用户名: 密码: 验证码:
喜树人工复合群落目的活性物质定向培育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喜树和南方红豆杉体内分别含有抗癌活性成分——喜树碱和紫杉醇,是著名的抗癌树种,但其体内含量甚低,并且喜树和南方红豆杉又分别属于国家二级和一级保护植物,禁止采收野生种群,为满足市场的巨大需求,只能进行人工培植;根据喜树和南方红豆杉自然分布均属于山地植物和喜树阳性,南方红豆杉阴性的生物生态学特性,科学构建了喜树人工复合群落,不仅提高土地利用率,并且对于山地多农田少的浙江地区,能够少占用农用地,实现资源增量。由于喜树碱和紫杉醇分别是喜树和南方红豆杉的一种次生代谢产物,它们利用并受控于所处的生态环境条件,通过分析喜树和南方红豆杉的次生代谢特点和环境特点发现,环境干旱和光照强度能提高喜树碱和紫杉醇含量。符合植物生活史型理论中的C型理论。本文以植物生活史型中的C型理论作为指导,将喜树和南方红豆杉配置在一起,筛选出关键生态因子,对喜树和南方红豆杉人工复合群落进行定向培育。
     根据喜树和南方红豆杉的生物生态学特性及其次生代谢特点,首先分别对喜树和南方红豆杉中喜树碱和紫杉醇含量变化及其生态条件的关系进行了筛选,结果表明喜树在全光照条件下,当水分条件干旱时能促进喜树碱含量增加,在相同条件下,光照强度越强,喜树碱含量越高。南方红豆杉随着光强的增强,紫杉醇含量提高,在同等条件下,水分条件越低,紫杉醇含量越高。根据上述结果,我们以喜树为建群种,以南方红豆杉为伴生种构建了喜树人工复合群落,设置了平地和坡地两种生态条件并且以人工单种群落作为对比,建成后对目的活性物质含量进行跟踪测试分析,结果表明:
     在平地和坡地人工复合群落中,喜树碱平均含量为0.6‰和0.88‰,紫杉醇平均含量为0.15‰和0.18‰,坡地人工复合群落中的目的活性物质含量均高于平地,原因是在平地人工复合群落中,地势平缓,地表径流小,郁闭度是0.43,光照和土壤胁迫较小;而坡地中由于坡度大,排水良好,郁闭度是0.37,光照和土壤胁迫均大于平地。通过人工调控改善林分环境条件后的喜树碱和紫杉醇含量也呈现同样的规律。上述结果,应用植物生活史型理论进行划分,平地和坡地人工复合群落中的喜树分别属于V型和V型向VC型过渡,南方红豆杉属于V型和V型,人工调控改变环境条件后,平地、坡地喜树和南方红豆杉的生活史型分别属于V型、VC型、VC型、VC型,表明光照和干旱胁迫增强,促进喜树和南方红豆杉克隆生长,提高体内次生代谢物质积累。
     本文首次应用植物生活史型理论,筛选了水分和光照关键生态因子,在平地和坡地进行种植,并进行了人工调控,属于自主创新型的研究,不仅为喜树和红豆杉高产培育提供了示范,还为山区农民改变传统种植结构、促进新农村建设提供了理论支持。
Camptotheca acuminate and Taxus chinensis var.marei which are the grade one and two national protected plant are famous species for anti-cancer,which contain anti-cancer active components,camptothecin and taxol,however,it is low content of their bodies.As the wild populations prohibited harvested,we have to cultivate the species to meet the huge market demands.According to the biological characteristics which they both belong to mountain plants and Camptotheca acuminate and Taxus chinensis var.marei are positive and negative respectively,artificial compound community is constructed scientifically,in which enhance land use,reduce occupation of agricultural land to achieve resource increment in Zhejiang area which has less farmland than mountains.
     Due to camptothecin and taxol are secondary metabolites belonging to Camptotheca acuminate and Taxus chinensis var.marei respectively,they make up use and have been controlled by the conditions of the ecological environment.By analyzing the characteristics of secondary metabolites and environment of Camptotheca acuminate and Taxus chinensis var. marei,we find that dry environment and light could improve the content of camptothecin and taxol.That meets the C-type theory in plant life theory.
     This paper guided by the C-type theory in plant life theory,configures Camptotheca acuminate and Taxus chinensis var.marei together,and selects key ecological factors to conduct directive training for artificial compound community of Camptotheca acuminate and Taxus chinensis var.marei.
     According to biological characteristics of secondary metabolites of Camptotheca acuminate and Taxus chinensis var.marei,variation of content of camptothecin and taxol belonging to Camptotheca acuminate and Taxus chinensis var.marei respectively and the relationship of their ecological conditions are monitored.The result shows that,in the full illumination conditions,camptothecin will be increased by dry conditions,and on the same conditions,the stronger the light intensity is,the higher the content of camptothecin increase. On the basis of the result,we take Camptotheca acuminate to build community,and take Taxus chinensis var.marei as companion species to build Camptotheca acuminate artificial compound community.We construct two ecological conditions of the plains and slopes and contrast artificial single species community cultivated plant.After construction,testing and analyzing the content of objective active substance,the result shows:
     At flat and sloping field artificial compound community,the average content of camptothecin are 0.6%0 and 0.88%0,and the average content of taxol are 0.15‰and 0.18‰. The content of objective active substance at sloping field is higher than at flat.That is because the terrain of flat artificial compound community slopes gently,less runoff,0.43 canopy density,and less resistance of light and soil.However,at sloping field,on the base of sloping field,it has good drainage,canopy density is 0.37,and there is more resistance by light and soil than at flat.By controlling and changing stand environment condition,the content of camptothecin and taxol follows the same law.
     According to plant life cycle forms theory,flat and sloping Camptotheca acuminate artificial compound communities belong to V style and V to VC style plant life cycle forms respectively,Taxus chinensis var.marei belongs to V and V style plant life cycle forms. Camptotheca acuminate and Taxus chinensis var.marei at fiat and sloping field belong to V style,VC style,VC style,VC style after treatment.It shows that the resistance gets more by light and dry conditions.The proportion of clone growth was increased after treatment.It improves the secondary metabolites.This paper uses plant life cycle forms theory,and selects the ecological factors of moisture and light,and cultivate plant at flat and sloping field with treatment.That is an innovative research.That helps farmers to change the plant construction and improve the theory of building new country.
引文
[1]中国科学院植物研究所主编.中国高等植物图签(第三册)[M].北京:科学出版社,2002
    [2]Wall ME,Wani MC,Cook CE et al.The isolation and structure of camptothecin a novel alkaloidalleukemia and tumor inhibitor from Camptotheca acuminate[J].J Amer Chem Soc,1966,88(16):3888-3890
    [3]Wani MC,Tavlor HL,WaII ME,etal.The isolation and structure of taxol,a novel antileukemic and antitumor agent from Tasus brevifolia[J].Am Chem Soc,1971,93(9):2325-2327.
    [4]Hsiang Y H,Herizberg R,Hecht S.Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.J.Biol.Chem.,1985,260:14873-14878.
    [5]Aruoma O I.Free radicals:their role in nutrition.In free radicals in tropical diseases.EditedO I Aruoma.pp.1993,187-217
    [6]Brieskom R,Mickel H and Biechele W.Flavones of Rosrmary Leaves.Dent.Lebensm.Rundsch.1973.,69(7):245-246
    [7]Aeschbach R,Philip ponssian G,Richli V,etal.Flavoniod Glycosides from Rosemary,Separation,Isolation and Identification.Bull Liaison-Groupe Polyphenols.1986,(13):56-58
    [8]Coley P D,Bryant J P,Chapin F S,Ⅲ.Resource availability and plant antiherbivore defense[J].Science,1985,230(6):895-899.
    [9]Diaz JF,Andreu JM.Assembly of purified GD p- tubulininto microtubules induced by Taxoland Taxotere:reversibility,ligand stoichiometry,and competition[J].Bio-chemistry,1993,31(1):27-47.
    [10]王达明,李莲芳,周云等.云南红豆杉人工药用原料林的经营技术[J].西部林业科学,2004,33(1):8-14
    [11]张显强,唐金刚,乙引.中国喜树资源及可持续开发对策[J].贵州师范大学学报,2004,22(1):36-39.
    [12]李星.喜树的分布现状、药用价值及发展前景[J].陕西师范大学学报,2004,32(1):169-173.
    [13]Wall ME,Wani MC,Cook CE et al.The isolation and structure of camptothecin a novel alkaloidalleukemia and tumor inhibitor from Camptotheca acuminate[J].J Amer Chem Soc,1966,88(16):3888-3890
    [14]Wani MC,Tavlor HL,WalI ME,etal.The isolation and structure of taxol,a novel antileukemic and antitumor agent from Tasus brevifolia[J].Am Chem Soc,1971,93(9):2325-2327.
    [15]Liu Z,Carpenter S B,Constantin R J..Camptothecin production in Camptotheca acuminata seedlings in response to shading and flooding Canadian[J].Journal of Botany,1997,75(2):368-373.
    [16]McKey D.Adaptive pattems in alkaloid physiology[J].American Naturalist,1974,108(6):305-320.
    [17]K Sakato,H Tanaka,N Mukai,and M Misawa.Isolation and identification of camptothecin from cells of Camptotheca acuminate suspension cultures.Argic.Biol.Chem.1974,(38):217-218
    [18]McKey D.The distribution of secondary compounds within plants and heir Interactions with Secondary Plant Metabolites[M].New York:Academic,1979:55-133.
    [19]Namkoong G..Introduction to quantitative genetics in forestry[M].London:Castla House Pub,1980:210-259.
    [20]方起程.中草药是研究和开发新药的宝库[J].中国药学杂志,1994,29(2):65.
    [21]扈志洪.紫杉醇的药理与临床研究进展[J].重庆教育学院,2005,18(6):46-49.
    [22]茹文明,张金屯,张桂萍等.濒危植物南方红豆杉研究的进展[J].长治学院学报,2005,22(5):16-20.
    [23]Hengel A J,Harkes MP,Wichers HJ et al.Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminate.Plant Ce(1 Tiss.Org.Cult.1992,28:11-18
    [24]何方.中国经济林栽培区划[M].北京:中国林业出版社,2000
    [25]高微微,赵杨景,王玉萍等.我国药用植物栽培地的可持续利用研究[J].中国中药杂志,2006,31(20):1665-1669.
    [26]Bryant J P,Chapin F S Ⅲ,Klein D R.Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J].Oikos,1983,40(3):357-368.
    [27]Keeres.some evidence of loss of Productivity with successive rotation of pinus in south east of S.Australia.Australion Forestry.1966,(30):50-63
    [28]A.L.Takhtajan.A developmental study of the integument in gymnosperms Pinus thunbergii Parl Abies mariesii Mast and A veitchii Lindl[J].Jpn Bot,1954,55(1):14-27.
    [29]R.Boardman.Productivity under successive rotations of radiate pine.Australion Forestry.1978,41(3):177-179
    [30]Wall ME,Wani MC,Cook CE et al.The isolation and structure of camptothecin a novel alkaloidalleukemia and tumor inhibitor from Camptotheca acuminate[J].J Amer Chem Soc,1966,88(16):3888-3890
    [31]Wang Y P,Jarvis P.G..Influence of crown structural properties on PAR absorption,photosynthesis,and transpiration in sitka spruce:application of a model (MAESTRO)[J].Tree Physiol,1990,7:297-316.
    [32]Aeschbach R,Philip ponssian G,Richli V,etal.Flavoniod Glycosides from Rosemary,Separation,Isolation and Identification.Bull Liaison-Groupe Polyphenols.1986,(13):56-58
    [33]Ferreres F,Amparo B M,Isabel G M,et al.Separation of Honey Flavonoinds by Micellar Electrokinetic Capillary Chromatography,J Chromatography.1994,669:268-274
    [34]Fleming PE,Mocek U,Floss HG.1993.Biosynthesis of taxoids:Mode of formation of the taxol side chain.Journal of the American Chemical Society,115:805-807
    [35]祖元刚,赵则海,杨逢建等.植物生活史型的划分及其相互转化[J].生态学报,2005,5(9):2347-2353.
    [36]Hengel A J,Harkes MP,Wichers HJ et al.Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminate.Plant Ce(1 Tiss.Org.Cult.1992,28:11-18
    [37]McKey D.Adaptive patterns in alkaloid physiology[J].American Naturalist,1974,108(6):305-320.
    [38]McKey D.The distribution of secondary compounds within plants and heir Interactions with Secondary Plant Metabolites[M].New York:Academic,1979:55-133.
    [39]Roshchina U.D.Volatile and water Osoluble metabolites of woody plant leaves.Physiological Biochemical Basis of Plant Interaction in Phyto2cenoses.1974,5:36-40
    [40]Soina E.Sultan.Phenotypic placsticty for plant development,function and life history.Trends in Plant Science.2000,5(12):537-542
    [41]Stierle A,et al.Taxol and taxane production by Tax-omyces andreanae,on endophytic fungus of pacific yew[J].Science,1993,200(3):214-216
    [42]Xiao P G.,Li D P.Modern research and application of Chinese medicinal plants[M].HongKong:HongKongmedical Publishers,2000:230-240.
    [43]H.W.Poliey,H.B.Johnson and H.S.Mayeux.Leaf physiology,production,water use and nitrogen dynamics of the grassland invader Acacia.smalJii at elevated CO2concentrations[J].Tree Physiology,1997,17(1):89-96.
    [44]Bryant J P,Chapin F S Ⅲ,Klein D R.Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J].Oikos,1983,40(3):357-368.
    [45]曹基武,陈湘运,唐文东.南方红豆杉营林技术的研究[J].林业科学,1999,24(5):8-10.
    [46]王荣秀,李永良,刘国强等.退耕还林林药复合模式中草药栽培技术[J].青海农林科技,2004,(4):71.
    [47]向桂琼,卢馥荪.中国特有植物珙桐化学成分研究[J].植物学报,1989,31(7):540-543.
    [48]何方.中国经济林栽培区划[M].北京:中国林业出版社,2000
    [49]应叶青.喜树种源试验与叶用园营建关键技术研究.硕士学位论文 2004,7:15
    [50]茹文明,张金屯,张桂萍等.濒危植物南方红豆杉研究的进展[J].长治学院学报,2005,22(5):16-20.
    [51]高正航,李卫东.长春花生物碱类药物研究概述[J].贵州农业科学,2005,33(6):94-96.
    [52]赵杨景,王玉萍等.我国药用植物栽培地的可持续利用研究[J].中国中药杂志,2004,31(20):1653-1659.
    [53]Harwood Academic Publishers.London Chan H W.Auto-oxidation of Unsaturated lipid.Academic Press,London.1987
    [54]Liu Z,Carpenter S B,Bourgeois W J,et al.Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata[J].Tree Physiology,2003,18(16):265-270.
    [56]Martin D,Tholl D,Gershenzon J,Bohlmann J.Methyl Jasmonate Induces traumatic resin ducts,Terpenoid resin biosynthesis,and terpenoid accumulation in developing xylem of Norway Spruce stems.Plant physiology.2002,129:1003-1018
    [57]Namkoong G..Introduction to quantitative genetics in forestry[M].London:Castla House Pub,1981:210-259.
    [58]Stierle A,et al.Taxol and taxane production by Tax-omyces andreanae,on endophytic fungus of pacific yew[J].Science,1993,200(3):214-216.
    [59]凌关庭.食品抗氧化剂及其进展(五),粮食与油脂,(2).2001,46-48
    [60]Collins M A and Charles H P.1987.Antimicrobical activity of camosol and ursosicacid:two antioxidant constituents of Romarinus Officinus L.Food Microbiology.1987,4(4):311-315
    [61]屠鹏飞等.新型资源植物迷迭香的化学成分及其应用.天然产物研究与开发.1997,10(3):62-69
    [62]常静,肖绪玲,王夺元.我国引种的迷迭香抗氧化剂成份的分离和抗氧化性能研究.化学涌报,.1992,(3),30-33
    [63]赵则海,祖元刚,唐中华,等甘草生活史型的划分[J].生态学报,2005,25(9):2341-2346.
    [64]祖元刚,罗猛,牟璠松等.长春花生物碱成分及其药理作用研究进展[J].天然产物研究与开发,2006,18(2):325-329.
    [65]段传人,王伯初,徐世荣.环境应力对植物次生代谢产物形成的作用[J].重庆大学学报.2003,26(10):672-676
    [66]张显强,唐金刚,乙引.中国喜树资源及可持续开发对策[J].贵州师范大学学报,2004,22(1):36-39.
    [67]张向飞,张秀省,王勇等.植物生长调节物质对于长春花细胞中吲哚生物碱积累的影响[J].植物生理学通讯,2004,40(3):303-304.
    [68]张永清,李岩坤.影响药用植物体内生物碱含量的因素[J].齐鲁中医药情报,1992,3(1):10-12
    [69]王洋,戴绍军,阎秀峰.光强对喜树幼苗叶片次生代谢产物喜树碱的影响[J].生态学报,2004,24(6):1118-1122.
    [70]赵杨景.植物化感作用在药用植物栽培中的重要性和应用前景[J].中草药,2000,31(8): 附1-4.
    [71]Aruoma O I.Free radicals:their role in nutrition.In free radicals in tropical diseases.EditedO I Aruoma.pp.1993,187-217
    [73]Kuuluvainen T,Pukkala T.Effect of crown shape and tree distribution on the spatial distribution of shade[J].Agri For Meteorol,1987,40:215-231.
    [74]陈学友.人工厚朴林开发及其丰产技术措施.林业科技开发.1995,4:40-41
    [75]Ketchum R E B,Tandon M,Gibson D M,et al.Isolation of labeled 9-dihydrobaccatin Ⅲand related taxoids from cell cultures of Taxus canadensiselicited with methyljasmonate.J Nat Prod.1999,62:1395-1398
    [76]鲁守平,隋新霞,孙群等.药用植物次生代谢的生物学作用及生态环境因子的影响[J].天然产物研究与开发,2006,20(18):1027-1032.
    [77]Liu Z,Zhou G,Xu Set al,Medicinal plants from China-researchers look at growth and CPT concentrations in 18 seed sources[J].Louisiana Agriculture,1999,42(3):265-270.
    [78]蒋三乃,翟明普,贾黎明.2001.混交林种间养分关系研究进展[J].北京林业大学学报,23(2):72-76
    [79]雪刚.陇山林区杜仲经济林营造技术.甘肃农业.2005,4:65-69
    [80]Collins M A and Charles H P.1987.Antimicrobical activity of camosol and ursosicacid:two antioxidant constituents of Romarinus Officinus L.Food Microbiology.1987,4(4):311-315
    [81]唐中华,于景华,杨逢建,等.植物生物碱代谢生物学研究进展.植物学通报,2003,20(6):696-702.
    [82]F.E.CARSWELL,P.MEIR,E.V.WANDELLI,L.C.M.BONATES,B.KRUUT,E.M.BARBOSA,A.D.NOBRE,J.GRAGE and P.G.JARVIS.Photosynthetic capacity in a central Amazonian rain forest[J].Tree Physiology.2000,20:179-186
    [83]Gordon M.Cragg,David J.Newman.Plants as a source of anti-cancer agents[J].Journal of Ethnopharmacology,2005,(100):72-79.
    [84]Huang Y,Fang Y,Dziadyk J M.The possible correlation between activation of NFκB/κBpathway and the susceptilbilty of tumnor cell to paclitaxel- induced apoptosis[J].Oncol Res,2002,13(2):113-122.
    [85]K Sakato,H Tanaka,N Mukai,and M Misawa.Isolation and identification of camptothecin from cells of Camptotheca acuminate suspension cultures.Argic.Biol.Chem.1974,(38):217-218
    [86]Liu Z,Carpenter S B,Constantin R J..Camptothecin production in Camptotheca acuminata seedlings in response to shading and flooding Canadian[J].Journal of Botany,1997,75(2):368-373.
    [87]徐震邦等.主要伴生树种树叶对红松生长的影响.林业科学.1972,(4):357-360
    [88]袁秀云,谢慧玲.植物次生物质在植物防御中的作用[J].焦作大学学报,2005,18(4):52- 54
    [89]唐微,邓坤,许久伟.不同耐光特性植物的光合速率日变化[J].华中农业大学学报,1998,17(4):317-20.
    [90]梁军等.I-69杨生长过程分析和生长阶段划分[J].林业科学研究,2000,13(4):343-348.
    [91]焦健,田波生,孙学刚.甘肃文县琪桐群落优势种种群分布格局及动态变化趋势[J].甘肃农业大学学报,1998,33(3):266-271.
    [92]虞华强.经济林核桃枣树木材性质及其变异规律的研究 安徽农业大学硕士学位论文.2003
    [93]廖利平等.杉木俞主要阔叶造林树叶凋落物的混合分解.植物生态学报.2000,24(1):27-33
    [94]曹建国,祖元刚.刺五加生活史型特征及其形成机制[M].北京:科学出版社,2005:270-290.
    [95]Jhon A.拉德维格[澳],James F.蓝诺兹[美].统计生态学—方法和计算入门[M].内蒙古:内蒙古大学出版社,1991:6-41.
    [96]杨逢建,庞海河,孙佳音等.2007.光胁迫对南方红豆杉叶片中叶绿素和紫杉醇含量的影响.植物研究,27(5):556-558
    [97]李敏.中药材规范化生产与管理(GAP)方法及技术[M].北京:中国医药科技出版社,2005,1:274-276.
    [98]陈永亮.胡桃秋和兴安落叶松混交林中间营养关系的研究.东北林业大学博士论文.1999
    [99]祖元刚,王非,马书荣,等长春花生活史型研究[M].北京:科学出版社,2006:48-57.
    [100]Martin D,Tholl D,Gershenzon J,Bohlmann J.Methyl Jasmonate Induces traumatic resin duets,Terpenoid resin biosynthesis,and terpenoid accumulation in developing xylem of Norway Spruce stems.Plant physiology.2002,129:1003-1018
    [101]王博文,王洋,阎秀峰.光强对喜树幼苗喜树碱含量及分配的影响[J].黑龙江大学自然科学学报,2006,23(2)260-264.
    [102]顾青,朱睦元.光照对喜树愈合组织生理及喜树碱合成的影响[J].浙江林学院学报2006,23(3):280-284
    [103]冯建灿等.弱光条件下光质对喜树生理生化指标的影响[J].经济林研究 2008,26(1):127-132
    [104]冉春燕等.喜树幼苗形态和光合作用对不同光环境的适应[J].西南师范大学学报2006,31(2):142-146
    [105]孙佳音,杨逢建等.遮荫对南方红豆杉光合特性及生活史型影响[J].2007,27(4):439-444

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700