用户名: 密码: 验证码:
基于CAST工艺的低碳氮比城市污水高效脱氮调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡成库后,因水流减小导致水体自净能力的减弱,氮磷过量排放引起的库区富营养化问题越来越严峻,尤其在前年无锡太湖蓝藻事件,更引起人们对三峡库区氮磷过量排放的担忧,对库区污水进行深度除磷脱氮的要求越来越迫切。CAST工艺(CyclicActivated Sludge Technology)作为SBR一种新的变型工艺,具有良好的脱氮除磷功能,又由于其占地面积较小、无需初沉池和二沉池、基建及运行费用低,比较适合三峡库区地少和运行经费紧张的特点,同时CAST工艺由于设置生物选择池限制丝状菌的生长,操作自动化程度高、劳动强度低等优点,近年来在我国特别是三峡库区的应用越来越广泛。
     虽然CAST工艺的研究很多,但其生产性试验的研究尚处于初步阶段,本课题针对TN平均约60mg/L的高氮城市进水CAST工艺,对其污泥培养驯化、工艺调试、优化运行控制全程和运行过程中生化系统中微生物变化等进行了系统而深入的研究。在2008年,对CAST工艺去除CODCr、TN、NH3-N等污染物的特性进行了研究,并就生产中出现的问题进行了分析。通过对影响CAST工艺运行关键性参数进行调整,对影响因素的不同作用规律进行了系统研究,寻找适合李家沱污水处理厂水质水量的冬季低温期和常温期最佳运行模式。在对2008年各种运行数据分析的前提下,重点对影响脱氮的因素及规律进行了分析,提出适合李家沱污水处理厂将来水量增大脱氮压力增加的运行模式。在2009年的实验中对脱氮过程ORP的变化规律、影响因素和指示作用以及微生物与脱氮的关系等进行了初步的研究。
     在实验工程中采用了五种运行模式来研究CAST工艺,即A:进水0.5h—进水/曝气1.5h—沉淀1h—滗水1h;B(初步设计采用模式):进水/曝气2h—沉淀1h—滗水1h;C:进水/曝气2h—微曝1h—沉淀1h—滗水1h;D:进水1h—曝气2h—沉淀2h—滗水1h;E:进水/曝气3h—沉淀2h—滗水1h。根据近一年的实际运行情况,选定C模式:进水/曝气2h—微曝1h—沉淀1h—滗水1h为冬季低温期运行模式,对DO、MLSS等运行参数进行了优化,主曝阶段DO控制在3.0~4.0mg/L,微曝阶段DO控制在0.5mg/L以下,污泥龄控制为15~20d,MLSS值控制在4000~6000mg/L,污泥回流比约30%时,系统可取得最好的脱氮效果,此时脱氮率基本在75%左右。选定了B模式(设计模式):进水/曝气2h—沉淀1h—滗水1h为常温期运行模式,并通过实验确定MLSS、DO等运行参数,DO控制2.0~3.0mg/L,MLSS值控制在4000~5000mg/L,相应的污泥龄为14~16d,污泥回流比为20%时系统处理效果最优。
     通过近2年的实验研究,发现CAST工艺采用不同的运行模式时,处理效果显著不同;在对CAST工艺实际运行管理中,应首先摸清实际进水情况,根据实际进水水质合理选定运行模式和各项控制参数,重视进水中因工业废水进入产生的高氮和低C:N现象带来的脱氮压力;在实际设计中,为取得较好的脱氮效果,建议氮负荷率取值不应高过0.04gN/gMLSS.d;污泥龄控制在15~20d左右。
     目前,李家沱污水处理厂进行较少,负荷不高,未来水量增大会带来严重脱氮压力,因此本课题进行了强化同步硝化反硝化试验,提出了DO水平梯级控制的概念。运用DO梯级控制,合理选择运行参数,CODCr、BOD5等污染物可以得到稳定有效的去除效率,而TN的去除率也提高了10%~15%左右,出水TN浓度基本在15mg/L以下,TN出水平均在11mg/L左右,达到或接近《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。
     ORP作为运行控制参数之一,在脱氮过程中越来越显示其作用,为此,在2009年进行ORP与脱氮效果的初步研究,寻找和探索了CAST工艺中厌氧区和主反应区ORP与CODCr、NH3-N、硝态氮等物质浓度的关系。研究ORP值随进水水质变化而变化,但ORP的变化有一定的规律,在厌氧区ORP和CODCr、NH3-N的浓度乘积与硝态氮浓度的比值的对数线性相关性较好R2=0.9146,在主反应区曝气阶段ORP值与LnDO相关性系数为R2=0.8708。
     污水处理装置中起污水净化作用的主要是各种细菌,微生物与细菌之间存在相互依赖的功能关系,微型动物的群落结构在很大程度上反应细菌群落结构,因此,微生物可以指示污水处理效果的好坏。通过对CAST工艺微生物特别是纤毛虫种类、数量的变化和对应的出水理化参数的Pearson相关性分析的研究证明:有肋楯纤虫、龙骨漫游虫、小口钟虫为微生物的优势种;纤毛虫中优势种属与出水的理化参数呈一定的相关性,相关程度随种属的不同而异。
After the completion of Three Gorges Reservoir, the ability of water self- purification is weaken due to water flow become slowly. The excessive emission of nitrogen and phosphorus resulted that eutrophication was more severe in the reservoir, especially, Taihu Lake have appeared cyanobacteria events in Wuxi in the year before past, which gave rise to concern about excess emissions of nitrogen and phosphorus in the Three Gorges Reservoir Area. The deep removal of nitrogen and phosphorus is more and more urgent. CAST Technology (CyclicActivated Sludge Technology), as a new variant of SBR process, has many merits, such as good function of nitrogen and phosphorus removal, smaller area, without primary sedimentation tank and secondary settling tank, low infrastructure and operating costs. so CAST process is adapt to Three Gorges reservoir area which has smaller area and short of funds. At the same time, the bio-selecting tank is set up in CAST process to limit the growth of filamentous bacteria, with high operating automation and low labor intensity. In recent years, CAST is used more and more widely in China,especially in the Three Gorges Reservoir.
     Although there are many researches of CAST technology, the productive experient is still at a preliminary stage.In this paper, the CAST process treatment highly influent Nitrogen, average 60mg/L, cultivation and domestication of sluge, process test, optimization of operation and microorganism changes in the system were systematically and thoroughly researched. In 2008, there had research the feature on the removal of CODCr, TN, NH3-N and other pollutants in CAST Process and analyze production problems. Through adjusting key parameters affecting CAST process, the different roles of affecting factors were systematically researched to find best operation modes that adapt to Lijiatuo WWTP in low and normal temperature periods. On the base of analysis operation datas in 2008, especially Nitrogen removal rule and affection factors analysis, a new operation mode, adapted to Lijiatuo WWTP that wastewater quantity and Nitrogen removal pressure increased in future, was brought forward. The variation, factors and indicative of ORP during nitrogen removal process and the relationship between microbes and nitrogen were preliminary studied in 2009.
     During CAST process test, there are five operating modes, A: Influent0.5h-Influent/Aeration1.5h—Settle1h—Decant1h; B(preliminary design pattern ): Influent/Aeration2h—Settle1h—Decant1h; C: Influent/Aeration 2h—Slight Aeration 1h —Settle 1h—Decant 1h; D: Influent 1h—Aeration 2h—Settle 2h—Decant 1h; E: Influent/Aeration 3h—Settle 2h—Decant1h.According to the actual operation of the past year, C was selected in low temperature period: Influent/Aeration 2h—Slight Aeration 1h—Settle 1h—Decant1h and DO, MLSS and other operating parameters were optimized. At the conditions that DO was controlled at 3.0 ~ 4.0mg/L in main exposure stage, below 0.5mg/L in micro-exposure stage, the sludge age was 15 ~ 20d, MLSS value was 4000 ~ 6000mg/L, the sludge recycle ratio was about 30%, the system can achieved the best nitrogen removal, about 75%. B(design pattern) was selected in normal temperature period: Influent/Aeration2h—Settle1h—Decant1h; DO, MLSS and other operating parameters were determined .At the conditions that DO was controlled at 3.0 ~ 4.0mg/L, MLSS value was 4000 ~ 5000mg/L, the sludge age was 14~16d, the sludge recycle ratio was about 20% , the system can achieved the best nitrogen removal.
     Base on WWTP actual operating parameters and quality of influent and effluent in 2008 ~ 2009, the following conclusions were obtained: the nitrogen removal in CAST process were significantly different at different modes of operation; in CAST process operation, it was should to compared with water quality of design and actual, attention to different operating modes with different quality to avoid nitrogen pressures caused by high percentage of industrial wastewater and high influent nitrogen concentration. In the actual design, in order to obtain better nitrogen removal, the nitrogen loading values should not be higher than 0.04gN/gMLSS.d and sludge age is about 15d.
     Currently, the influent is less and load is not high in Lijiatuo WWTP, increased water quantity in future will bring serious pressure of denitrification. Therefore, this topic studied on strengthening the simultaneous nitrification and denitrification,and raised the concept of DO Step-Control. Under the premise of removing pollutants such CODCr、BOD5 and so on, the results showed that nitrogen removal in DO Step-Control was more stable and effective than ordinary whether in low or normal temperature operating conditions. Denitrification rate increased by 10% ~ 15%, the effluent TN concentrations was mostly below15mg/L, TN effluent was 11mg / L or so.
     ORP as one of control parameters, more show its role in the nitrogen removal process. In 2009, When carry out the pilot study for researching the role of ORP making during the Nitrogen removal process, the study emphases is put on the relationship between ORP, CODCr, NH3-N and NOX-N during denitrification process in anaerobic tank and the main reaction tank . Research found that the different influent wastewater quantity, ORP values is significantly different changes. And the results indicate that influent wastewater quality makes an important role in affecting ORP. Linearity pertinency between ORP and logarithm of CODCr、NH3-N concentration product and NOX-N concentration ratio is preferable, R2=0.9146;Linearity pertinency between ORP and logarithm of DO in aeration phase of the main reaction tank, R2=0.8708.
     A variety of bacteria are mainly play the role of sewage purification in Sewage treatment plant, there are interdependent functional relationship between Micro- organisms and bacteria. Community structure of Microfauna Performances bacterial community structure to a large extent, so Micro-organisms can indicate good or bad effects of sewage treatment. In the CAST Process, micro-organisms, especially ciliates, Pearson correlation analysis while changes of ciliates type and quantity and the corresponding physical and chemical parameters of Drainage have been shown that : Aspidisca costata、Litonotus carinatus stokes and Vorticella microstoma Ehrenberg are dominant species of micro-organisms. here are interdependent functional relationship between Dominant species of Ciliates and physical and chemical parameters of Drainage, the different species have different degree of correlation.
引文
[1]张自杰等.废水处理理论与设计.北京:中国建筑工业出版社,2003.
    [2]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575~578.
    [3]种云霄,利用沉水植物治理水体富营养化[J].广州环境科学,2005,20(3):41~43.
    [4]田永杰,唐志坚等.我国湖泊富营养化的现状和治理[J].环境科学与管理,2006,8(5):119~121.
    [5]娄云等,富营养化浅水湖泊治理方法初探[J].吉林水利,2005(9):34 ~37.
    [6]秦伯强等,长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193~202.
    [7]拓元蒙等,滇池富营养化现状、趋势及其综合防治对策[J].云南环境科学,2002,21(3):35~38.
    [8]丰茂武,吴云海等.湖泊富营养化的防治对策与展望[J].江苏环境科技,2007,20(2):69~71.
    [9]王凯军,可持续发展的新型高效城市污水处理技术探讨[J].给水排水,2005,31(2):32-34.
    [10]周娇,高氮城市污水处理CAST工艺调试运行研究.硕士学位论文,重庆大学,2009,15~32.
    [11]陈玉成,郑永华,肖广全.三峡库区重庆段小城镇污水处理对策[J].中国给水排水,2004,20(5):28-31.
    [12] Degard H,Skroveseth A F.An Evaluation of performance and process stability of different processes for small wastewater treatment plants[J].Wat. Sci. Tech,2000.35(6):119~127.
    [13]郑兴灿,李亚新编著.污水除磷脱氮技术[M].建筑工业出版社,1998.
    [14]叶建锋编著.废水生物脱氮新技术[M].化学工业出版社.2006.
    [15]赵丹,任南琪等.生物脱氮微生物学及研究进展[J].哈尔滨建筑大学学报:2002,35(5):60~65.
    [16] R.J.Zoetemeryer, J.C Van Den Heuvel and A.Cohen. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor [J].Water res 1982 (16),286~310.
    [17] Sutherson S,Ganczarczyk J J.Inhibition of nitrite oxidation during nitrification:Some observation[J].Wat.poll. Res. J. Can 1986,21:257~266.
    [18] Turk O, Mavinie D S.Preliminary assessment of a shortcut in nitrogen removal from wastewater[J].Can. J. Civ. Eng.1986,13:600~605.
    [19] Hellinga C,Schellen A A J J,Mulder J W,et al.The SHARON process: an innovative method for nitrogen removal from a ammonium-rich wastewater[J].Wat. Sci. Tech.,1998.37(9):135~142.
    [20] Kuai L P , Versraete W . Ammonium removal by the Oxygen-limited autorophic nitrification-denitrification system[J].Appl.Env.tech.,1999,39(7):13~21.
    [21] Robertson L. A.Aerobic denitrification in various heterotrophic nitrifiers[J].Antonie Van Leeuwehoek,1989,56:289~299.
    [22] Mike S.M. Jetten,Susanne logemann,Gerard Muyzerm,etal.Novel principle in the microbial conversion of nitrogen compounds[J].Antonie Van Leeuwehoek,1997,71(1~2):75~93.
    [23] Robertson L. A,ED W J Van Niel, ROB A M Torremans,etal.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaeera Pantot ropha[J].Applied and Environmental Microbiology,1988,54(11):2812~2818.
    [24] Van Niel E W J.Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification.Ph D Thesis[J].Delft University of Technology,Delft,1991.
    [25]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6~9.
    [26]张统.SBR及其变法污水处理与回用技术[M].北京:化学工业出版社,2003.
    [27] Goronszy.M.C . The Cyctic Activated Sludge System for Resort Area Wastewater Treatment[J].Wat.Sci.Tech,1995,32(9~10):105~114.
    [28]张智,周娇,刘少武,王俊.阶段限制曝气法在CAST工艺低温期运行中的应用研究.给水排水2009增刊:227~229.
    [29]魏永,闪红光.循环式活性污泥法的研究进展[J].辽宁城乡环境科技,2004,24(4):7~10.
    [30] DemoulinG,RudigerA,Goronsky M C.Cyclic activated sludge technology-recent operating experience With a 90000 p.e. plant in Germany [J].Wat. Sci. Tech,2001,43(3):331-337.
    [31]熊红权,李文彬.CASS工艺在国内的应用现状[J].中国给水排水,2003,19(2):34~35.
    [32]杨岸明、王淑莹等.以pH和ORP作为脉冲SBR工艺的实时控制参数.环境污染治理技术与设备,2006,1(12):32~35.
    [33]任明华,CASS工艺的性能和优化运行研究.硕士学位论文,同济大学,2007,5~25.
    [34]王文光,李亚峰等.低水温条件下CAST工艺在城市污水处理厂的应用[J].工业安全与环保,2008,34(1):1~3.
    [35]房安富,王旭等.CAST工艺在大连老虎滩污水处理厂的应用[J].给水排水,2007,23(4):61~64.
    [36]曾薇、彭永臻等.SBR交替好氧缺氧短程脱氮工艺及其过程控制.中国给水排水,2006,22(9):46~51.
    [37]杨庆等.城市污水短程硝化反硝化的控制策略及对污泥种群的影响[J].高技术通讯,2007,17(10):1060~1065.
    [38]傅金祥,翟佳麟等.CAST法处理啤酒废水的工艺设计与应用[J].中国给水排水,2003,19(11):90~92.
    [39]陈克玲,詹键.CAST工艺处理城市污水原理及设计[J].环境科学与技术,2004,27(4):71~83.
    [40]许劲,孙俊贻.循环式活性污泥法工程设计方法探讨[J].给水排水,2007,33(2): 34~38.
    [41]郭庆英,申蓁等.CAST工艺中的鼓风机选型问题[J].中国给水排水,2004,20(6):62~63.
    [42]刘少武,周娇,张智.小城镇低负荷SBR工艺运行参数优化研究.给水排水,2009.9..
    [43]董国日,序批式活性污泥工艺自动化控制及工艺性能研究[D].博士学位论文,中南大学,2007(5),87~98:
    [44]操卫平,冯玉军等.高氮低碳废水生物脱氮研究展望.化工环保,2004,24(4):266~269.
    [45]张本龙,左剑恶.CAST工艺动力学模型的建立和模拟[J].中国给水排水,2004,20(5):62~64.
    [46]熊振湖,汪艳宁等.溶解氧和pH值对CAST工艺脱氮效果的影响[J].环境工程,2003,21(6):14~16.
    [47]高大文,彭永臻,王淑莹等,短程硝化生物脱氮工艺的稳定性.环境科学,2005,26(1):63~66.
    [48]城市污水生物脱氮除磷处理设计规程[M].上海市政工程设计研究院,中国计划出版社,2003.5.
    [49]郭静波,马放等.佳木斯东区污水处理厂SBR工艺的低温快速启动[J].给水排水,2007,33(5):13~17.
    [50]吴成强,杨金翠,杨敏等.运行温度对活性污泥特性的影响[J].中国给水排水,2003,19(9):5~7.
    [51]张智,王俊,周娇,刘少武.低温低水量负荷改良型氧化沟工艺的启动与试运行研究.市政技术,2009.11.
    [52]张自杰主编.排水工程(下册)第四版[M].中国建筑工业出版社,2000年6月.
    [53]杨小丽,叶锋等.基于污水厂运行数据的低温生物脱氮强化研究[J].中国给水排水,2009,1(25):82~88.
    [54] MaharaI,Elefsiniotis P.The role of HRT and low temperature On The acid phase anaerobic digestion of municipal and industrial wastewaters[J].Bio resource Technology,2001,76:191~197.
    [55] lvarezJA,RuizI,GmezM,etal.Start Oup alternatives and performance of an UASB pilot plant treating diluted municipal Wastewater at low temperature area[J].Bioresource Technology,2006,97:1640~1649.
    [56] KellerJ,WattsS.Full-scale demonstration of biological nutrient removal in a single tank SBR process [J].Wat.Sci.Tech,2001,43(3):355-362.
    [57] ChoiE,RhuD,YunZ,etal.Temperature effects on biological nutrient removal system with weak municipal wastewater[J].Wat.Sci.Tech,1998,37(9):219~226.
    [58]白晓慧,陈英旭等.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报,2001,9(5):569~572.
    [59]徐根良.废水控制与治理工程[M].浙江大学出版社,1999.
    [60] USA EPA.Nitrogen Control Technomic Publishing Company,Inc[M].Lancaster,Pennsylvania,17604,USA,1991.
    [61]杨殿海,王峰,夏四清.废水处理工艺中同步硝化/反硝化研究进展[J].上海环境科学,,2003,22(12):878~881.
    [62] Elisabeth VM,et al.Simultaneous nitrification and denitrification in bench-scale sequencing batch reactor[J].Water Res,1996.30(2):277~284.
    [63]刘长青,毕学军等.低温对生物脱氮除磷系统的试验研究[J].水处理技术,2006,8(32):18~21.
    [64] JanssenPMJ, MeinemaK,vanderRoestH著.生物除磷设计与运行手册[M].祝贵兵,彭永臻译.北京:中国建筑工业出版社出版,2005.
    [65]孙洪伟,彭永臻等.高氮渗滤液缺氧/厌氧UASB-SBR工艺低温深度脱氮.中国环境科学,2009.29(2): 207~212.
    [66] Goronszy C,朱明权,WutscherK.循环式活性污泥法(CAST)的应用及其发展[J].中国给水排水,1996,12(5):4-10.
    [67] Henze,M.污水生物与化学处理技术[M].北京:中国建筑工业出版社,2000.
    [68]张自杰,彭永臻.对现行污泥龄定义的质疑及对它的修正建议[J].环境科学,1998,5(5):70273.
    [69] llgi Karapinar Kapadan,Rukiye Ozturk. Effect of operating parameters On color and COD removal performance of SBR[M].Sludge age and initial Dyestuff concentration. Journal of Hazardous Materials,2005,(123):217~222.
    [70] A.Cakici , M.Bayramoglu . An Approach Controlling Sludge age in the Activated Process[J].Wat.Res.,1995,29(4):1093~1097.
    [71] M.A.Rodrigo,A.Seco,J.M.Penya—roja.Influence of Sludge Age on Enhanced PhosphorusRemoval in Biological Systems[J].Wat.Sci.Tech.,1996,34(2):41~48.
    [72]周海东,刘勤亚,张业健.泥龄应用中有关问题的探讨[J].污染防治技术,2003,13(6):13~15.
    [73]许劲,孙俊贻.生物除磷脱氮系统工程设计中的污泥龄[J].重庆建筑大学学报,2005,27(5),83~86.
    [74]周国胜,刘年丰等.低DO下同步硝化反硝化现象新形式探讨[J].环境科学与技术,,2007,30(2):97~99.
    [75]谢珊,李小明,曾光明,等.同步硝化反硝化实现途径的探讨[J].环境科学与技术,2004,27(2):107-109.
    [76] Jinwook Chung,Hojae Shim,Seong-jun Park,et al.Opti-mization of free ammonia concentration for nitrite accumu-lation in shortcut biological nitrogen removal process[J].Bioprocess Biosyst Eng,2006,28(4):275-282.
    [77]高大文,彭永臻,王淑莹.交替好氧-缺氧短程硝化反硝化生物脱氮过程控制模式的确定[J].环境科学学报,2004,24(5):769-775.
    [78]汪慧贞,张雅君等.氧化还原电位在CAST工艺中的应用[J].水处理技术,2008,34(11):65~67.
    [79]高景峰,等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6~11.
    [80]高景峰,彭永臻,王淑莹.SBR法反硝化模糊控制参数pH和ORP的变化规律[J].环境科学,2002,23(1):39~44.
    [81]汪慧贞,KOCH F A等.氧化还原电位作为生物脱氮除磷过程控制参数[J].中国给水排水,1988,4(3):15-18.
    [82] PaulE,Plisson-Saune S,MauretM,etal.Process state e-valuation of alternating oxic-anoxic activated sludge using ORP,pH and DO[J].Wat SciTech,1998,38(3):299-306.
    [83]邓嫔,刘威等.pH、ORP监控在亚硝酸型生物脱氮过程中的应用[J].环境科学与技术,,2007,30(3):97~99.
    [84] Tomlins Z,Thomas M,Keller J,Audic JM,Urbain V.Nitrogen removal in a SBR using the OGAR process control system[J].Wat.Sci. Tech,2002,46(4~5):125~130.
    [85] Charpentier J et al.Oxidation-Reduction Potential (ORP) Regulation As A Way To Optimize Aeration And C , N And P Removal : Experimental Basis And Various Full-Scale Examples[J].Wat.Sci.Tech.,1989,21:1209~1223.
    [86]高大文,彭永臻,郑庆柱.SBR工艺中短程硝化反硝化的过程控制[J].中国给水排水,2002,18(11):13-18.
    [87] Ruey-Fang Yu,Shu-Liang Liaw,Wan-yuan Cheng,et al.Performance Enhancement of SBRApplying Real-timeControl[J].Journal of Environment Engineering,2000,126(10):943-948.
    [88] Melissa S,Ping-Yi Yang,Sun-Jip Kim,et al.Applicability of Oxidation Reduction Potential Response on a Full-scale Intermittently Aerated Suspended Culture System[J].Practice Periodical of Hazardous Toxic and Radioactive WasteManagenment,2004,8(1):19-25.
    [89] Hyunook K,Oliver J H.pH and Oxidation-Reduction Potential Control Strategy for Optimization of Nitrogen Removal in an Alternating Aerobic-Anoxic System[J].Water Environment Research,2001,73(1):95-102.
    [90] B S Akin,A Ugurlu.Monitoring and Control of Biological Nutrient Removal in a Sequencing Batch Reactor[J].Pro-cess Biochemistry,2005,40(8):2873-2878.
    [91] K-C Chen,J-J Chen,J-Y Houng.Improvement of Nitrogenremoval Efficiency using Immobilized Microorganisms with Oxidation-reduction Potential Monitor[J].Journal of Industrial Microbiology&Biotechnology,2000,25(5):229-234.
    [92]李勇智,彭永臻,王淑莹.高氨氮制药废水短程生物脱氮[J].化工学报,2003,54(10)::1482-1485.
    [93] Koch F A,Oldham W K.ORP:A Tool for Monitoring,control and optimization of biological nutrient removal systems[J].Wat.Sci.Tech,1985,17:259~281.
    [94] Heduit Alain,Thevenot Daniel R.Relation Between Redox Potential and Oxygen Levels In Activated Sludge Reactors[J].Wat.Sci.Tech,1989,21:947~956.
    [95] Katsumi Moriyama etal.Renovation of An Extended Aeration Plant for Simultaneous Biological Removal of Nitrogen and Phosphorus Using Oxic Anaerobic-Oxic Process[J].Wat.Sci.Tech.,1990,22(7/8):61~68.
    [96] Wareham David G,Mavinic Donald S,Hall Kenneth J.Sludge Digestion Using ORP-Regulated Aerobic-Anoxic Cycles[J].Wat.Res.,1994,28(2):373~384.
    [97] Paul E et al.Process State Evaluation of Alternating Oxic Anoxic Activated Sludge Using ORP,pH and DO[J].Wat.Sci.Tech.,1998,38(3):299~306.
    [98] Ra C S et al.Biological Nutrient Removal with an Internal Organic Carbon Source in Piggery Wastewater Treatment[J].Wat.Res.,2000,34(3):965~973.
    [99]王少坡,王淑莹等.常温内源反硝化脱氮过程中pH和ORP变化规律[J].环境污染治理技术与设备.2005,3(6):20~24.
    [100]马勇,彭永臻.应用在线传感器实现前置反硝化工艺生物脱氮的过程控制[J].应用与环境生物学报,2007,13(3):408~413.
    [101] Pius M. Ndegwa,Li Wang,Venkata K.Vaddella.Potential strategies for process control and monitoring of stabilization of dairy wastewaters in batch aerobic treatmentsystems[J].Process Biochemistry,2007,42:1272~1278.
    [102]高景峰,彭永臻,王淑莹.SBR法反硝化模糊控制参数PH和ORP的变化规律[J].环境科学,2002,23(1):40~44.
    [103]高大文,王淑莹等.温度变化对DO和ORP作为过程控制参数的影响[J].环境科学.2003,,1(24):63~69.
    [104]沈韫芬,章宗涉.微型生物监测新技术[M].北京:中国建筑工业出版社,1990;94.
    [105] WilfriedP.KurtJ,SandraB.Protozoa in wastewater treatment:Function and importance [M].Handbook of Environmental Chemistry2 (Pt.K) ,2001.
    [106]刘惠娜.城市污水SBR处理生物相种群与处理效率相关性研究[D].广东:广东工业大学,2005.
    [107]陈声贵,许木启等.活性污泥微型动物种群动态与水质净化效能的关系[J].动物学报.2003,49(6):775~786.
    [108] Zhou kexin,Xu muqi,Liu Biao,Cao hong.Characteristics of microfauna and their relationships with the performance of an activated sludge plant in China[J].Environmental Sciences,2008,20:482~486.
    [109] Ch. Papadimitriou ,G. Palaska,et al.The effects of toxic substances on the activated sludgeMicrofauna[J].Desalination,2007,211:177~191.
    [110]王超,陈致和.活性污泥中原生动物种类及数量变化对污水处理效率的指示作用[J].动物学报,1997,43(增刊):1~5.
    [111]韦贞鸽,周瑞云等.CASS处理过程中运行指标与生物相的相关性研究[J].给水排水,2007,33(5):160~163.
    [112]周可新,许木启等.活性污泥系统原生动物多样性动态及其与运转效能的关系[J].应用与环境生物学报,2007,13(6):840~842.
    [113] Shenggui Chen,Muqi Xu et al.The activated-sludge fauna and performance of five sewage treatment plants in Beijing, China[J].European Journal of protistology,2004,40:147~152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700