用户名: 密码: 验证码:
带有动力吸振器浮筏隔振系统的减振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮筏隔振系统是一种新型有效的减振降噪装置,已开始广泛应用于各种舰船的动力装置中。它可有效地抑制机械振动能量传递到船体,使舰船结构在振动激励下产生的自噪声与辐射噪声大幅度降低,并能对来自船体底部的冲击有着良好的隔离效果。与其相关的理论与试验研究也成为隔振技术领域的研究热点。但是传统被动浮筏仍然是被动隔振,在使用过程中发现有以下不足:首先,在舰艇低速航行,机械设备激励频率等于或低于系统共振频率的情况,隔振措施会“失效”;其次,当舰艇航行工况变化,即振源为变频激励时,隔振系统远离最佳工作状态,导致传递到基座面板处的振动级加大,引起水下辐射噪声增高。
     本论文以实验室承担的工程预研项目为背景,通过研究带有吸振器的浮筏隔振系统的减振特性,就吸振器在浮筏上减振应用的问题进行探索,具有一定的理论意义和重要实用价值,其具体研究内容如下。
     实际浮筏的筏体多由箱梁结构组成,结构复杂,计算量大。本文首先从简单结构浮筏系统着手研究动力吸振器在浮筏上的应用,考察通过安装动力吸振器改善浮筏系统隔振性能这一方法的可行性,并为吸振器在实际复杂浮筏结构上的应用提供参考。主要采用结构导纳综合法建立了有、无吸振器的板式浮筏模型,分析比较了相应复杂耦合隔振系统的功率流传递特性。理论分析表明,通过在筏架上安装动力吸振器,尤其是自调谐式半主动吸振器来改善浮筏隔振系统的隔振性能是切实可行的。研究表明吸振器安装位置与下层隔振器相对时,会有较好的减振效果;对于被动吸振器,吸振器在其吸振频率处有明显的减振效果,而当激励频率偏离吸振器的吸振频率时,几乎没有减振效果,甚至有反效果;由不同吸振频率吸振器组合而成的宽频吸振器组可以明显拓宽被动吸振器有效减振频带宽度;自调谐半主动吸振器控制频带宽,对工况的适应性要优于被动吸振器;而吸振器的阻尼和质量比等结构参数对于耦合系统隔振性能有较大影响,在满足系统稳定性和工程实际要求的前提下,应用小阻尼、大质量比的吸振器可有效改善浮筏隔振系统的隔振性能。
     导纳功率流法是当前的研究浮筏功率流传递的主流研究手段,但其分析对象限于筏体为梁、板等可以获得解析导纳的简单浮筏系统;而且上述工作主要用作浮筏功率流传递理论上的定性研究,尚不能满足分析实际工程问题的需要。本文采用有限元方法,对一实际应用的浮筏系统进行了系统动态特性数值模拟和试验研究,并以此为例较为系统、全面地总结了以有限元分析为手段、功率流为指标的浮筏装置隔振效果的计算方法。
     该方法应用有限元软件前处理模块直接生成复杂浮筏系统的模型,文中对该方法中筏体、隔振器、基础的建模分别予以了说明:对于筏体单元类型、尺寸等于结果的影响进行了讨论;提出了基于工程软件隔振器复刚度建模方法,模型参数根据试验测得的隔振器速度阻抗换算而来,可体现隔振器随频率变化的刚度和阻尼特性,并就常数参数模型适用的频率范围给出了说明;对于弹性基础的处理可根据实体建模,也可根据实验阻抗数据换算进行简化建模。在此基础上,应用工程软件的谐响应分析技术求解系统在外激励下的响应,并采用后处理程序对系统响应根据不同的工况进行处理运算,从而得到同频和多频激励下浮筏系统的传递功率流。
     由于研究重点在于对吸振器在浮筏低频减振应用做初步的理论分析和实验验证,所以有必要设计一套应用于该研究的既具有真实复杂浮筏系统动力学特点,质量又较小、易于控制的实验研究用浮筏模型系统。浮筏系统的优良减振效果部分来自于其内部阻尼耗散了振动源传递过来的振动能量。因此,如果适当地增加浮筏系统的阻尼,如变传统焊接方式为螺栓连接,利用螺栓连接的连接阻尼增加筏架内部阻尼;又如在筏体结构中引入橡胶阻尼材料,将会带来浮筏减振效果的进一步改善,有效降低系统在低频段的功率流传递。文中设计实现的浮筏模型系统的筏体,主要结构形式采用仿书柜式的由上筏体和下筏体组成的新型装配式结构,上筏体与下筏体之间装有可更换的垫块,筏架整体由螺栓连接。垫块可以是钢块或橡胶阻尼材料。另外,非常重要的一点是,这种组合式的结构为吸振器的配置安装提供了较大的可利用空间。有限元分析与实验结果表明,该浮筏模型系统具有良好的隔振效果。
     对设计的刚性基础和弹性基础浮筏模型系统的低频段动力学特性进行了实验研究,主要包括系统振动频响实验以及系统隔振性能测试等方面;采用测得的浮筏模型系统的频响函数对弹性基础浮筏模型系统的有限元模型进行了参数修正。为下一步吸振器参数的设定提供了参考,为吸振器应用效果的模拟计算预报提供了可靠的模型。在此基础上,结合吸振器在复杂浮筏隔振系统上的减振实验,对带有吸振环节的复杂浮筏隔振系统动力学特性进行了研究。对多种工况下吸振器在复杂浮筏系统上的减振效果给出了估算和预报,并完成了实验验证,得到了满意的结果。
The floating raft system is a novel isolation device for vibration control, which has now started to be widely used for vibration isolation of power plants on ships. The system can depress the mechanical vibratory energy transmission from the power plant to the ship hull; reduce the self-noise and radiation noise of the ship structures, meanwhile, effectively isolate the sudden shocks from the bottom of ship. The theoretical and experimental study on floating raft systems has drawn much attention in recent years. However, conventional floating raft system is limited to passive isolation, and it has some diadvantages in practical application. First, in the case that the ship is voyaging in low speed, the excitation frequency is equal to or lower than the natural frequency of the floating raft system, which will cause the system fail to work properly. Second, the system performance deviates its best state if the vibration source is changed to variable-frequency excitation due to the changing of voyaging ship speed, which will increase the vibration level on the base and radiated noise from the hull.
     This dissertation is a part of an engineering project item that is performed in the author's research group. It mainly focuses on the application of dynamic vibration absorbers (DVAs) on floating raft system by analyzing the power flow characteristics of the floating raft system with DVAs on it.
     The practical floating raft system usually consistes of box girder structures, which is complicated and difficult for analysis. Therefore, the first part of the dissertation discusses the feasibility of applying the DVAs on plate raft system, and provides theoretical foundation for the application of DVA on the practical complex floating raft system. The mathematical models of the complex coupled system with/without the DVAs are implemented by assembling the mobility matrices of the subsystems. Then the power flow transmission characteristics of the coupled system with/without the DVAs are investigated to evaluate and compare the isolation performance from the view of vibration energy transmission. The results show that DVAs, Semi-Active DVAs in particular, can significantly improve the isolation performance of the floating raft system. The results also give some valuable inspirations. Installing the DVAs opposite to the lower isolators will make the vibration attenuation effect more remarkable. For the passive DVA, when excitation frequency is equal to its resonant frequenc, it works properly; otherwise, it barely attenuate the vibration even exacerbate the vibration of the raft. The group consistes of DVAs with different resonant frequencies significantly broadens the frequency bandwidth of effective vibration control. Semi-Active DVAs have a wider frequency bandwidth of effect than passive DVAs. The system performance is sensitive to structural parameters of vibration absorbers such as damp and mass ratio. For the DVA that satisfies the system stability and other requirements, the one with smaller damp and larger mass ratio can significantly improve the performance of the floating raft system.
     Investigating the power flow in floating raft system based on the synthesis of mobility matrixes is the main method in this research area. However, the previous work mainly confines to simple structures, such as beam or plate, whose mobility matrix can be obtained by analysis. In addition, this qualitative method cannot satisfy the analysis requirements of practical problems. In the thesis, a FEM analysis method for investigating the characteristic of the vibratory power transmission of the complex floating raft system is proposed for the practical floating raft system.
     The method employs the fore-treatment module of FEM software to generate the structural model of complex floating raft system. In this dissertation, the model buildings of floating raft, vibration isolator and base are described. The influence of the element type and size on the analyzed results is discussed. The complex stiffness method is proposed to simulate the impedance of the vibration isolators in the finite element models, and the stiffness and damp coefficient varying with frequency are converted based on the principle from the velocity impedance measured in the testing. The proper frequency domain for the constant parameter model is also discussed. As for the basement, either the full-scale modeling or simple modeling based on complex stiffness method is applicable in this analysis method. By using the harmonic response analysis technique, the response of the linear system under multiple harmonic excitations in same frequency or different frequencies can be determined. Thus, the desired vectors required to calculate the power transmission could be obtained.
     The theme of this thesis is to do elementary research on the application of DVAs on floating raft system by theoretical, numerical and experiment method, so it is necessary to design an experimental platform. The platform should not only have the dynamic characteristics of the practical complex floating raft system, but also a small mass convenient for control by small effort. The interior damping of the raft dissipates the transmission energy from the vibrating source, which is one reason that the floating raft system has an outstanding performance in vibration isolation. Therefore, increasing the interior damping of the raft by some effective ways, such as using joint bolt connection or attaching rubber material to the raft, will improve the performance of the floating raft system and effectively depress the power flow transmission. A model floating raft system with a novel structural style is designed and realized for research purpose. The raft of the system is consisted of two parts called upper raft and lower raft connected with joint bolt. There are also some blocks, which can be steel or rubber material, between these two parts. More importantly, this combined type floating raft system provides enough space for installing the DVAs. Both the analysis and experimental results show that the model has a good performance of vibration isolation.
     In order to get the dynamic characteristics of the floating raft system at low frequency stage, some experiments are carried out on the model floating raft system with rigid foundation and elastic foundation. These experiments include measuring the structural frequency response function (FRF) and testing the vibration isolation performance of the system. By using the measured frequency response function (FRF) data to update analytical models, it provides some guidance for the parameters setting of the DVAs and a reliable analytical model for further analysis on the application of DVAs on the complex floating raft system. Based on the above work, the thesis studied the characteristics of the complex floating raft with DVAs on it combined with the experiment on damping capacity of the DVAs on the model floating raft system. This study gives estimation and prediction of the damping capacity of the DVAs under multiple operating modes. Experimental results coincide with the analyzed results, which demonstrate the reliability of the proposed method.
引文
陈明,陈秀珍,孙新占.2002.大型组合式浮筏减振装置试验研究[J].舰船科学技术,24(6):56-60.
    陈晓利,盛美萍,王彦琴.2005.多筋板振动特性的导纳法研究[J].噪声与振动控制,2005(3):9-12.
    陈欣,宋孔杰,孙玲玲.2003.主被动联合隔振系统中的功率流传递特性[J].声学与电子工程,2003(4):38-42.
    崔维成,刘水庚,顾继红,刘志宇,廖又明.2000.国外潜艇设计和性能研究的一些新动态[J].船舶力学,4(2):65-80.
    邓海华.2006.整舱浮筏功率流测试初步分析研究[J].舰船科学技术,28(增刊2):81-85.
    丁文镜.1988.减振理论[M].清华大学出版社.
    杜海平,石银明,张亮,史习智.2001.主动约束层阻尼振动控制研究进展[J].力学进展,31(4):547-554.
    杜奎,伍先俊,程广利,朱石坚.2005.浮筏隔振系统隔振器最佳布置方案研究[J].海军工程大学学报,17(2):92-94.
    冯德振,宋孔杰,张洪安,孙玉国.1997.浮筏弹性对复杂隔振系统振动传递的影响[J].山东建材学院学报,11(3):219-223.
    付素芳,张秋菊,陈海卫,林浩.2007.结构动力学模型修正方法比较研究[J].机械研究与应用,20(2):38-40.
    富喜,王国治.2005.带空间管系的船舶水泵机组隔振浮筏性能研究[J].船舶,2005(4):50-55.
    高宏伟,罗军,贾建援.2005.双层隔振系统主动控制的建模与仿真[J].机械科学与技术,24(11):1340-1342.
    高立冬,喻浩,王暖.2002.减振降噪技术的应用设计[J].中国造船,43(2):44-49.
    葛蕴珊,刘志刚,张文平.1999.隔振装置中振动功率流的测量研究[J].哈尔滨工程大学学报,20(2):7-14.
    桂洪斌,沈顺根.2006.浮筏系统隔振效果评估方法[J].舰船科学技术,28(增刊2):69-72.
    何琳,施引.1997.双机组浮筏装置减振效果估算研究[J].海军工程学院学报,1997(3):58-61.
    何琳,姚耀中.2007.潜艇声隐身技术研究进展[J].舰船科学技术,29(5):29-42.
    胡家雄,伏同先.2001.21世纪常规潜艇声隐身技术发展动态[J].舰船科学技术,2001(4):2-5.
    江国和,吴广明,沈荣瀛.2003.振动控制中的功率流方法研究现状[J].华东船舶工业学院学报:自然科学版,17(4):17-22.
    蒋金夏,刘永明.2006.立体浮筏隔振系统的模态机械阻抗综合法研究[J].噪声与振动控制,2006(4):20-22.
    李俊,高宪智,金咸定.2000.船体艉部减振的非线性碟簧动力吸振器的宽带优化设计[J].船舶工程,2000(4):21-25.
    李俊,金咸定.2001.船用非线性碟簧动力吸振器的参数研究[J].中国造船,42(1):39-44.
    李良碧,王国治,温华兵.2001.舰船浮筏隔振特性的有限元分析及试验研究[J].华东船舶工业学院学报:自然科学版,15(2):72-76.
    李天匀,张维衡,张小铭.1997.L形加筋板结构的导纳功率流研究[J].振动工程学报,10(1):112-117.
    李天匀,张小铭.1997.有不连续材料层的组合版结构振动功率流研究[J].声学学报,22(3):274-281.
    李天匀,张小铭,徐慕冰.1997.梁-梁浮筏隔振的功率流分析[J].振动与冲击,16(1):30-34.
    李剑锋,龚兴龙,张先舟等.2005.主动移频式动力吸振器及其动力特性的研究[J].实验力学,20(4):507-514
    李新德,宋孔杰.2002.空间复杂激励下柔性耦合系统振动功率流传递特性研究[J].噪声与振动控制,2002(4):16-20.
    李新德,宋孔杰,陈欣.2002.多维柔性耦合系统功率流传递特性[J].山东大学学报:工学版,32(3):206-210.
    李新德,宋孔杰,孙玉国.2003.复杂激励下平置板式浮筏功率流传递特性研究[J].应用力学学报,20(2):32-37.
    李新德,宋孔杰,孙玉国,张克国.2003.空间柔性耦合系统振动功率流传递特性[J].山东大学学报:工学版,33(2):138-142.
    廖道训,黄孝成,陆永忠.1999.多层隔振系统的动力学方程[J].中国机械工程,10(12):1321-1325.
    林道福,余永丰,华宏星.2004.带限位器的浮筏隔振系统的冲击响应分析[J].噪声与振动控制,2004(1):6-9.
    林立,胡剑凌.1996.减振浮筏振动响应研究[J].噪声与振动控制,1996(5):2-6.
    刘天雄,石银明,华宏星,李中付,朱继梅,陈兆能.2001.主动约束层阻尼振动控制 技术现状及展望[J].振动与冲击,20(2):1-10.
    鲁克明,叶珍霞,赵应龙.2006.基于有限元法的船用浮筏隔振系统仿真计算[J].武汉理工大学学报:交通科学与工程版,30(5):866-868.
    马丰伟,孙玲玲,宋孔杰,刘保国.2005.浮筏隔振系统的功率流研究[J].现代制造工程2005增:设备设计与维修,2005:133-135.
    毛为民,朱石坚,张振中.2005.基于柔性基础的双层隔振系统概率灵敏度分析[J].海军工程大学学报,17(3):52-56.
    毛映红,牛军川,宋孔杰.2001.连续隔振浮筏系统功率流研究[J].声学学报,26(3):272-276.
    牟全臣,黄文虎,郑钢铁,王心清,张景绘.2001.航天结构主、被动一体化振动控制技术的研究现状和进展[J].应用力学学报,18(3):1-7.
    倪振华.1989.振动力学[M].西安:西安交通大学出版社.
    欧大生,欧阳光耀.2001.功率流理论在振动控制中的应用与发展[J].船海工程,143:3-6.
    欧阳光耀,施引,黄映云.1997.用磁致伸缩作动器进行主动隔振的研究[J].噪声与振动控制,1997.4:2-5.
    彭如海,刘杰,彭劼.2002.弹性支承梁的模态分析及应用[J].华东船舶工业学院学报:自然科学版,16(1):17-22.
    彭旭,骆东平.2003.船舶结构建模及水下振动和辐射噪声预报[J].噪声与振动控制,2003(6):9-12.
    钱小勇,胡海岩.2002.具有快速自适应能力的动力吸振器[J].振动工程学报,15(4):379-382.
    瞿祖清,傅志方.1997.梁状浮筏隔振系统的降阶建模方法[J].船舶工程,1997(5):14-16.
    瞿祖清,华宏星,傅志方.1998.浮筏隔振装置的超单元建模方法[J].中国造船,1998(4):81-86.
    瞿祖清,华宏星,傅志方.1999.一种频响函数灵敏度分析方法[J].机械强度,21(2):95-97.
    上官文斌,吕振华.2003.汽车动力总成橡胶隔振器弹性特性的有限元分析[J].内燃机工程,24(6):50-55.
    尚国清,邱伯华.1999.关于浮筏系统的动力学建模分析[J].舰船科学技术,1999(4):24-28.
    尚国清,林立.2000.浮筏装置系统的动力学特性分析[J].舰船科学技术,2000(6):11-15.
    邵汉林,原春晖.2003.简谐激励下隔振系统振动功率流的极值特性[J].噪声与振动控制,2003(4):5-8.
    沈荣瀛.1995.荷兰TPD研究的几个声学问题[J].噪声与振动控制,1995(4):16-19.
    沈荣瀛.1999.船舶轮机振动噪声控制综述[J].机电设备,1999(3):22-25.
    沈顺根,冷文浩,程贯一.1997.带有复合结构的多层隔振系统振动传递及声辐射研究[J].中国造船,1997(3):49-59.
    施引,朱石坚,何琳.1990.舰船动力机械噪声及其控制[M].北京:国防工业出版社.
    施引,朱石坚,吕志强,何琳,黄映云.1995.豪华游艇用双层减振(浮筏式)装置研究[J].海军工程学院学报,1995(2):1-5.
    宋孔杰,张蔚波,牛军川.2003.功率流理论在柔性振动控制技术中的应用与发展[J].机械工程学报,39(9):23-28.
    苏彬彬,徐凯,李连进.2004.主动式磁流变液阻尼动力吸振器的优化设计[J].天津理工学院学报,20(2):37-38.
    孙红灵.2007.振动主动控制若干问题的研究[D]:[博士].合肥:中国科学技术大学.
    孙玲玲,宋孔杰,张冰.2002.安装频率对浮筏结构传递功率流影响[J].山东大学学报:工学版,32(6):501-504.
    孙玲玲,张冰,宋孔杰.2002.复杂结构安装频率对传递功率流影响[J].噪声与振动控制,2002(5):8-11.
    孙玲玲,宋孔杰.2003.柴油机多支承隔振系统的功率流特性[J].内燃机学报,21(4):249-252.
    孙玲玲,宋孔杰.2003.浮筏隔振系统功率流特性分析[J].应用力学学报,20(3):99-102.
    孙涛,黄震宇,陈大跃.2004.浮筏激励信号的在线检测与分析[J].数据采集与处理,19(1):82-86.
    孙涛,陈大跃,黄震宇,汤磊.2006.一种新型潜艇浮筏的前馈模糊控制策略[J].船舶力学,10(1):106-112.
    孙玉国,宋孔杰,姜中田.2002.基于PC的刚-柔耦合隔振系统功率流测试仪器[J].噪声与振动控制,2002(1):45-46.
    唐庆荣,张维衡.1997.梁式浮筏隔振技术研究[J].武汉造船,1997(5):28-31.
    陶杰,吴坚华,刘德立.1997.船艉结构动力吸振器的试验研究[J].振动与冲击,16(1):80-83.
    童宗鹏,章艺,尚国清,华宏星.2005.舱筏隔振系统水下振动特性的理论分析与试验研究[J].振动与冲击,24(6):71-74.
    童宗鹏,章艺,沈荣瀛,华宏星.2005.基于频响函数灵敏度分析的舰艇模型修正[J]. 上海交通大学学报,39(11):1847-1850.
    王成刚,张智勇,沈荣瀛.1998.状态空间法在浮筏隔振系统响应分析中的应用[J].噪声与振动控制,1998(5):11-16.
    王锋,朱传敏,高洪芬,宋孔杰.1999.浮筏隔振系统功率流计算机辅助测试研究[J].山东工业大学学报,29(1):30-34.
    王国治,李良碧.2002.船舶浮筏系统动力学特性的影响因素研究[J].中国造船,43(1):43-51.
    王家林,朱石坚.1999.振级落差和插入损失对应关系的研究[J].海军工程学院学报,1999(2):37-40.
    王利荣,吕振华.2002.橡胶隔振器有限元建模技术及静态弹性特性分析[J].汽车工程,24(6):480-485.
    王莲花,龚兴龙,邓华夏等.2007.磁流变弹性体自调谐式吸振器及其优化控制[J].实验力学,22(3-4):429-434.
    王敏庆,盛美萍,孙进才.2002.宽频带动力吸振器功率流特性研究[J].声学学报,27(2):121-123.
    王全娟,陈家义,许华.2001.基于功率流方法的复杂柔性耦合系统被动综合最优控制[J].机械工程学报,37(8):32-37.
    王全娟,陈家义,许华,李伟华.2001.基于功率流方法的多个动力吸振器的优化设计[J].声学学报,26(6):532-536.
    王全娟,陈家义,李继民.2002.基于功率流方法的多自由度系统吸振控制[J].声学学报,27(3):277-281.
    王全娟,夏松波,黄文虎.2003.基于功率流方法的连续参数系统动力吸振器的优化设计[J].声学学报,28(3):267-271.
    王术新,姜哲.2004.振动结构功率流的研究现状及进展[J].现代制造工程,2004(8):104-106.
    王彦琴,盛美萍,孙进才.2004.基于功率流的宽带复式动力吸振器优化设计[J].机械科学与技术,23(4):437-440.
    温华兵,王国治,童宗鹏.2002.船舶浮筏系统的振动及抗冲击特性分析[J].华东船舶工业学院学报:自然科学版,16(5):14-18.
    温华兵,王国治.2003.带有浮筏隔振系统的船舶结构冲击响应的数值模拟[J].华东船舶工业学院学报,17(5):1-5.
    温华兵,王国治.2005.基于频响函数相关系数灵敏度的浮筏舱段有限元模型修正[J].江苏科技大学学报:自然科学版,19(6):75-78.
    温华兵,王国治,董忠.2005.船舱浮筏系统的隔振性能及水下声辐射试验[J].船舶, 2005(4):12-16.
    吴崇健,骆东平,杨叔子,朱英富,马运义.1999.离散分布式动力吸振器的设计及在船舶工程中的应用[J].振动工程学报,12(4):584-589.
    吴广明,余永丰,沈荣瀛,彭旭.2003.模态机械阻抗综合法及其在隔振系统中的应用[J].噪声与振动控制,2003(2):13-16.
    吴广明,彭旭,沈荣瀛.2004.多层隔振系统功率流研究[J].噪声与振动控制,2004(3):1-4.
    吴广明.2004.舰船复杂隔振系统建模及其功率流研究[D]:[博士].上海:上海交通大学.
    伍良生,顾仲权,张阿舟.1994.阻尼动力吸振器减振问题的进一步研究[J].振动与冲击,1994(1):1-7.
    吴杰,上官.2008.采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J].工程力学,25(1):161-166
    行晓亮,王敏庆,宋代科.2005.弹性基础浮筏的导纳功率流研究[J].机械科学与技术,24(7):761-763.
    熊冶平,宋孔杰,韩玉长.1996.复杂柔性耦合系统的功率流传递谱[J].声学学报,21(4):368-374.
    徐孝诚,尹立中.2002.关于结构高频响应分析中有限元网格划分的细化标准[J].振动与冲击,21(1):52-53.
    徐张明,沈荣瀛,华宏星.2002.潜艇动力舱浮筏隔振参数对振动与声辐射的影响[J].船舶工程,2002(6):22-26.
    徐张明,汪玉,华宏星,沈荣瀛.2002.船舶结构的建模及水下振动和辐射噪声的FEM/BEM计算[J].船舶力学,6(4):89-95.
    徐张明,沈荣瀛,华宏星.2003.基于频响函数相关性的灵敏度分析的有限元模型修正[J].机械强度,25(1):5-8.
    严济宽.1988.机械振动隔离技术[M].上海:上海科学技术出版社.
    严济宽,沈密群,尚国清.1995.浮筏装置结构动力参数的选定[J].噪声与振动控制,1995(1):2-9.
    颜松,盛美萍,陈晓利.2006.多源激励下浮筏隔振系统导纳功率流研究[J].噪声与振动控制,2006(4):26-28.
    俞孟萨,黄国荣,伏同先.2003.潜艇机械噪声控制技术的现状与发展概述[J].船舶力学,7(4):110-120.
    俞微,张建武,沈荣瀛等.1996.浮筏隔振系统功率流的实验研究[J].振动,测试与诊断,16(2):44-48.
    曾繁洲,袁平乙,钱涛,彭海军.1999.隔振降噪技术的实船应用[J].船舶工程,1999 (3):38-41.
    曾建平,杜永平.2002.干摩擦动力吸振器的MATLAB仿真及其基于频谱分析的优化设计[J].振动与冲击,21(2):76-77.
    张冰,宋孔杰,孙玲玲,陈欣.2002.浮筏隔振系统的传递功率流研究[J].噪声与振动控制,2002(6):3-5.
    张冰,宋孔杰,孙玲玲.2003.一种用于浮筏功率流计算的新方法[J].山东大学学报:工学版,33(3):241-244.
    张春良,陈子辰,梅德庆.2003.双层主动隔振系统的动力学研究[J].中国机械工程,14(14):1232-1235.
    张关根,郭乃林,李江翔.2000.浮筏减振降噪技术在某型海洋测量船上的应用[J].船舶,2000(3):29-34
    张洪田,刘志刚,王芝秋等.1996.柴油机主动隔振装置及其隔振性能分析[J].应用科技,85:8-13.
    张洪田,刘志刚,张志华等.1996.动力吸振器技术的现状与发展[J].噪声与振动控制,1996(3):22-26.
    张洪田,李玩幽,刘志刚.2001.电动式主动吸振技术研究[J].振动工程学报,14(1):113-117.
    张洪田,刘志刚,王芝秋.2003.电动式主动吸振装置及其在柴油机振动控制领域的应用[J].黑龙江工程学院学报,17(1):3-8.
    张华良,傅志方.2000.浮筏隔振系统主要参数对系统隔振性能的影响[J].振动与冲击,19(2):5-8,4.
    张克国,杜清府.2006.复杂激励下双层隔振系统的主动控制研究[J].中国机械工程,17(2):134-136.
    张满满,骆东平,骆子夜,徐志云,付爱华.2002.船用辅机浮筏动态特性有限元分析[J].噪声与振动控制,2002(4):24-26.
    张树生,张克国,宋孔杰,程林,秦惠芳.2004.具有中间质量结构振动功率流的传递特性[J].山东大学学报:工学版,34(1):35-43.
    张蔚波,宋孔杰,石璐光.2002.弹性浮筏系统的实用解[J].山东大学学报:工学版,32(2):101-104.
    张智勇,沈荣瀛,王成刚.1998.不同阻尼情况下减振浮筏振动响应计算研究[J].船舶工程,1998(6):44-47.
    赵兴锐,徐筱欣,王言正.2005.两种浮筏隔振方案的比较分析[J].噪声与振动控制,2005(3):18-21.
    郑学贵,王国治.2005.浮筏结构动态特性灵敏度分析及动力学修改[J].华东船舶工 业学院学报:自然科学版,19(3):18-20.
    朱石坚,何琳.2002.舰船水声隐身技术(一)[J].噪声与振动控制,2002(3):17-19.
    祝华.1994.浮筏装置的理论建模与分析方法[J].舰船科学技术,1994(2):14-19.
    邹春平,陈端石,华宏星.2002.浮筏系统结构参数的功率流灵敏度分析[J].船舶工程,2002(5):50-54.
    MASAAKI,蔡立新译.1997.混合型主动隔振装置研究[J].船舶设计通讯,1997(2).
    ABE M,IGUSA T.1996.Semi-active dynamic vibration absorbers for controlling transient response[J].Journal of Sound and Vibration,198(5):547-569.
    AHMIDA K M,ARRUDA J R F.2001.Spectral element-based prediction of active power flow in Timoshenko beams[J].International Journal of Solids and Structures,38:1669-1679.
    BEALE L S.1995.Power flow in two-and three-dimensional frame structures[J].Journal of Sound and Vibration,185(4):685-702.
    BRENNAN M J,DAYOU J.2000.Global control of vibration using a tunable vibration neutralizer[J].Journal of Sound and Vibration,232(3):585-600.vDAVIS C L,LESIEUTRE G A.2000.An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness[J].Journal of Sound and Vibration,232(3):601-617.
    DENG H X,GONG X L,WANG L H.2006.Development of an adaptive tuned vibration absorber with magnetorheological elastomer[J].Smart Materials and Structures,15(5):111-116.
    GARDONIO P,ELLIOT S J,PINNINGTON.1997.Active isolation of structure vibration on a multiple-degree of freedom system,Part Ⅰ:the dynamics system[J].Journal of Sound and Vibration,207(1):61-93.
    GARDONIO P,ELLIOT S J,PINNINGTON.1997.Active isolation of structure vibration on a multiple-degree of freedom system,Part Ⅱ:effectiveness of active control strategies[J].Journal of Sound and Vibration,207(1):95-121.
    GARDONIO P,ELLIOT S J.2000.Passive and active isolation of structural vibration transmission between two plates connected by a set of mounts[J].Journal of Sound and Vibration,237(3):483-511.
    GLAESE R M,MILLER D W.1999.A generalized impedance matching method for determining structural-acoustic power flow control laws[J].Journal of Sound and Vibration,224(2):283-303.
    GOYDER H G D,WHITE R G.1980.Vibrational power flow from machines into built-up structures,Part Ⅰ:introduction and approximate analyses of beam and plate-like foundations[J].Journal of Sound and Vibration,68(1):59-75.
    HARRIS C M.1995.Shock and vibration handbook[M].New York:Mcgraw-Hill.
    HILL S G, SNYDER S D.2002.Design of an adaptive vibration absorber to reduce electrical transformer structural vibration[J]. Journal of Vibration and Acoustics-Transactions of the ASME,124(4):606-611.
    HOANG N, WARNITCHAI P.2005.Design of multiple tuned mass dampers by using a numerical optimizer[J]. Earthquake Engineering and Structural Dynamics,34:125-144.
    HOLDHUSEN M H.2005.The state-switched absorber used for vibration control of continuous systems[D]:[ Ph.D.]. Georgia Institute of Technology.
    HOWARD C Q, SNYDER S D,HANSEN C H.2000.Calculation of vibration power transmission for use in active vibration control[J].Journal of Sound and Vibration,233(4):573-585.
    HSUEH W-J.2000.Vibration Transmissibility of a unidirectional multi-degree-of-freedom system with multiple dynamic absorbers[J] Journal of Sound and Vibration,229(4):793-805.
    JALILI N.2002.A comparative study and analysis of semi-active vibration-control systems[J].Journal of Vibration and Acoustics-Transactions of the ASME,12:593-605.
    JALILI N, KNOWLES D W IV.2004. Structural vibration control using an active resonator absorber: modeling and control implementation[J].Smart Materials and Structures, 13:998-1005.
    KOH Y K, WHITE R G.1996.Analysis and control of vibrational power transmission to machinery supporting structures subjected to a multi-excitation system, Part I:driving point mobility matrix of beams and rectangular plates[J] Journal of Sound and Vibration,196(4):469-493.
    KOH Y K, WHITE R G.1996.Analysis and control of vibrational power transmission to machinery supporting structures subjected to a multi-excitation system, Part II:vibrational power analysis and control schemes[J] Journal of Sound and Vibration, 196(4):495-508.
    KOH Y K, WHITE R G.1996.Analysis and control of vibrational power transmission to machinery supporting structures subjected to a multi-excitation system, Part III: vibrational power cancellation and control experiments[J].Journal of Sound and Vibration, 196(4):509-522.
    LI T Y, ZHANG X M,ZUO Y T,XU M B.1997.Structural power flow analysis for a floating raft isolation system consisting of constrained damped beams[J]Journal of Sound and Vibration,202(1):47-54.
    LI W L, LAVRICH P.1999.Prediction of power flows through machine vibration isolators[J]Journal of Sound and Vibration,224(4):757-774.
    LI W L, DANIELS M.2002. Vibrational power transmission from a machine to its supporting cylindrical shell[J].Journal of Sound and Vibration,257(2):283-299.
    LI X, CAZZOLATO B,HANSEN C.Active Vibration Control of an Intermediate Mass: Vibration Isolation in Ships[A]//Proceedings of the Annual Australian Acoustical Society Conference,Australia: Adelaide,281-288.
    LIN R M, ZHU J.2007.Finite element model updating using vibration test data under base excitation[J] Journal of Sound and Vibration,303:596-613.
    LINK M.1998.Updating analytical models by using local and global parameters and relaxed optimization requirements[J].Mechanical Systems and Signal Processing, 12(1):7-22.
    MAK C M, SU J X.2002.A power transmissibility method for assessing the performance of vibration isolation of building services equipment[J]. Applied Acoustics,63(12):1281-1299.
    MCMILLAN A J.1997.Vibration isolation in a thin rectangular plate using a large number of optimally positioned point masses[J] Journal of Sound and Vibration,202(2):219-234.
    NAGAYA K, LI L.1997.Control of sound noise radiated from s plate using dynamic absorbers under the optimization by neural network[J] Journal of Sound and Vibration,208(2):289-298.
    NAGAYA K, KURUSU A, IKAI S, SHITANI Y.1999. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control[J].Journal of Sound and Vibration,228(4):773-792.
    NIU J C, SONG K J,LIM C W.2005.On active vibration isolation of floating raft system[J] Journal of Sound and Vibration,285(1-2):391-406.
    OLGAC N, HOLM-HANSEN B T.1994.A novel active vibration absorption technique: delayed resonator[J].Journal of Sound and Vibration, 176(1):93-104.
    OZER M B, ROYSTON T J.2005.Application of sherman-morrison matrix inversion formula to damped vibration absorbers attached to multi-degree of freedom systems[J]Journal of Sound and Vibration,283:1235-1249.
    PAN J, PAN J Q, HANSEN C H.1992.Total power flow from a vibrating rigid to a thin panel through multiple elastic mounts [J]. Journal of Acoustic Society of America,92(2):895-907.
    PAN J Q, HANSEN C H.1994.Power transmission from a vibrating source through an intermediate flexible panel to a flexible cylinder[J], Journal of Vibration and Acoustics-Transactions of the ASME,116:496-505.
    PARK S W. Analytical modeling of viscoelastic dampers for structural and vibration control [J]. Solids and Structures, 2001,38: 8065-8092
    PRANOTO T,NAGAYA K,HOSODA A.2004.Vibration suppression of plate using linear MR fluid passive damper[J] Journal of Sound and Vibration,276.919-932.
    RICE H J.1987.Practical non-linear vibration absorber design[J]Journal of Sound and Vibration, 116.
    SIMS N D.2007.Vibration absorbers for chatter suppression:A new analytical tuning methodology[J]. Journal of Sound and Vibration,301:592-607.
    Sjoberg M. 2000. Rubber isolators measurements and modeling using fractional derivatives and friction [J]. SAE Technical Paper Serials. 2000-01-3518.
    UNGAR E E, DIETRICH C W,1966.High-frequency vibration isolation[J]. Journal of Sound and Vibration,4(2):224-241.
    VERA S A, FEBBO M,MENDEZ C G,PAZ R.2005. Vibrations of a plate with an attached two degree of freedom system[J] Journal of Sound and Vibration,285:457-466.
    WANG J F, LIN C C,CHEN B L.2003.Vibration suppression for high-speed railway bridges using tuned mass dampers[J].International Journal of Solids and Structures,40:465-491.
    WANG Z H,XING J T, PRICE W G.2002.An investigation of power flow characteristics of 1 shaped plates adopting a substructure approach[J].Journal of Sound and Vibration,250(4):627-648.
    WANG Z H,XING J T, PRICE W G.2004.A study of power flow in a coupled plate-cylindrical shell system[J].Journal of Sound and Vibration,271:863-882.
    WATTERS B.1988.A Perspective on Active Machine Isolation[A]//Proceeding of the 27th conference on decision and control.Ascstin. Teras.
    WILLIAMS K A, CHIU G,BERNHARD R.2002.Adaptive-passive absorbers using shape memory alloys[J].Journal of Sound and Vibration,249(5):835-848.
    WILLIAMS K A, CHIU G T-C,BERNHARD R J.2005. Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber[J] Journal of Sound and Vibration,280:211-234.
    WINBERG M, LAGO T.1999.Inertial Mass Active Mount Used in a Marine Application[A]//The Adaptronic Congress,Berlin:Potsdam.
    WU J J.2005.Use of equivalent-damper method for free vibration analysis of a beamcarrying multiple two degree-of-freedom spring-damper-mass systems[J].Journal of Sound and Vibration,281 :275-293.
    XIONG Y P. 2001.Power flow analysis of complex coupled systems by progressive approaches[J]. Journal of Sound and Vibration,239(2):275-295.
    XIONG Y P, SONG K J,WANG C,HAN Y C.1996.Power flow analysis for a new isolation system-flexible floating raft[J]. Chinese Journal of Mechanical Engineering,9(3):260-264.
    XIONG Y P, XING J T,PRICE W G.2001.Power flow analysis of complex coupled systems by progressive approaches[J]. Journal of Sound and Vibration,239(2):275-295.
    XIONG Y P, XING J T,PRICE W G.2003.A general linear mathematical model of power flow analysis and control for integrated structure-control systems[J], Journal of Sound and Vibration,267: 301-334.
    YAN X W, WANG Y Q, SHENG M P,SUN J C.2003. Optimum design of multiple dynamic vibration absorbers of continuous parameter system based on power flow[J]. Journal of Ship Mechanics,7(6):130-138.
    YA P, Hartono S. Modeling of nonlinear elastomeric mounts. Part 1: Dynamic testing and parameter identification[J]. SAE Technical Paper Serials 2001-01-0042,2001
    ZHANG X C, LI G H, PAN J Q.2001. Calculation of power flow transmission for a common floating raft shared by several ship machines[J]. Journal of Ship Mechanics,5(3):89-94.
    ZUO L, NAYFEH S A.2004.Minimax optimization of multi-degree-of-freedom tuned-mass dampers[J].Journal of Sound and Vibration,272:893-908.
    ZUO L, NAYFEH S A.2005.Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 127:77-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700