, F.A. Ammonia/lithium nitrate absorption/compression refrigeration cycle. Part II. Experimental. Applied Thermal Engineering, 1998, 18(8): 661-670
    [141] Herold, Keith E.; Howe, Lawrence A.; Radermacher, Reinhard. Analysis of a hybrid compression-absorption cycle using lithium bromide and water as the working fluid. International Journal of Refrigeration, 1991, 14(5): 264-272
    [142] L. A. Howe, R. Radermacher and K. E. Herold. Combined cycles for engine-driven heat pumps. International Journal of Refrigeration. 1989, 12(1), 21-28.
    [143] L. Ahlby, D. Hodgett. Optimization study of the compression/absorption cycle. International Journal of Refrigeration. 1991, 14, 16-23.
    [144] Ziegler, B., Trepp, C. Equation of state for ammonia-water mixture. International Journal of Refrigeration. 1984, 7(2), 101-106.
    [145] 高田秋一著,耿惠彬等译,吸收式制冷机,北京:机械工业出版社,1985。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700