用户名: 密码: 验证码:
陕北毛乌素沙地生物结皮的土壤水分效应及其人工培育技术初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于生物结皮在干旱、半干旱地区陆地生态系统中的功能,研究者已经给予了充分的肯定。大量的试验研究已经证明了生物结皮在养分循环过程、土壤水文过程、以及土壤侵蚀等过程中有着重要的功能。本论文在前人研究的基础上,针对陕北毛乌素沙地这一特殊地域存在的生物结皮层进行全面踏查,分析了不同发育程度的结皮的理化性质,为进一步研究毛乌素沙地生物结皮的防风固沙效应奠定基础;通过野外小区试验,进行长期定位监测沙地土壤水分含量变化及防风蚀效应研究,比较不同植被及生物结皮的组合对毛乌素沙地水分的影响,寻求从根本上能够治理沙地荒漠化的途径;同时对于毛乌素沙地生物结皮进行了一系列的室内培育试验及野外培育试验,探索该地区苔藓植物人工培养最佳适宜的温度、土壤含水量以及最适培养液,旨在为毛乌素沙地土壤生物结皮人工修复提供实验基础。
     本论文通过试验研究,主要得到以下研究成果:
     (1)通过野外采样和室内分析相结合,掌握了陕北毛乌素沙地不同地块生物结皮层的理化性质及其发育特征,为进一步研究毛乌素沙地生物结皮的防风固沙效应奠定了基础。踏查发现,苔藓结皮主要分布在沙丘底部、背风坡处、海子旁等地,尤其是在沙地植被下;由于毛乌素沙地地下水位浅,含水量相对较多,故水量充足地区,生物结皮极易发育成苔藓结皮,仅在杨树林迎风坡处采集到藻结皮;随着生物结皮的发育时间的延长,结皮层厚度不断增加,最大值可达11.82mm;土壤颗粒逐渐细化,0.02-0.05mm之间的颗粒含量为7.3-27.7%,均高于流沙(5.7%);结皮层容重增加,抗剪强度明显提高,且抗剪强度与厚度和容重之间存在一定的正相关性。生物结皮层pH值为7.23-7.81,低于流动沙地的pH值,原因是生物结皮层的生物成分能够腐植酸以及地面植被根系在其生长过程中能够分泌酸类物质;有机质、N、K含量明显高于流沙的含量;P含量略有增加。
     (2)通过长期对野外小区沙地水分的动态监测,比较6个不同处理下的水分含量,结果表明:单纯的结皮处理对于沙地的水分保持未能起到积极作用,而从植被来看,沙蒿根系能够很好的涵养水分,为保持沙地水分起到了积极的作用。沙蒿与结皮组合的小区内水分含量不及单纯沙蒿小区的含水量高,但高于单纯的结皮小区。然而沙蒿与生物结皮组合的小区在涵养水分方面却不是最好的,实验证明,紫穗槐与生物结皮组合的小区的沙层含水量要高于沙蒿+结皮小区的含水量。
     经过13个月的风蚀观测,发现这6个处理中,裸沙地处理下沙土流失量为788 t/hm2,而结皮处理的防蚀效应要比紫穗槐以及沙蒿的防蚀效果明显,而结皮与沙蒿的共存真正起到防风固沙的效果,固沙量达到了27.51 t/hm2,紫穗槐与结皮的组合未能起到理想的防蚀效应,沙土流失量约为55t/hm2,可能与其植被盖度低有关。
     (3)根据对毛乌素沙地不同发育程度的苔藓结皮N、P、K含量的分析结果,修正了Knop培养液,按照正交试验设计方法进行室内培育实验,探讨最适合毛乌素沙地藓类植株茎叶碎段生长发育的温度、培养液浓度、以及培养液使用量。结果表明:当温度为15℃,培养液为low Knop,加液体量为12ml时,藓结皮的生长发育状况最好,其株密度为329株/皿,平均株高为4.5mm 25℃时处理间差异不显著,生长情况不及15℃理想,而35℃高温下的所有处理均没有茎叶碎段生长繁殖。根据所有处理株高随时间的变化,得出藓类植株生长拟合曲线为y=-0.0018x2+0.1367x。
     (4)在室内成功培育试验基础上,按照前期方法准备相关试验材料,在野外进行培育实验。野外试验主要考虑到遮荫以及营养液两个因素,水分含量根据室内试验的最适量,统一按每个小区1.1L加营养液。经过半年多的培育,试验表明,遮荫处理下的藓类植株得到很好的生长发育,与室内结果略有不同的是,在High Knop培养液处理下的藓类植株生长最佳,其次为low Knop。但野外试验不及室内培育时藓类植株生长发育快,主要是野外环境中不可控因素较多,需要进一步对野外培育的研究。
About the functions of biological soil crust (BSC) in terrestrial ecosystem in arid and semi-arid region, researchers have given full recognition. A large number of experimental studies have demonstrated that, BSC has an important function in the nutrient cycle, soil hydrological processes and soil erosion process. Based on previous studies, this paper comprehensively investigates the BSC in the special region of Mu Us Sandy Land in Northern Shaanxi, analysis physical and chemical properties of crust in different developmental levels, and lays a foundation for the further research on BSC's effect of sand-fixing in Mu Us Sandy Land. Through field plot experiments, monitoring the change of water content and study the effect of defending wind erosion in a point long term, comparing the affect of combination of vegetations and crust to water content to find a way to control Sandy desertification fundamentally. Meanwhile, we did some indoor and field cultivation experiment to explore the best temperature, soil moisture, and medium for the cultivation of bryophytes.
     Through experiment research, this paper gets the following results:
     (1) By sampling in fields in Mu Us Sandy Land in Northern Shaanxi and analysis in laboratory, physical and chemical properties and development characteristics of biological soil crust in different sampling points were mastered. This lays a foundation for the further research on soil crust's effects of windbreak and sand fixation. It was found that moss crust mainly distribute in the bottom and Leeward slope of sand and around the lake, especially below the sand vegetations. Because ground water is lower and water content is larger relatively in this region, BSC is easily to be moss crust, algal crust is only found in windward of a poplar forest. With the development of biological soil crust, its thickness growth to 11.82mm; Soil particles in biological soil crust refined, contents of particles whose diameter ranges from 0.02~0.05mm are 7.3-27.7%, higher than in sand(5.7%); Because of the refinement, bulk density of biological soil crust rises and shear strength increases apparently. PH in biological soil crust is from 7.23 to 7.81, lower than in sand; The contents of organic matter, N and K are higher in crust than in sand apparantly, but the content of P increase a little. In this research there are differences among all physical and chemical properties of biological soil crust in different sampling points. Reasons of the differences are mainly the degree of crust's development, vegetation coverage and topography and geomorphology in different sampling points.
     (2) Through long-term field plot on the dynamic monitoring of Soil Water, comparing water content in 6 different treatments, result indict that:pure BSC treatment can not play a positive role for water conserve in sandy land, but,as vegetation, artemisia can do this whose root system can hold water perfect. Water moisture in the treatment of combining BSC and artemisia is lower than pure artemisia treatment, higher than pure BSC treatment. However, water moisture in the treatment of combining BSC and another kind of vegetation amorpha is higher than combination of BSC and artemisia.
     By monitoring wind erosion in 6 treatment for 13 months, the amount of sand loss is about 788 t/hm2 in the treatment of pure sand, and the effect of wind prevention in the treatment of BSC is better than in the treatment of artemisia and amorpha. The combination of BSC and artemisia serve the effect of sand-fixing really and the mount of sand fixing reach 27.51 t/hm2, better than The combination of BSC and amorpha, whose sand loss is 55 t/hm2. Maybe it has the relation to the lower vegetation coverage.
     (3) Based on the nutrient analysis of moss crusts in different growing time in Mao US sandy land, modified the Knop culture medium according to the contents of N、P、K. By the method of orthogonal experimental design, did the laboratory cultivated experiment to find the optimum conditions for the growth of moss plants' tatter leaf sections. The results indicated:the best moss plants' density was 329 strains/dish, and mean height was 4.5 mm in the conditions of 15℃, low Knop as the culture medium and adding 12 ml culture medium; There was no significant difference among the treatments in the condition of 25℃and the growth was worse than in the condition of 15℃;Moss plants' tatter leaf sections did not grow in the high temperature of 35℃; According to all the plants height with the change of time, drew a growth fitting curve of moss plants:y=-0.0018x2+0.1367x. This research provided certain experimental basis on the field cultivation of moss crust, especially for the artificial recovery of biological soil crust in Mao US sandy land.
     4) Based on the successful laboratory cultivated experiment, the field experiment was done according to the same preparation. It contains 2 factors (shade or not, culture medium), every treatment add culture medium 1.1 L. After seven months, moss plant in the shade treatment developed well, the best is in the treatment of High Knop culture medium, the better is low Knop. Growth speed in yield is not fast, because there are some uncontrolled factors. We need do further yield cultivation research.
引文
阿不都拉·阿巴斯,艾尼瓦尔·吐米尔.2006.新疆古尔班通古特沙漠南缘土壤生物结皮中地衣植物物种组成和分布[J].新疆大学学报(自然科学版).23(4):379-383
    艾尼瓦尔·吐米尔,王玉良,阿不都拉·阿巴斯.2006.新疆准噶尔盆地南缘土壤生物结皮中地衣物种组成和分布[J].植物资源与环境学报.15(3):35-38
    包海龙,贺晓,赵宏宇等.2009.毛乌素沙地油蒿群落毛细根分布特点及与土壤水分的关系[J].干旱区资源与环境.23(4),175-178
    鲍士旦.2000.土壤农化分析[M].第三版.北京:中国农业出版社.42-112
    白学良,王瑶,徐杰.2003.沙坡头地区固定沙丘结皮层藓类植物的繁殖和生长特性研究[J].中国沙漠.23(2):171-176
    卜崇峰.2006.表土结皮的发育机理及其侵蚀效应(D).博士论文.
    陈兰周,刘永定,李敦海等.2003.荒漠藻类及其结皮的研究[J].中国科学基金.(2).90-93
    陈亚宁,李卫红,张元明,等.2005.新疆古尔班通古特沙漠生物结皮在沙丘尺度的生态与环境解释[J].自然科学通报.15(10):1211-1216.
    陈彦芹,赵允格,冉茂勇.2009.黄土丘陵区藓结皮人工培养方法试验研究[J].西北植物学报29(3):586-592
    陈有君,关世英,李绍良.2000.内蒙古浑善达克沙地土壤水分状况的分析[J],干旱区资料与环境.14(1),80-85
    陈祝春.1989.沙丘结皮层形成过程的土壤微生物和土壤酶活性[J].环境科学.(1):19-23.
    崔国发.1998.固沙林水分平衡与植被建设可适度探讨[J].北京林业大学报,20(6).89-94
    崔燕,吕贻忠,李保国.2004.鄂尔多斯沙地土壤生物结皮的理化性质[J].土壤.36(2):197-202
    冯金朝,陈荷生.1994.宁夏沙坡头地区人工固沙植被种间水分竞争的初步研究[J].生态学报.14(3).260-265
    胡春香,刘永定,张德禄等.2002a.荒漠藻结皮的胶结机理.科学通报.Vol.47(12):931-937
    胡春香,张德禄,刘永定.2003.干旱区微小生物结皮中藻类研究的新进展.自然科学进展.13(8):791-795
    胡春香,张德禄,刘永定等.2002b.荒漠结皮的胶结机理[J].科学通报.47(12):931-937
    董光荣,李长治,金炯等.1987.关于土壤风蚀风洞模拟实验的某些结果[J].科学通报.32(4):297-301.
    董治宝,陈渭南,董光荣等.1995.关于人为地表结构破损与土壤风蚀关系的定量研究[J].科学通报.40(1):54-57.
    董治宝,陈渭南,董光荣等.1996.植被对风沙土风蚀作用的影响[J].环境科学学报.16(4):437-443.
    董治宝,李振山.1998.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报,4(4):1-12.
    段争虎,刘新民,屈建军.1996,沙坡头地区土壤结皮形成机理的研究[J]干旱区研究.13(2):31-36
    范文波,李小娟.2001.涂膜法测定黄土结皮容重[J].山西水土保持科技.vol.(3).9-10
    郭轶瑞,赵哈林,赵学勇等2007.科尔沁沙地人工林下结皮发育对表土特性影响的研究[J].中国 沙漠.27(6):1000-1006
    贾宝全,张红旗,张志强等.2003.甘肃省民勤沙区土壤结皮理化性质研究.生态学报.Vol.23(7):1442~1448
    李守中.2003沙坡头人工植被固沙区微生物结皮对土壤水文过程的影响.硕士论文
    李守中,肖洪浪,李新荣等.2004.干旱、半干旱地区微生物结皮土壤水文学的研究进展[J].中国沙漠.24(4):500-506.
    李守中,肖洪浪,罗芳等.2005.沙坡头植被固沙区生物结皮对土壤水文过程的调控作用[J].中国沙漠.25(2):228-233
    李守中,肖洪浪,宋耀选等.2002.腾格里沙漠人工固沙植被区生物土壤结皮对降水的拦截作用[J].中国沙漠.22(6):612-616
    李新荣,贾玉奎,龙利群等.2001.干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠.21(1):4-11
    李新荣,张景光,刘立超等.2000.我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究[J].植物生态学报.24(3):257-261.
    李卫红,任天瑞,周智彬等.2005.新疆古尔班通古特沙漠生物结皮的土壤理化性质分析[J].冰川冻土.27(4).619-626
    刘登伟,张月鸿.2003.全球变化下毛乌素沙漠气候变化特征[J].干旱区资源环境17(6):78-81
    刘应迪,李菁,陈军等.2000,两种五倍子蚜虫冬寄主藓类植物的光合特性及其与光照、温度和植物体水分含量变化的关系[J].应用生态学报.1(5):687~692
    吕贻忠,杨佩国.2004.荒漠结皮对土壤水分状况的影响.干旱区资源与环境.18(2):76-79
    聂华丽,吴楠,梁少民.2006不同沙埋深度对刺叶墙藓植株碎片生长的影响[J].干旱区研究,23(1):66-70
    牛玉璐,曹永胜.2005.生物结皮及其在荒漠治理中的作用[J].生物学教学.30(10):5-6
    邵玉琴,赵吉.2004.草原沙地微生物结皮与固沙作用的研究.农业环境科学学报.23(1):94-97
    唐东山,卿人韦,傅华龙等.2003.利用土壤微藻改良贫瘠土壤的研究[J].四川大学学报(自然科学版).2:352-355
    田桂泉,白学良,徐杰.2005.腾格里沙漠固定沙丘藓类植物结皮层的自然恢复及人工培养试验研究[J].植物生态学报.29(1):164-169
    吴鹏程.1998.苔藓植物生物学[M].北京.科学出版社.
    吴玉环,程国栋,高谦.2003.苔藓植物的生态功能及在植被恢复与重建中的作用[J].中国沙漠.23(3):215-220
    武显维,丁朝华,康宁.1996.湿地甸灯醉切茎繁殖研究[J].武汉植物学研究.14(1):82-88
    肖波,赵允格等.2008.黄土高原侵蚀区生物结皮的人工培育及其水土保持效应[J].草地学报.16(1):28-33
    玄雪梅,王艳,曹同等.2004.上海地区藓类环境生理学特性的初步研究[J].应用生态学报.15(11):2117-2121
    徐杰,白学良,杨持.2003.固定沙丘结皮层藓类植物多样性及固沙作用研究[J].植物生态学报.4:545—551
    徐杰,白学良,田桂泉等.2005.干旱半干旱地区生物结皮层藓类植物氨基酸和营养物质组成特征及适应性分析[J].生态学报.6:1247-1255.
    姚德良,李家春,杜岳等.2002.沙坡头人工植被区陆气耦合模式及生物结皮与植被演变的机理研 究[J].生态学报.22(4):452-460
    闫德仁,薛英英,刘果厚.2008.库布齐沙漠生物结皮曾土壤理化特性的研究[J].土壤.40(1):145-148
    闫德仁,杨俊平,安晓亮等.2004.荒漠藻固沙结皮试验研究初报[J].干旱区资源与环境.18(5):147-150
    闫德仁,季蒙,薛英英.2006.沙漠生物结皮土壤发育特征的研究[J].土壤通报.37(5):990—993.
    闫德仁,薛英英,赵春光.2007.沙漠生物结皮国内研究现状[J].内蒙古林业科技.33(3):28-32.
    杨永红,王成华,刘淑珍等.2007.不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究[J].水土保持研究.14(2):233-235
    王新平,肖洪浪,张景光等.2006.荒漠地区生物土壤结皮的水文物理特征分析[J].水科学进展.17(5):592-598.
    王雪芹,张元明,张伟民等.2004,古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J].冰川冻土.26(5):632-638.
    王翔宇,张进虎.丁国栋等.2008.沙地土壤水分特征及水分时空动态分析[J].水土保持学报.22(6):222-227
    王莹,郑继勇,张兴昌等.2009.毛乌素沙区土壤养分对湿地退化的响应[J].草地科学.19(2):250-254
    王治国,张云龙,刘徐师等.2000.林业生态工程学[M].北京:中国林业出版社.110-111
    魏江春.2005.沙漠生物地毯工程—干旱沙漠治理的新途径[J].干旱区研究.22(3):287-288
    吴玉环,高谦,于兴华.2003.生物土壤结皮的分布影响因子及其监测[J].生态学杂志.22(3):38-42
    赵哈林,赵学勇等.2007.沙漠化的生物过程及退化植被的恢复机理[M].北京:科学出版社.
    朱震达,陈广庭等.1994.土地沙质荒漠化[M].北京:科学出版社
    朱震达,刘恕.1981.中国北方地区的沙漠化过程及其治理区划[M].北京:中国林业出版社.1-16.
    张静,张元明,周智彬等.2007.古尔班通古特沙漠生物结皮影响下土壤水分的日变化[J].干旱区研究.24(5):661-668
    张元明,杨维康,王雪芹等.2005.生物结皮影响下的土壤有机质分异特征[J].生态学报.12:3420-3425
    张元明,潘惠霞,潘伯荣.2004.古尔班通古特沙漠不同地貌部位生物结皮的选择性分布[J].水土保持学报.18(4):61-64
    张元明,王雪芹.2008准噶尔荒漠生物结皮研究[M].北京:科学出版社
    张志山,何明珠,谭会娟等.2007.沙漠人工植被区生物结皮类土壤的蒸发特性—以沙坡头沙漠研究试验站为例[J].土壤学报.44(3):404-410
    A.D.Thomasa, A.J. Dougill.2006. Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa.Journal of Arid Environments 64:270-283
    Anderson D C, Harper K T, Rushforth S R.1982. Recovery of cryptogamic soil crust from grazing in Utah deserts.Journal of Rang e Management.35:180-185.
    Belnap J. and Gardner J.S.1993. Soil microstructure in soils of the Colorado Plateau:the role of the cyanobacterium Microcoleus. Great Basin Natural.53:40-47
    Belnap J,1995, Soil surface disturbances:their role in accelerating desertification. Environmental Mointoring and Assessment 37:9-57.
    Belnap J., Gillette DA.1997. Disturbance of biological soil crusts:impacts on potential wind erodibility of sandy desert soils in southeastern Utah [J]. Land Degradation and Development.8:355-362.
    Belnap,J.,Budel,B.and Lange,O.L.2001. Biological soil crust:Characteristics and distribution,In Biological Soil Crusts:Structure, Function and Management (Eds Belnap,J.and Lange,O.L.), Springer, Berlin.pp.3-30.
    Belnap,J.,Eldridge,D.J.2003a.Disturbance and recovery of biological soil crusts. In: Belnap,J.,Lange,O.L.(Eds)Biological Soil Crusts:Structure, Function and Management. Ecological Studies, vol.150. Springer, Berlin, pp.363-38
    Belnap,J., Prasse,R., Harper,K.T.2003b. Influence of biological soil crusts on soil environments and vascular plants. In:Belnap,J., Lange,O.L. (Eds.), Biological Soil Crusts:Structure, Function and Management. Springer, Berlin, pp.281-302.
    Belnap,J.,Lange,O.L.2003c.Structure and functioning of biological soil crusts:asynthesis.In: Belnap,J.,Lange,O.L.(Eds.), Biological Soil Crusts:Structure, Function and Management.Springer,Berlin, pp.471-479.
    Brotherson J D, Rushforth S R..1983a. Influence of cryptogamic crusts on moisture relationships of soil in Navajo Na tional Monument Arizona. Great Basin Naturalist,43:73~78.
    Brotherson,J.D.;Rushforth,S.R.;Johansen,J.R.1983b.Effects of long-term grazingon cryptogam crust cover in Navajo National Monument,Ariz.J.Range Manage.35(5):579-581.
    Brown,D.H.;Brown,R.M.1991.Mineral cycling and lichens:the physiological basis.Lichenologist 23(3):293-307.
    Campbell,S.E.;Seeler,J.;Golubic,S.1989.Desert crust formation and soil stabilization.Arid Soil Res.and Rehab.J.3:217-228.
    Chartres C J.,1992. Soil crusting in Australia [A]. Sumner M E, Stewarteds B A. Soil Crusting: Chemical and Physical Processes. Boca Raton, Florida:Lewis Publishers,339-365.
    Danin,A.,Bar-Or,Y.;Dor,I.;Yisraeli,T.1989.The role of cyanobacteria in stabilization of sand dunes in Southern Israel. Ecologia Mediterranea 15:55-64.
    Eldridge,D,J.1993.Cryptogams,vascular plants,and soil hydrological relations:some preliminary results from the semiarid woodlands of eastern Australia.Great Basin Naturalist,53:48-58
    Eldridge,D.J.;Greene,R.S.B.1994.Microbiotic soil crusts:a review of their roles in soil and ecological processes in the rangelands of Australia.Australian J.of Soil Res.32:389-415
    Eldridge DJ, Rosentreter R.1999. Morphological groups:a framework for monitoring microphytic crusts in arid landscapes [J]. J. Arid. Env..41(1):11-25.
    Erikson M,Miksche GE.1974..On the occurrence of lignin or polyphenols in some mosses and liverworts.Phytochemistry,13:2295-2299.
    Graetz R D, Tongway D J.1986.Influence of grazing management on vegetation, soil structure and nutrient distribution and the infiltration of applied rainfall in a semi-arid chenopod shrub land [J]. Australian Journal of Ecology.11:347-360.
    Greene R S B.Chartres C J.1990. The effect of fire on the soil of the degraded semiarid woodland. I. Cryptogam cover and physical micromorphological properties [J].Australian J.Soil Res.755-777
    Harper, K.T.; Pendleton R.L.1993.Cyanobacteria and cyanolichens:can they enhance availability of essential minerals for higher plants. Great Basin Naturalist 53(1):59-72.
    Harper,K.T.,Marble,J.R..1988. Arole for non-vascular plants in the management of arid and semi-arid rangelands. In:Tueller,P.T.(Ed.), Application of Plant Sciences to Rangeland Mangement and Inventory, Martinus Njhoff/W.junk, Amsterdam,pp.135-169
    Hu C X, et al.2002.Effect of desert soil algae on the stabilization of fine sands[J]. Appl Phycol,14(4): 281-284
    Leys J F.1990. Soil crusts, their effect on wind erosion [R]. Soil Conservation service of N. S. W. Research Note 1-90.
    Leys JF.1992. Cover levels to control soil and nutrient loss from wind erosion on sand plain country in central N.S.W. [A]. Proc.7th Biennial Conference of the Aust. Rangel. Soc.[C].Cobar.Oct.84-91.
    Johansen J R.1993, Cryptogamic crusts of semiarid and arid lands of North America [J]. Journal of Phycology,29:110-147.
    Mackenzie HJ, Pearson HW.1979. Preliminary Studies On The Potential Use Of Algae In The Stabilization Of Sand waste Sand Wind blow Situations [J].British Journal of Phycology,14:126.
    Ponzetti J M, Mccune B P.2001. Biotic soil crusts of Oregon's shrubsteppe:community composition in relation to soil chemistry, climate, and livestock activity [J]. Bryologist,104(2):212-225
    Rogers R W.1971, Distribution of lichen Chondropis semiviridis in relation to its heat and drought resistance [J].New Phytol.70:1069-1077
    Sehofied WB.1985.Introduction to Bryology. Macmillam Publishing Company. New York.
    Singer M J.1991. Physical properties of arid region soils. In:Skujins J. ed. Semi-arid lands and deserts:soils resource and reclamation, New York:Marcel Dekker.81-109.
    Shubert L E, Starks T L.1980. Soil algal relationships from surface mined soils [J]. British phycological Journal.15:417-428
    St Clair L L, Johansen J R.1993. Introduction to the symposium on soil crust communities. Great Basin Naturalist.53 (1):1-4.
    Williiams JD, Dobrowolski JP, West NE et al.1999. Microphytic crust influences on unsaturated hydraulic conductivity [J].AridSoilResearchandRehabilitation,13:145-154.
    Williiams J D, Dobrowolski J P, Gillette D A, et al.1993. The role of microphytic crust on wind induced erosion [A]. Proc.46th Annual Meeting Soc. Range Management [C]. Albuquerque, New Mexico, U.S.A.257-261.
    West NE.1990. Structure and function of microphytic soil crusts in wild land ecosystem of arid and semi-arid regions [J]. Advances in Ecological Research,20:179-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700