用户名: 密码: 验证码:
浸没式双轴旋转厌氧膜生物反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧膜生物反应器(Anaerobic Membrane Bioreactor,AnMBR)是一种处理高浓度有机废水的有效方法,已成为国外如WERF(Water Environmental ResearchFoundation)等协会研究的重点之一。浸没式MBR由于能耗低、过膜压差(TMP)低和小的占地面积而得到了广泛的应用。但AnMBR的运行方式目前在国内外几乎以外置式为主。是因为浸没式AnMBR的膜污染控制始终无法真正有效地得以解决,而限制了它的应用。因此为了控制、解决浸没式AnMBR中的膜污染问题,我们研发了一套浸没式双轴旋转厌氧膜生物反应器(Submerged Double-shaftRotary Anaerobic Membrane Bioreactor,SDRAnMBR)。系统内装填平板超滤膜,内置的旋转膜组件采用双轴同向旋转,由膜旋转形成的湍流可削弱膜表面的浓差极化及凝胶层的形成,从而有效地控制膜污染,使膜污染降低到最低程度。可将浸没式厌氧膜生物反应器的概念进行真正意义上的落实。我们利用开发的SDRAnMBR处理模拟啤酒废水,系统研究了SDRAnMBR的启动特性、处理啤酒废水的运行效能、膜污染性能及膜污染机理,主要研究成果如下:
     (1)设计开发了一套SDRAnMBR系统,容器容积120L。有效容积100L,内置的双轴旋转平板超滤膜组件的最大膜面积2.4m~2,双轴旋转最大速度500rpm,最高的平均剪切流速理论值为4.4m/s,满足了一般料液的处理要求。适合用来处理高悬浮物含量、中高浓度的料液。双轴旋转膜组件是本系统的关键和创新部分。
     (2)由SDRAnMBR的动力学特性的理论分析表明:双轴旋转膜组件在AnMBR中动力学流场中,会产生均匀化效应、交错振动效应和三相旋转流效应。由于他们的协同作用,强化了旋转流的剪切、紊动、振动和传质特性。阻止了复合涡流的产生,降低了渗透反压,可解决单轴旋转膜组件存在的问题。在一定程度上可实现提高膜面流速、降低浓差极化层厚度和渗透液主体浓度以及膜内外的渗透阻力,从而能最大限度降低浓差极化,提高了渗透通量。
     (3) SDRAnMBR具有良好的启动特性。与常规厌氧生物反应器的启动试验研究对比表明:SDRAnMBR启动速度快,仅用了26天;耐冲击负荷能力强;COD去除率高于常规厌氧生物反应器,稳定在92%以上,约高10%;反应器运行稳定,未发生酸化现象;且出水挥发酸(VFA)和出水的碱度可以在较大的范围变动而不会发生酸化现象。出水碱度为1200~2600mg/L,出水VFA在200~600mg/L范围内,出水碱度/VFA在3.5~6.5之间。而常规厌氧生物反应器则易发生酸化现象,反应器运行稳定性较差。建议直接采用膜生物反应器启动厌氧反应器。
     (4) SDRAnMBR对啤酒废水有着好的处理效果,负荷提高快,有机物去除率高,系统的耐冲击负荷的能力强,而且运行非常稳定。在正常运行期间,进水COD在2900~5200mg/L,容积负荷为4.97~12.48kgCOD/m~3·d,COD的去除率平均为95.15%。膜的截留作用和三相旋转流的共同作用,加强了在高污泥浓度(MLSS)和高负荷下运行时的混合和传质,从而强化了浸没式AnMBR在高MLSS和容积负荷下运行的稳定性和出水水质。
     (5) SDRAnMBR具有良好的抗膜污染性能。其运行特点为,在一定HRT、MLSS浓度、膜旋转速度下,系统膜通量和TMP不变,能长期稳定运行。此试验条件下最佳操作参数为:水力停留时间(HRT)为10h,容积负荷(10.52~12.09kgCOD/m~3·d),MLSS(18~19.5g/L),膜旋转速度为150rpm,膜通量(30.75~31.31L/m~2·h),TMP(12~13kPa)。由此可见,采用SDRAnMBR处理废水,能大幅度减轻浸没式AnMBR在高MLSS和高容积负荷下运行的膜污染,实现了在较低膜旋转速度、较短的HRT、较大的容积负荷、较大的MLSS、较大的膜通量和低TMP下的浸没式AnMBR的长期稳定运行。
     (6) SDRAnMBR中良好动力学特性(均匀化效应、交错振动效应、三相旋转流效应)、膜的截留作用和厌氧颗粒污泥的协同作用的结果,能大大减轻由剪切力过大对污泥活性的影响,并提高了污泥活性;抑制了胞外聚合物(EPS)在污泥混合液中由于MLSS增大而造成的快速积累,同时也抑制了污泥粘度的快速增大。使之能在一定MLSS和污泥粘度范围内膜过滤阻力保持不变。从而大幅度减缓了膜污染。并使之能在较高的MLSS(18~19.5g/L)、较高的EPS浓度(50.9~63.9 mg/gMLSS)、较小的污泥颗粒粒径(4.00~36.54μm)和较大的污泥粘度(6.6~7.5mPa·s)时稳定运行。进一步说明SDRAnMBR强化了膜组件的抗污染性能。
     (7)提出了SDRAnMBR的膜污染机理。一是膜污染阻力占总阻力的89.68%。其中外部阻力(即浓差极化阻力和泥饼阻力之和)是膜污染的主要成部分,占到总阻力的76.34%。膜本身阻力和内部阻力与外部阻力相比所占比例较小,分别占总阻力的10.32%和13.34%。因此污染阻力主要是由泥饼层引起的,整个过滤过程以泥饼层控制为主。经过146天的运行,膜表面泥饼层仍然较薄而且松散,膜污染速率缓慢,膜污染较轻,过滤阻力随时间的增大的速率非常缓慢,并在一定膜转速下,过滤阻力保持不变。证实了本MBR系统能有效地减小浓差极化和避免污泥颗粒在膜表面的沉积,有效控制膜污染;二是在SDRAnMBR运行的146天里,只发生了阶段1(短时间快速TMP上升)和阶段2(长期慢速的TMP呈线性上升),阶段3(突然的快速的TMP上升)未发生。即把阶段1的膜污染限定在了更短的时间范围内(40min);大幅度延长了阶段2的操作时间,并使会导致过滤无法继续的阶段3未发生。达到了MBR可持续操作的要求。
     总体来说,SDRAnMBR能最大限度减轻和控制浸没式AnMBR的膜污染,使之能够在低污染情况下和高负荷下长期稳定运行,并保持稳定的运行通量;可较长期的运行而不需清洗,使能耗大幅度降低;成功地解决了浸没式AnMBR膜污染控制存在的问题,使之成为高效、稳定的厌氧MBR系统。证实了对SDRAnMBR动力学特性的理论分析,具有良好的应用前景。
Anaerobic membrane bioreactor (AnMBR) is an effective process to treat high concentration organic wastewater and has become one of research emphases of foreign associations such as WERF (Water Environmental Research Foundation). The application of submerged MBRs is very extensive because of lower energy consumption and low transmembrane pressure(TMP) and small footprint. However, most of AnMBR have been conducted with external configureations at present, owing to membrane contamination control of submerged AnMBR has never been able to solve effectively so as to limit its application. In order to control and resolve membrane fouling problem in submerged AnMBR, we developed a set of submerged double-shaft rotary anaerobic membrane bioreactor (SDRAnMBR). System container is filled with flat-sheet Ultrafiltration membrane. Internal rotary membrane module adopted double shaft rotation in the same direction. Turbulence coming from membrane rotation could undermine concentration polarization on the membrane surface and formation of gel layer ,so as to control the membrane fouling effectively and make it reduce to the minimum. It is necessary to realize the concept of submerged AnMBR into implementation. We used the developed reactor to treat synthetic bear wastewater. Discussed and studied some characteristics of SDRAnMBR in detail such as launch characteristics,operation efficiency , performance and mechanism of membrane fouling within SDRAnMBR, the main research results as follows:
     (1) A set of SDRAnMBR system was designed and developed. System volume of container and its effect one were 120 L and 100 L , respectively, filled with innovative double-shaft rotary flat-plate Ultrafiltration membrane module, loaded with the largest membrane area of 2.4 m~2, maximum double-shaft rotary speed was 500 rpm, the average maximum theoretical value for the shear velocity is 4.4 m / s. So that it can meet the general requirements for the feed fluid treatment, suitable for treating feed fluid of high suspended substances, moderate and high concentration. Thereinto, the double-shaft rotational membrane module was the key and novel part of the newly reactor.
     (2) The results of theoretics analysis on characteristics of hydraulics dynamics indicated that the effects of equality, interleaving oscillation and three-state rotating flow were produced within SDRAnMBR. So it enhanced the characteristics of shear , turbulence, oscillation and mass transfer within rotating fluid. It were prevented and reduced that composite whirlpool and permeate backpressure from rotational membrane module. It resolved successfully problems of one-shaft rotational membrane module in submerged AnMBR. In a certain extent,it was realized that increasing velocity of flow on membrane surface , reducing concentration polarization and main body concentration of permeate fluid and resistance inside and outside of membrane. So that it could furthest decrease membrane fouling and increase permeate flux.
     (3) Characteristics of SDRAnMBR start-up was well. Compared to the start-up of conventional anaerobic bioreactor, its start-up velocity was rapid during 26 days, strong ability of endurance impact loading, high COD removal rate which stabilized at above 92% ,about more 10% higher than conventional anaerobic bioreactor. The reactor run steadily and the acidification phenomenon has not happened. Furthermore, the effluent volatile fatty acid (VFA) and effluent alkalinity changed in the larger range and acidification phenomenon will not happen. Effluent alkalinity were in the range 1200-2600mg/L, effluent VFA were in the range 200-600mg/L,and the rate of alkalinity on VFA were between 3.5 and 6.5. However, the conventional anaerobic bioreactor was vulnerable to acidification with poor stability. Direct use of membrane bioreactor to start up anaerobic reactor was suggested.
     (4) SDRAnMBR had good treatment effect for synthetic beer wastewater and the system not only run steadily but organic loading enhanced fast , had a strong impact resistance capacity and a high rate of organic substrate removal. During the normal operation, When influent COD were in the range 2900-5200mg/L and volume loading rate were in the range 4.97-12.48 kgCOD/m~3·d, COD removal rate was an average of 95.15%. Because of common action of membrane interception and three-state rotating fluid , the effluent quality and operation stability were strengthened consumedly at high mixed liquor suspended solids (MLSS) and high volume loading rate.
     ( 5 ) SDRAnMBR had good anti-contamination performance. Membrane flux ,TMP , filtration resistance immovability and long-term steady running were its mainly running characteristics, when operated at definite range of MLSS and hydraulic retention time(HRT) and membrane rotational speed .The optimal operation parameters were that HRT was 10h, volume loading rate were in the range 10.52-12.09 kgCOD/m~3·d, MLSS were in the range 18-19.5g/L, membrane rotational speed was 150rpm, membrane flux were in the range 30.75-31.31L/m~2·h and TMP were between 12 and 13 kPa under this test condition. Therefore, SDRAnMBR can furthest decrease membrane fouling under high volume loading rate and MLSS. It was realized long-term steady running when operated at lower membrane rotational speed, shorter HRT, higher volume loading rate, biggish MLSS, lower TMP and larger membrane flux.
     (6) The well characteristics of hydraulics dynamics(equality, interleaving oscillation and three-state rotating flow effect) and cooperate action with membrane interception , anaerobic granules sludge in SDRAnMBR, could decrease the effects on sludge activity come from the shear stress excess bigness, restrain speediness accumulation of extracellular polymeric substances(EPS) in sludge mixed liquor due to MLSS accretion, as well as restrain speediness accretion of sludge dynamic viscosity too. Thereby membrane fouling was reduced consumedly and resulted in membrane filtration resistance immovability when operated at definite range of MLSS and sludge viscosity. It was realized steady running when operated at biggish MLSS (between 18 to 19.5g/L)> higher EPS (between 50.9 to 63.9 mg/gMLSS)、small sludge particle size (between 4.00 to 36.54μm)和larger sludge viscosity(between 6.6 to 7.5 mPa·s). The finging was more identified that membrane module strengthened anti-contamination performance.
     (7) We also put forward the fouling mechanism in SAnRMBR. Firstly membrane fouling resistance (concentration polarization and cake layer formation) was 89.68%,The external resistance was 76.34% of total resistance.Accordingly,the intrinsic membrane resistance and internal fouling resistance were 10.32% and 13.34% of the total resistance, respectively. Therefore , membrane filtration resistance was arose from the cake layer, its controlling was the predominant during whole operated period. Furthermore ,cake layer was thinner , membrane fouling velocity was very slowly and membrane fouling was very slight with running time during operated 146 days. The membrane filtration resistance was immovability when operated at definite membrane rotational speed . The finging was more identified that SDRAnMBR was effective in minimizing concentration polarization resistance by reducing the accumulation of solute molecules on the membrane surface, and consequently reduced the potential for membrane fouling. Secondly, among membrane fouling 3 stage, which occurs only the stage 1 (an initial short term rise in TMP ) and stage 2 (long-term rise in TMP, either linear or weakly exponential), and that stage 3 (sudden TMP rise, also known as the TMP jump) without occurs in running 145 days by SDRAnMBR. moreover, So sustainable operation the aim was realized by limiting shorter time of stage 1 (40min), prolonging stage 2 consumedly and avoiding stage 3 since it could be difficult to restore.
     In a word , SDRAnMBR could furthest decrease and control membrane fouling of submerged AnMBR ,and that was realized long-term steady running when operated at lower membrane fouling and higher volume loading rate, with could keep steady flux. So it does not demand to clean chronically, thereby energy consumption was reduced consumedly. The problems of membrane contamination control in submerged AnMBR were resolved successfully, and it became system of high-efficiency and stabilization. The theoretics analysis on double-shaft rotating fluid was identified ,and that it will have well application prospect by SDRAnMBR.
引文
[1]Shannon M A,Bohn P W,Elimelech M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452:301-310
    [2]Judd S,Judd C.Principles and applications of membrane bioreactors for water and wastewater treatment[M].Oxford:Elsevier Ltd.Publishing.2006.1-19
    [3]John A.Howell.Future of membranes and membrane reactors in green technologiesand for water reuse[J].Desalination,2004,162:1-11
    [4]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理,2003(23):1-5
    [5]Cicek N.A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater[J].Canadian Biosystems Engineering,2003,45:6.37-6.49
    [6]Visvanathan C,Ben Aim R,Parameshwaran K.Membrane Separation bioreactors for wastewater treatment[J].Critical Reviews in Environmental Science and Technology,2000,30(1):1-48
    [7]Charcosset C.Membrane processes in biotechnology:An overview[J].Biotechnology Advances,2006,24:482-492
    [8]Fane A G.Membrane bioreactors:design & operational options[J].Filtration &Separation,2002,39(5):26-29
    [9]Judd S.Submerged membrane bioreactors:flat plate or hollow fibre[J]? Filt Sep,2002,39:30-31
    [10]Cui Z F,Chang S,Fane A G.The use of gas bubbling to enhance membrane processes[J].J Membr Sci,2003,221:1-35
    [11]Gunder B,Krauth K.Replacement of secondary clarification by membrane separation results with plate and hollow fibre modules[J].Water Science and Technology,1998,38:383-393
    [12]Hai F I,Yamamoto K,Fukushi K.Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling[J].Desalination,2005,180:89-97
    [13]Voigt R,Krause S,Blumenroth U M,et al.Submerged membrane module for biological wastewater treatment-BIO-CEL~(?)[C].Microdyn-Nadir Internal Technical Reports,2005
    [14]Chiemchaisri C,Yamamoto K,Vigneswaran S.Household membrane bioreactor in domestic wastewater treatment[J].Water Science and Technology,1993,27(1):171-178
    [15]Fan X J,Urbain V,Qian Y,et al.Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment[J].Water Science and Technology,1996,34(1-2):129-136
    [16]Ueda T,Hata K,Kikuoka Y.Treatment of domestic sewage from rural settlements by a membrane bioreactor[J].Water Science and Technology,1996,34(9):189-196
    [17]Cote P,Buisson H,Praderie M.Immersed membranes activated sludge process applied to the treatment of municipal wastewater[J].Water Science and Technology,1998,38(4-5):437-442
    [18]杨磊,王栋,张静姝,等.超滤膜生物反应器处理生活污水的试验研究[J].膜科学与技术,1999,19(3):29-31
    [19]Xing C H,Qian Y,Wen X H,et al.Physical and biological characteristics of a tangential flow MBR for municipal wastewater treatment[J].Journal of Membrane Science,2001,191(1-2):31-42
    [20]Rosenberger S,Krüger U,Witzig R,et al.Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater[J].Water Research,2002,36(2):413-420
    [21]Guglielmi G,Chiarani D,Judd S J,et al.Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment[J].Journal of Membrane Science,2007,289(1-2):241-248
    [22]Scholz W,Fuchs W.Treatment of oil contaminated wastewater in a membrane reactor[J].Water Research,2000,Vol.34(14):3631-3639
    [23]Seo G.T,Lee T S,Choi K S,et al.Membrane separation activated sludge for residual organic removal in oil wastewater[J].Water Research,1997,36(12):275-287
    [24]Benitez J,Rodriguez A,Malaver R.Stabilization and dewatering of wastewater using hollow fiber membranes[J].Water Research,1995,29(10):2281-2286
    [25]Qin J J,Oo M H,Tao G.H,et al.Feasibility study on petrochemical wastewater treatment and reuse using submerged MBR[J].Journal of Membrane Science,2007,293(1-2):161-166
    [26]Yamanoto K,Win K M.Tannery wastewater treatment using a sequencing batch membrane bioreactor[J].Water Science and Technology,1991,23(7/9):16-39
    [27]Visvanathan C,Choudhary M K,Montalbo M T,et al.Landfill leachate treatment using thermophilic membrane bioreactor[J].Desalination,2007,204(1-3):8-16
    [28]Yoon T I,Lee H S,Kim C G.Comparison of pilot scale performances between membrane bioreactor and hybrid conventional wastewater treatment systems[J].Journal of Membrane Science,2004,242(1-2):5-12
    [29]Cote P,Buisson H,Arakaki G.Immersed membrane activated sludge for the Reuse of municipal wastewater[J].Desalination,1997,113:186-196
    [30]Ueda T.,Hata K.Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration[J].Water Research,1999,33(12):2888-2892
    [31]Ross W R,Barnand N K,Strohwald N K H,et al.Practical application of the ADUF process to the full scale treatment of a maize processing effluent[J].Wat.Sci.Tech.,1992,25(10):27-39
    [32]Hogetsu A,Ishikawa T,Yoshikawa M,et al.high rate anaerobic digester of wool scouring wastewater in a digester combined with membrane filter[J].Wat.Sci.Tech.,1992,25(7):341-350
    [33]Wen C,Huang X,Qian Y.Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration[J].Process Biochemistry,1999,35(12):335-340
    [34]Stephenson T,Judd S,Jefferson B,et al.Membrane bioreactors for wastewater treatment[M].London:IWA Publishing.2000:231-237
    [35]周亚红,宋宝增.厌氧膜生物反应器在水处理中的应用研究[J].四川环境,2006,25(3):85-87
    [36]林红军,陆晓峰,梁国明,等.厌氧膜生物反应器的研究和应用进展[J].净水技术,2007,26(6):1-7
    [37]刘雅巍,张春青,池勇志.处理难生物降解有机物的厌氧颗粒污泥形成的技术进展[J].天津城市建设学院学报.2004,10(4):263-265
    [38]William P,Barber D,Stuckey C.The use of the anaerobic baffled reactor for wastewater treatment:A Review[J].Wat.Res,1999,33(7):1559-1578
    [39]Elmaleh S,Abdelmoumni I.Experimental test to evaluate performance of an anaerobic reactor provided with an external membrane unit[J].Wat,Sci.Tech.,1998,38(8-9):385-392.
    [40]Choo K H.Lee C H.Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor[J].Wat Res,1996,30(8):1771-1780
    [41]Water Environmental Research Foundation(WERF).Exploring membrane technology for wastewater treatment[EB/OL].http://www.werf.Org/.2002
    [42]郑祥,朱小龙,樊耀波.膜生物反应器处理毛纺废水的中试研究[J].环境科学,2001,22(4):91-94
    [43]何义亮,吴志超,李春杰,等.厌氧膜生物反应器处理高浓度食品废水的应用[J].环境科学,1999,20(6):53-55
    [44]管运涛,蒋展鹏,祝万鹏,等.两相厌氧膜生物系统处理有机废水的研究[J].环境科学,1998.(6):56-59
    [45]Jeison D,van Lier J B.On-line cake-layer management by trans-membrane pressure steady state assessment in Anaerobic Membrane Bioreactors for wastewater treatment[J].Biochemical Engineering Journal,2006,29(3):204-209
    [46]孟凡生,王业耀.膜生物反应器在我国的研究发展展望[J].水资源保护,2005,21(4):1-4
    [47]Yang W B,Cicek N,Ilg J.State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America[J].Journal of Membrane Science,2006,270(1-2):201-211
    [48]Razi A F.Ultrafiltration Membrane separation for amaerobic wastewater treatment[J].Wat.Sci.Tech.,1994,30(12):312-327
    [49]Fuchs W,Binder H,Mavrias G,et al.Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit[J].Water Research,2003,37(4):902-908
    [50]管运涛.两相厌氧膜生物系统处理造纸废水[J].环境科学,2000,21(4):52-56
    [51]Ren N Q,Chen Z B,Wang X J,et al.Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment[J].International Biodeterioration & Biodegradation,2005,56(4):216-223
    [52]Shin J H,Lee S M,Jung J Y,et al.Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor(MBR) and anaerobic upflow bed filter(AUBF) reactor[J].Process Biochemistry,2005,40(12):3769-3776
    [53]刘超翔,黄霞,文湘华,等.一体式膜-生物反应器处理毛染废水的中试研究[J].给水排水,2002,28(2):56-59
    [54]崔学刚,程焕龙,张连新,等.膜生物反应器处理化工废水[J].中国给水排水,2002,18(10):73-74
    [55]马溪平,等编.厌氧微生物与污水处理[M].北京:化学工业出版社,2005.224-225
    [56]赵勇,易军.啤酒废水生物治理工艺的综合评价[J].环境工程,2002,20(2):66-69
    [57]张永明,俞建堂,王建龙,等.增加内循环的生物反应器对啤酒废水处理效率的研究[J].环境科学学报,2000,20(6):727-730
    [58]张立秋,封莉,吕炳南,等.淹没式MBR处理啤酒废水的净化效能[J].环境科学,2004,25(6):117-122
    [59]张立秋,封莉,张晓菲,等.淹没式MBR处理啤酒废水的试验研究[J].中国给水排水,2004,20(5):59-61
    [60]刘旭东,王恩德.膜生物反应器处理啤酒废水中试研究[J].净水技术,2004,23(2):4-6
    [61]王连军,荆晶,刘晓东,等.膜生物反应器与普通活性污泥法处理啤酒废水试验[J].环境科学研究,2000,13(6):30-33
    [62]王连军,蔡敏敏,荆晶,等.无机膜-膜生物反应器处理啤酒废水及其膜清洗的试验研究[J].工业水处理,2000,20(2):32-34
    [63]任艳双.厌氧膜生物反应器与离子交换工艺组合处理啤酒废水试验研究[D].[硕士学位论文].天津:天津大学,2005:24-28
    [64]初里冰,杨凤林,张兴文.低温厌氧处理低浓度废水研究进展[J].环境污染治理技术与设备,2003,4(4):61-65
    [66]Cheng,J,Liu B.Nitrification/denitrification in intermittant aeration process for swine wastewater treatment[J].Journal of Environmental Engineering-ASCE,2001,127(8):705-711
    [67]Bowker R P G.Biological odour control by diffusion into activated sludge basins[J].Water Science and Technology,2000,41(6):127-132
    [68]Buenrostro-Zagal J F,Ramirez-Oliva A,et al.Treatment of a 2,4-dichlorophenoxyacetic acid (2,4-D) contamined wastewater in a membrane bioreactor[J].Water Science and Technology,2000,42(5-6):185-192
    [69]Urase T,Kagawa C,Kikuta T.Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors[J].Desalination,2005,178(1-3):107-113
    [70]Lebeau T,Lelievre C,Buisson H,et al.Immersed membrane filtration for the production of drinking water:Combination with PAC for NOM and SOCs removal[J].Desalination,1998,117(1-3):219-231
    [71]Zhang J,Chuaa H C,Zhoub J,et al.Factors affecting the membrane performance in submerged membrane bioreactors[J].Journal of Membrane Science,2006,284:54-66
    [72]林红军,陆晓峰,段伟,等.膜生物反应器中膜过滤特征及膜污染机理的研究[J].环境科学,2006,27(12):2512-2517
    [73]Choo K H,Lee C H.Effect of anaerobic digestion broth composition on membranepermeability[J].Wat.Sci.Technol.,1996,34(9):173-179
    [74]Kang I J,Yoon S H,Lee C H.Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor[J].Water Research,2002,36(7):1803-1813
    [75]王志伟,吴志超,顾国维,等.厌氧膜生物反应器膜污染特性研究[J].膜科学与技术,2006.26(1):11-14
    [76]方绪亮,何义亮,徐培.膜表面形貌对厌氧膜生物反应器膜污染影响的试验研究[J].环境化学,2006,25(1):65-68
    [77]Lim A L,Bai R.Membrane fouling and cleaning in microfiltration of activated sludge wastewater[J].J Membr Sci,2003,216:279-290
    [78]Lee W,Kang S,Shin H.Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J].J Membr Sci,2003,216(1-2):217-227
    [79]Chang I S,Lee C H.Membrane filtration characteristics in membrane Coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling[J].Desalination,1998,120(3):221-223
    [80]Nagaoka H,Yamanishi S,Miya A.Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system[J].Wat Sci Tech,1998,38:497-504
    [81]Nagaoka H,Ueda S,Miya A.Influence of bacterial extracelluar polymers on the membrane separation activated sludge process[J].Wat Sci Tech,1996,34(9):165-172
    [82]Meng F G,Zhang H M,Yang F L,et al.Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor[J].J Membr Sci,2006,272(1-2):161-168
    [83]张斌,孙宝盛,金敏,等.浸没式膜-生物反应器膜污染物中胞外聚合物的提取与分析[J].环境科学学报,2007,27(3):391-395
    [84]王雪梅,刘燕,华志浩,等.胞外聚合物对浸没式膜-生物反应器膜过滤性能的影响[J].环境科学学报,2005,25(12):1602-1607
    [85]Lee Y H,Cho J W,Sea Y W,et al.Modeling of submerged membrane bioreactor process for wastewater treatment[J].Desalination,2002,146(1-3):451-457
    [86]Magara Y,Itoh M.The effect of operational factors on solid/liquid separation by ultramembrane filtration in a biological denitrification system for collected human excreta treatment plants[J].Wat Sci Tech,1991,23(7-9):1583-1590
    [87]何义亮,顾国维,刘洁.膜生物反应器生物降解与膜分离共作用特性研究[J].环境污染与防治,1998,20(6):18-20
    [88]何义亮,顾国维.膜生物反应器工艺参数控制研究[J].上海环境科学,1999,27(4):83-84
    [89]Zhang B,Yamamoto K,Ohgaki S,et al.Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation[J].Water Science and Technology,1997,35(6):37-44
    [90]Muller E B,Stouthamer A H,Van Verseveld H W,et al.Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration[J].Water Research,1995,29(4):1179-1189
    [91]Cicek N,Franco J P,Suidan M T,et al.Characterization and comparison of a membrane bioreactor and a convertional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds[J].Water Environment Research,1999,71(1):64-70
    [92]Wisniewski C,Grasmick A,Leon Cruz A.Critical particle size in membrane bioreactors:Case of a denitrifying bacterial suspension[J].Journal of Membrane Science,2000,178(1-2):141-150
    [93]Choo K H,Lee C H.Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor[J].Water Research,1996,30(8):1771-1780
    [94]Chang J S,Tsai L J,Vigneswaran S.Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration[J].Water Science and Technology,1996,34(9):133-140
    [95]Veronique L T.Fouling in tangential-flow ultrafiltration:The effect of colloid size and coagulation pretreatment[J].Journal of Membrane Science,1990,52(2):173-190
    [96]Shimizu Y.Effect of particle size distribution and activated sludge on crossflow microfiltration for submerged membrane[J].Ferment Bioengineering,1997,83(6):583-589
    [97]Sethi S,Wiesner Mark R.Modeling of transient permeate flux in cross-flow membrane filtration incorporating multiple particle transport mechanisms[J].Journal of Membrane Science,1997,136(1-2):191-205
    [98]Brockmann M,Seyfried C F.Sludge activity and cross-flow microfiltration an on beneficial relationship[J].Water Science and Technology,1996,34(9):205-213
    [99]Wouter G,Stefaan V,Willy V.Nitrogen removal from sludge reject water with a membrane-assisted bioreactor[J].Water Research,1999,33(1):23-32
    [100]Shimizu Y,Uryu K,Okuno Y,et al.Cross-flow microfiltration of activated sludge using submerged membrane with air bubbling[J].Journal of Fermentation Bioengineering,1996,81(1):55-60
    [101]Harada H.Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics[J].War.Sci.Tech.,1996,30(12):307-319
    [102]Visvanathan C,Yang B S,Muttamara S,et al.Application of air backflushing technique in membrane bioreactor[J].Wat.Sci.Tech.,1997,36(12):259-266
    [103]Xin C H,Tardieu E,Qian Y,el al.Ultrafitration membrane bioreactor for urban wastewater reclamation[J].Journal of Membrane Science,2000,177(1-2):73-82
    [104]Fan X J,Urvainv V,Qian Y,et al.Nitrification and mass balance with a menbrane bioreactor for municipal wastrwater treatment[J].Wat.Sci.Tech.,1996,34(1-2):129-136
    [105]Cho B D,Fane A G.Fouling transients in nominally sub-critical flux operation of a membrane bioreactor[J].Journal of Membrane Science,2002,209(2):391-403
    [106]黄圣散,吴志超.膜生物反应器次临界通量运行的膜污染特性研究[J].环境污染与防治,2005,27(7):512-515
    [107]Gander M,Jefferson B,Judd S.Aerobic MBRs for domestic wastewater treatment:a review with cost considerations[J].Separation and Purification Technology,2000,18(2):119-130
    [108]Ueda T,Hata K,Kikuoka Y,et al.Effects of aeration on suction pressure in a submerged membrane bioreactor[J].Water Research,1997,31(3):489-494
    [109]Pollice A,Brookes A,Jefferson B,et al.Sub-critical flux fouling in membrane bioreactors:a review of recent literature[J].Desalination,2005,174(3):221-230
    [110]Ye M S,Zhang H M,Zhang,Wei Q F,et al.Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J].Desalination,2006,194(1-3):108-120
    [111]Ma H,Hakim L F,Bowman C N,et al.Factors affecting membrane fouling reduction by surface modification and backpulsing[J].J.Membr.Sci.,2001,189(2):255-270
    [112]葛元新,朱志良.MBR膜的污染及其清洗技术研究进展[J].清洗世界,2005,21(8):24-29
    [113]张传义,黄霞,王丽萍.长期运行条件下膜.生物反应器的膜污染特性[J].水处理技术,2005,31(5):42-45
    [114]Choi H,Zhang K,Dionysios D,et al.Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors[J].Chemosphere,2006,63(10):1699-1708
    [115]Bae T H,Yak T M.Preparation of TiO_2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system[J].Journal of Membrane Science,2005,266(1-2):1-5
    [116]Zhang S T,Qu Y B,Liu Y H,et al.Experimental study of domestic sewage treatment with a metal membrane bioreactor[J].Desalination,2005,177(1-3):83-93
    [117]Katayon S,Megat Mohd Noor M J,Ahmad J,et al.Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater[J].Desalination,2004,167:153-158
    [118]孙振龙,陈绍伟,吴志超.一体式平片膜-生物反应器运行过程中膜性能的研究[J].环境工程,2003,21(2):7-9
    [119]王志,甄寒菲,伍登熙,等.膜过程中防治膜污染强化渗透通量技术进展(Ⅰ)操作策略[J].膜科学与技术,1999,19(1):1-5
    [120]伍艳萍,王志,伍登熙,等.膜过程中防治膜污染强化渗透通量技术进展(Ⅱ)膜组件及膜系统的结构设计[J].膜科学与技术,1999,19(4):12-17
    [121]Hasan K S,Visvanathan C,Ariyanmethee P,et al.Introduction to vibratory shear enhanced membrane process and its application in starch wastewater recycle[EB/OL].http://www.vsep.com/,2000
    [122]Low S C,Juan H H,Siong L K.A combined VSEP and membrane bioreactor system[J].Desalination,2005,183(1-3):353-362
    [123]隋鹏哲,文湘华,黄霞.厌氧膜.生物反应器中超声控制膜污染研究[J].环境污染治理技术与设备,2006,7(4):25-29
    [124]徐又一,沈菊李,张欣欣,等.具有自由端的梳状膜一生物反应器[P].中国,专利文献种类,200710068031.0.2007
    [125]张欣欣.具有自由端的梳状中空纤维膜一生物反应器的研究及其应用[D]:[硕士学位论文].杭州:浙江大学,2007
    [126]沈亮,李建明,黄维菊,等.利用离心力场作用强化微滤[J].过滤与分离,2002,11(1):4-6
    [127]Salyer D N.Membrane filtration using the SpinTek II high shear rotary filter[EB/OL].http://www.spintek.com/,1992
    [128]Reed B E,Lin W,Viadero R,et al.Treatment of oily wastes using high-shear rotary ultrafiltration[J].J Envir Engrg,1997,123(12):1234-1242
    [129]Viadero R,Masciola D A,Reed B E,et al.Two-phase limiting flux in high-shear rotary ultrafiltration of oil-in-water emulsions[J].J Membr Sci,2000,175(1):85-96
    [130]陈日志,张利雄,徐南平.旋转切向流对一体式膜过滤器中膜过滤性能影响的研究[J].膜科学与技术,2006,26(1):3-6
    [131]吴俊奇,滕华,于莉.三相旋转流应用于膜生物反应器的研究[J].北京建筑工程学院学报,2003,19(4):27-30
    [132]吴俊奇,滕华,于莉.旋转流膜生物反应器的透水特性研究[J].给水排水,2004,30(7):19-22
    [133]吴俊奇,滕华,于莉.旋转流膜生物反应器特性的探索[J].环境工程,2004,22(3):9-11
    [134]Tony J R,Jay L G,Stanley O S.Dispersion characteristics of a rotating hollow fiber membrane bioreactor:Effects of module packing density and rotational frequency[J].Journal of Membrane Science,2006,278(1-2):144-150
    [135]吴桂萍,杜春慧,徐又一.内置转盘式膜-生物反应器处理污水的工艺条件研究[J].环境科学,2007,27(11):2217-2221
    [136]吴俊奇,于莉,曹健.膜生物反应器的研究现状[J].北京建筑工程学院学报,2004,20(3):11-15
    [137]Fan Y,Li G,Wu L L,et al.Treatment and reuse of toilet wastewater by an airlift external circulation membrane bioreactor[J].Process Biochemistry,2006,41(6):1364-1370
    [138]Futselaar H,Schonewille H,de Vente D,et al.NORIT AirLift MBR:side-stream system for municipal waste water treatment[J].Desalination,2007,204(1-3):1-7
    [139]李波,王保国.气泡循环流动型膜生物反应器流体力学特性研究[J].高校化学工程学报,2006.120(6):869-874
    [140]张亚雷,赵建夫,吴勇,等.A_mO_n一体化污水生物处理装置的开发[J].中国给水排水,2005,20(1):72-74
    [141]苏锦明,周晴,傅金祥,等.新型一体化M-CASS设备的研制和开发[J].工业用水与废水,2004,35(3):72-75
    [142]任艳双,谭欣,赵林,等.内循环膜生物反应器处理啤酒废水[J].化工进展,2005,24,(9):1054-1058
    [143]曾一鸣,施艳荞,陈观文.一种厌氧膜生物反应器[P].中国,专利文献种类,02252546.7.2003
    [144]Liao B Q,Kraemer J T,Bagley D M.Anaerobic membrane bioreactors:applications and research directions[J].Crit.Rev.Environ.Sci.Technol.,2006,36:489-530
    [145]Jeison D,van Lier J B.Cake layer formation in anaerobic submerged membrane bioreactors(AnSMBR) for wastewater treatment[J].Journal of Membrane Science,2006,284:227-236
    [146]Jeison D,van Lier J B.Cake formation and consolidation:Main factors governing the applicable flux in anaerobic submerged membrane bioreactors(AnSMBR) treating acidified wastewaters[J].Journal of Membrane Science,2007,56:71-78
    [147]王志伟,吴志超,顾国维,等.一体式厌氧平板膜生物反应器处理酒厂废水的研究[J].给水排水,2006,32(2):51-53
    [148]申欢.膜生物法(MBR)处理垃圾渗滤液的研究[D]:[博士学位论文].西安:西安建筑科技大学,2004
    [149]Marcus V G V,Gatze L,Piet N L L.High rate sulfate reduction in a submerged anaerobic membrane bioreactor(SAnMBR) at high salinity[J].J Membr Sci,2005,253:217-232
    [150]Rezania B,Oleszkiewicz J A,Cicek N.Hydrogen-dependent denitrification of water in ananaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system[J].Water Res.,2007,41:1074-1080
    [151]许振良.膜法水处理技术[M].北京:化学工业出版社,2001
    [152]刘锐,黄霞,王志强,钱易.一体式膜-生物反应器的水动力学特性[J].环境科学,2001,21(9):47-50
    [153]Viadero R,Vaughan R,Reed B E.Study of series resistances in high-shear rotary ultrafiltration[J].J Membr Sci,1999,Vol.162:199-211
    [154]刘树红,吴玉林主编.应用流体力学[M].北京:清华大学出版社,2006
    [155]温沁雪,陈志强,吕炳南,等.喷射式内循环反应器处理模拟啤酒废水试验[J].哈尔滨工业大学学报,2004,36(2):195-198
    [156]Vereijkev T,Ljspeert P.Biotechnological Wastewater Anaerobic industrial wastewater treatment.Seminar Treatment[M].The Netherlands:Paques BV,1992,25-156
    [157]何立惠,台明青,邓李玲,等.用厌氧+缺氧+好氧组合工艺处理啤酒废水[J].水处理技术,2006,32(2):74-76
    [158]韩洪军,徐春艳.升流式厌氧污泥床处理啤酒废水的试验研究[J].哈尔滨工业大学学报,2004,36(4):440-443
    [159]李东伟,尹光志,李庆,等.二相厌氧反应器的快速启动及其影响因素[J].中国给水排水,2003,19(13):83-84
    [160]王林山,吴允,张勇,等.生产性IC反应器处理啤酒废水启动研究[J].环境导报.1998,4:22-24
    [161]Diresaen W Y,Speert P.Anaerobic treatmen to flow,medium and high strength effluent in the agro-industry[J].Wat.Sci.Tech.,1999,40(8):221-228
    [162]石宪奎,倪文,江翰.厌氧生物反应器快速启动技术研究进展[J].给水排水,2004,30(11):57-60
    [163]冯斐.厌氧MBR处理垃圾渗滤液的试验研究[D]:[硕士学位论文].南昌:南昌大学,2007
    [164]吴速英,叶雪均,肖隆文,等.ABSBR处理啤酒废水的启动试验研究[J].工业安全与环保,2005,31(2):13-15
    [165]郭永福,储金宇.厌氧序批式反应器处理啤酒废水的快速启动研究[J].工业用水和废水,2006,37(2):34-37
    [166]郭晓燕,张振家.EGSB反应器处理米酒废水的启动方法研究[J].环境污染与防治,2004,26(2):107-109
    [167]李欣,祁佩时,刘云芝.厌氧复合床反应器处理制药废水启动研究[J].哈尔滨商业大学学报(自然科学版),2004,20(1):82-85
    [168]李洪静,陈银广,顾国维.丙酸的加入对厌氧.低氧同时生物除磷脱氮系统的影响[J].环境科学,2007,28(8):1681-1686
    [169]申欢,陈建,崔喜勤,等.浸没式厌氧膜生物法处理垃圾渗沥液试验研究[J].环境科学与技术,2005,28(5):71-73
    [170]王旭,吴志超,田陆梅,等.厌氧膜生物反应器处理酒厂废水运行特性研究[J].环境污染与防治,2007,29(10):777-780
    [171]王志伟,吴志超,顾国维,等.厌氧膜-生物反应器抽吸模式对膜过滤性能的影响[J].环境科学学报,2005,25(4):535-539
    [172]Defiance L,Jafrin M Y.Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:Application to a membrane bioreactor used for wastewater treatment[J].Journal of Membrane science,1999,152(2):203-210
    [173]左剑恶,邢薇,孙寓姣.利用分子生物技术对厌氧颗粒污泥中微生物种群结构的研究[J].农业工程学报,2006,22(增刊1):96-100
    [174]Soffer Y,Gilron J,Adin A.Atreaming potential and SEM-EDX study of membranes fouled by colloidal iron[J].Desalination,2002,146:115-121
    [175]Alphenaar A,P'erez M,Lettinga G.The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules[J].Appl.Microbiol.Biotechnol.,1993,39:276-280
    [176]孟凡刚.膜生物反应器膜污染行为的识别与表征[D]:[博士学位论文].大连:大连理工大学,2007
    [177]Lee J,Alan W Y,Lee C H.Comparison of the filtration characteristics between attached and suspended growlh microorganisms in submerged membrane bioreactor[J].Wat Res,2001,35(10):2435-2445
    [178]赵英.膜生物反应器中膜污染控制方法的研究[D].[博士学位论文].天津:天津大学,2005
    [179]王志伟,吴志超,顾国维,等.平板膜生物反应器操作运行条件对膜污染特性的影响[J].膜科学与技术,2005,25(5):26-30
    [180]Elmaleb S.Cross flow filtration of an anaerobic methanogeic suspension[J].Journal of Membrane science,1997,131:261-274
    [181]张劲松.MBR的膜污染机制与可持续操作原理[D]:[博士学位论文].大连:大连理工大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700