用户名: 密码: 验证码:
UCM轧机连轧过程仿真及其非线性在线模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷轧板带轧制过程的控制水平对冷轧板带产品的质量起着决定性的作用。在研究冷轧板带轧制过程时,通常采用近似线性化的数学模型进行描述。但是在实际生产过程中,冷轧板带过程是多因素、强耦合、非线性的。本文采用非线性有限元法结合神经网络的非线性映射对冷轧板带轧制过程进行了分析研究,为冷轧板带轧制过程的精确、快速控制提供了基础。
     本文为了对冷轧板带轧制力进行精确、快速地预报,采用非线性有限元法建立了板带和轧辊耦合变形的二维动态弹塑性有限元模型。利用该模型分析了入口厚度、压下率、前张应力、后张应力、摩擦系数、变形抗力和工作辊直径等因素对轧制力的影响。采用神经网络建立了冷轧板带轧制力预报的网络模型,利用有限元模型的模拟结果对神经网络进行了训练,得到了能够精确、快速预报冷轧板带轧制力的网络模型。
     在冷轧板带轧制过程中,板形控制和板厚控制是耦合在一起的。对辊缝进行调整不仅会影响板厚也会影响板形,对弯辊力进行调整不仅会影响板形也会影响板厚。为了对板形板厚进行准确的设定控制,必须综合考虑板形板厚之间的影响关系,研究板形板凸度综合预设定策略。本文分析了六辊UCM轧机板形板凸度综合预设定所需的方程和模型,包括轧机刚度方程、板厚方程、板凸度方程、板形板厚耦合方程、中间辊横移位置设定模型、弯辊力设定模型和空载辊缝设定模型等,给出了板形板凸度综合预设定策略。采用非线性有限元法建立了板带和轧辊耦合变形的六辊UCM轧机三维有限元模型。利用该模型计算了轧制力的横纵向刚度、工作辊弯辊力的横纵向刚度、中间辊弯辊力的横纵向刚度,分析了中间辊横移对轧制力横纵向刚度的影响。采用有限元模型验证了板形板凸度综合预设定后的板形、板厚均满足目标要求。
     本文系统分析了入口厚度、压下率、前张应力、后张应力、摩擦系数、变形抗力、板带宽度、入口板凸度、工作辊弯辊力、中间辊弯辊力、中间辊横移量、工作辊直径、中间辊直径、支承辊直径等因素对板凸度的影响。为了对冷轧板带轧制过程中的板凸度进行快速、准确地预报,采用神经网络建立了冷轧板带板凸度预报的网络模型。
     为了对板带横向厚差进行控制,本文分析了板形调控功效的基本概念,给出了板带横向厚差调控功效的表达形式。推导了板形设定过程的板形目标曲线,即板带横向厚差目标曲线。利用有限元模型分析了工作辊弯辊、中间辊弯辊、中间辊横移对板带横向厚差、横向位移、轧辊弯曲和轧辊压扁的影响,建立了板带出口横向厚差的神经网络预报模型。利用有限元模型计算了工作辊弯辊、中间辊弯辊、中间辊横移的横向厚差调控功效,建立了横向厚差调控功效的神经网络预报模型。分析了板形设定的计算过程,采用等比例凸度法和调控功效法对板带板形进行了设定,比较了两种方法的计算结果和特点。分析了工作辊弯辊、中间辊弯辊、中间辊横移对边部减薄的影响,研究了边部减薄与板形调节量计算值的关系,对基于调控功效法的板形设定模型进行了改进,提出了基于中心板凸度和边部减薄量的板形设定模型。
     综合以上研究成果,在四机架六辊900UCM冷连轧机组上进行了工业实验并验证了本文所建立的轧制力预报模型、板凸度预报模型和有限元模型的正确性和准确性。
In the cold-rolled strip rolling process, control level of product quality plays adecisive role. In general, the cold-rolled strip rolling process is researched by theapproximate linear mathematical model. But in the actual production process, thecold-rolled strip process includes multiple factors, strong coupling, nonlinear. In this paper,the nonlinear finite element method and the neural network method are combined toresearch cold-rolled strip rolling process. The combined method provides the foundationfor cold-rolled strip rolling process control accurately and quickly.
     In this paper, in order to forecast the rolling force accurately and quickly, atwo-dimensional dynamic model is established by nonlinear elastic-plastic finite elementmethod. The effects of entry thickness, reduction rate, forward tension, backward tension,friction coefficient, deformation resistance and work roll diameter on the rolling force areanalyzed by the model. The neural network of rolling force prediction is established. Theneural network model is trained by the simulation results of finite element model. Thetrained network model can forecast rolling force accurately and quickly.
     In the cold-rolled strip rolling process, shape control and gauge control are coupledtogether. Adjusting roll gap affects not only gauge but also shape. Adjusting roll bendingforce affects not only shape but also gauge. In order to set shape and gauge accurately, therelationship of shape set and gauge set should be researched. This paper systematicallyanalyzes the equations and models of UCM mill, including mill stiffness equations, gaugeequation, crown equation, shape and gauge coupling equation, intermediate roll shift setmodel, roll bending force set models and roll gap set model. The set strategy of shape andcrown integrated is presented. The three-dimensional dynamic UCM mill model isestablished by nonlinear elastic-plastic finite element method. The horizontal and verticalstiffness of the rolling force, the horizontal and vertical stiffness of the work roll bendingforce, the horizontal and vertical stiffness of the work roll bending force are calculated bythe model. The effects of the intermediate roll shift on the horizontal and vertical stiffnessof rolling force are calculated by the model. The set strategy of shape and crown integrated is verified by the finite element model. The gauge and shape meet therequirements after set.
     This paper systematically analyzes the effects of entry thickness, reduction rate,forward tension, backward tension, friction coefficient, deformation resistance, strip width,entry crown, work roll bending force, intermediate roll bending force, intermediate rollshift, work roll diameter, intermediate roll diameter and backup roll diameter on stripcrown. In order to forecast strip crown quickly and accurately, neural network is used toestablish a network model of cod-rolled strip crown forecast.
     In order to control the lateral thickness difference, this paper analyzes the basicconcept of actuator effectiveness and presents the lateral thickness difference actuatoreffectiveness expression. The lateral thickness target curve of shape set process is derived.The effects of work roll bending, intermediate roll bending, intermediate shift on striplateral thickness difference, lateral displacement, roll bending and roll flattening areanalyzed by finite element model. The neural network model of strip lateral thicknessdifference forecast is established. The lateral thickness difference actuator effectiveness ofwork roll bending, intermediate roll bending, intermediate shift are calculated by finiteelement model. The neural network model of strip lateral thickness difference actuatoreffectiveness forecast is established. The shape set process is analyzed. Shape is set byproportional crown method and actuator effectiveness method. The results andcharacteristics of the two methods are compared. The effects of work roll bending,intermediate roll bending, and intermediate shift on edge drop are analyzed. Therelationship of edge drop and adjustment amount is researched. The shape set methodbased on actuator effectiveness is improved. The shape set model based edge drop andcentral crown is presented.
     Based on above research findings, industrial experiments are conducted on six-high900UCM cold tandem mills. Rolling force prediction model, strip crown predictionmodel and FEM model are verified by the experiments.
引文
[1]连家创.变分法求解辊缝中金属横向流动问题[J].东北重型机械学院学报,1980,(1):1-10.
    [2]胡国栋,于恩林,赖明道.变分法求解辊缝中金属横向流动区域[J].鞍钢技术,1987,(9):8-11.
    [3]王宏旭,连家创,陈淑云.四辊冷轧带材中张应力横向分布的求解[J].钢铁研究学报,1996,8(1):16-19.
    [4]王宏旭,连家创,刘宏民.四辊冷轧机轧制过程中带材的板形和断面形状的模拟[J].冶金设备,1996,(3):11-13.
    [5]王宏旭,陈淑云.冷轧宽带材PC轧机板形控制特性的研究[J].轻合金加工技术,1997,25(8):19-21.
    [6]黄传清,连家创.板带轧制变形区金属出口横向位移函数的能量法修正[J].钢铁,1997,32(2):33-37.
    [7]郭剑波,连家创,焦景民,等.热带钢连轧机精轧机组板凸度仿真与实验研究[J].钢铁,1999,34(5):42-46.
    [8] Li Junhong, Qi Xiangdong, Lian Jiachuang. B3Spline Function Method Used in Simulatingflatness and Profile of Cold Rolled Strip[J]. Journal of Iron and Steel Research, International,2004,11(5):32-36.
    [9]白金兰,全婉秋,钟凯.冷轧张应力分布模型及其在辊系变形计算中的应用[J].沈阳航空工业学院学报,2008,25(4):43-47.
    [10]王涛,肖宏,王健,等.工作辊直径对热轧带钢凸度的影响分析及优化[J].塑性工程学报,2012,19(3):25-29.
    [11]叶星.三维解析法求解辊缝中金属横向流动问题[D].齐齐哈尔:东北重型机械学院学位论文,1981:17-44.
    [12]连家创,段振勇,叶星.三维解析法求解辊缝中金属横向流动问题[J].东北重型机械学院学报,1984,(3):1-9.
    [13]何安瑞,邵健,孙文权,等.冷轧无取向硅钢横向厚差控制[J].机械工程学报,2011,47(10):25-30.
    [14]王连生,杨荃,何安瑞,等.热轧宽带钢厚度及轧制力横向分布的研究[J].钢铁,2011,46(6):55-59.
    [15]王雪松,张跃飞,田士平,等. PC轧机板形板凸度控制策略[J].钢铁,2012,47(11):45-50.
    [16]肖宏,申光宪,连家创.三维弹塑性边界元法模拟板带轧制过程[J].钢铁,1993,28(3):39-43.
    [17]肖宏,申光宪,木原谆二,等.考虑摩擦三维弹塑性接触边界元法[J].计算力学学报,1998,15(1):32-37.
    [18]肖宏.三维弹塑性接触问题的边界元法及其在板带轧制中的应用[J].燕山大学学报,2000,24(4):363-368.
    [19]黄庆学,阎献国,肖宏,等.用边界元法分析前后张力对板带轧制过程的影响[J].机械工程学报,2000,36(11):39-43.
    [20]石萍.板带轧制边界元模拟系统的开发和利用[J].锻压技术,2005,(3):30-31.
    [21]刘宏民.四辊轧机冷轧带材压力摩擦力张力横向分布的理论和实验研究[D].齐齐哈尔:东北重型机械学院学位论文,1988:66-124.
    [22]刘宏民,连家创.研究冷轧带材金属横向流动和张力横向分布的线性条元法[J].钢铁研究学报,1992,4(3):37-44.
    [23]刘宏民,连家创,段振勇.模拟带材轧制过程的条元法[J].机械工程学报,1993,29(4):36-43.
    [24]刘宏民,连家创,段振勇.三次样条函数条元法及对带材轧制过程的模拟[J].燕山大学学报,1998,22(1):51-55.
    [25]郑振忠,彭艳,刘宏民.求解冷轧带材金属横向流动和前张应力横向分布的一种新型条元变分法[J].钢铁研究学报,1999,11(5):21-25.
    [26]刘宏民,郑振忠,彭艳,等.六辊CVC宽带轧机轧辊接触压力横向分布特性的计算机仿真[J].机械工程学报,2000,36(8):69-73.
    [27]郑振忠,彭艳,刘宏民.研究冷轧带材三维变形的流线条元法[J].燕山大学学报,2001,25(1):47-52.
    [28] Liu Hongmin, Lian Jiachuang, Peng Yan. Third-power Spline Function Strip Element Method andTts Simulation of the Three-dimensional Stresses and Deformations of Cold Strip Rolling[J].Journal of Materials Processing Technology,2001,116(2-3):235-243.
    [29] Liu Hongmin, Wang Yingrui. Stream Surface Strip Element Method for Simulation of theThree-dimensional Deformations of Plate and Strip Rolling[J]. International Journal ofMechanical Sciences,2003,45(9):1541-1561.
    [30]刘宏民,王英睿,金丹.条层法及其对板带轧制三维变形的仿真[J].工程力学,2003,20(6):39-45.
    [31]彭艳,刘宏民.带材轧制过程应力及变形的计算机仿真[J].机械工程学报,2004,40(9):75-79.
    [32] Wang Yingrui, Cui Zhenshan, Wang Yingjie, et al. Complete Mill Simulation of the RollingProcess of1660mm Hot Strip Continuous Mills[J]. Journal Materials Science&Technology2004,20(6):649-656.
    [33]彭钢贤,张树堂,赵林春.前张力对板形影响的研究[J].钢铁研究学报,1986,6(S1):9-18.
    [34]刘才.弹塑性有限元法对轧制过程的模拟[J].东北重型机械学院学报,1987,11(3):66-74.
    [35]杜凤山,刘才,连家创.三维弹塑性有限元法模拟板带轧制过程(Ⅱ)[J].东北重型机械学院学报,1989,13(2):47-53.
    [36]杜凤山,刘才,连家创.三维弹塑性有限元法模拟板带轧制过程(Ⅰ)[J].东北重型机械学院学报,1991,15(2):100-106.
    [37]刘才,杜凤山,连家创.薄板带张力轧制时金属流动的计算机模拟[J].钢铁,1992,27(1):35-38.
    [38]刘才,杜凤山,连家创.薄板连轧过程的变形和应力场[J].机械工程学报,1992,28(1):104-108.
    [39]杜凤山,刘才,连家创.轧制过程中板形控制的计算机模拟[J].机械工程学报,1992,28(6):9-13.
    [40]刘立文,韩静涛,梅富强,等.冷轧板带变形的三维分析[J].轧钢,1999,(3):24-26.
    [41]刘立文,张树堂,武志平.张力对冷轧板带变形的影响[J].钢铁,2000,35(4):37-39.
    [42] Z.Y.Jiang, A.K.Tieu, X.M.Zhang, et al. Finite Element Simulation of Cold Rolling of Thin Strip[J].Journal of Materials Processing Technology,2003,140(1-3):542-547.
    [43] T.H.KIM, W.H.LEE, S.M.HWANG. An Integrated FE Process Model for the Prediction of StripProfile in Flat Rolling[J]. ISIJ International,2003,43(12):1947-1956.
    [44]肖宏,张国民,谢红飙.板带轧制过程多参数耦合模拟系统的开发[J].钢铁,2004,39(6):32-35.
    [45]张国民,肖宏,谢红飙.板带轧制过程的三维耦合有限元分析[J].塑性工程学报,2004,11(5):46-49.
    [46]时旭,李山青,刘相华.薄带钢冷轧过程带钢变形的有限元分析[J].钢铁,2004,39(11):45-47.
    [47]刘华,杨荃,何安瑞.张力对大宽厚比铝箔板形的影响[J].塑性工程学报,2004,12(4):62-65.
    [48] Zhang Guomin, Xiao Hong, Wang Chunhua. Three-Dimensional Model for strip Hot Rolling[J].Journal of Iron and Steel Research, International,2006,13(1):23-26.
    [49]时旭,刘相华,王国栋,等.弯辊力对带钢凸度影响的有限元分析[J].轧钢,2006,23(3):10-13.
    [50]张雅琴,何宗霖,张雪娜.板带冷轧过程三维弹塑性有限元模拟[J].中北大学学报(自然科学版),2006,30(4):390-394.
    [51]姜晓艳,亢志强,李志峰,等.弯辊力对冷轧板带板形的影响分析[J].内蒙古科技大学学报,2013,32(2):148-151.
    [52]李成伟,王晓晨,杨荃,等.热轧带钢金属横向流动及影响因素[J].北京科技大学学报,2013,35(2):222-227.
    [53] Z.Y.Jiang, H.T.Zhu, A.K.Tieu, et al. Model of Work Roll Edge Contact in Thin Strip Rolling[J].Journal of Materials Processing Technology,2004,155-156:1280-1285.
    [54] Z.Y.Jiang, H.T.Zhu, A.K.Tieu. Study of Work Roll Edge Contact in Asymmetrical Rolling byModified Influence Function Method[J]. Journal of Materials Processing Technology,2005,162-163:512-518.
    [55] Z.Y.Jiang, H.T.Zhu, A.K.Tieu. Mechanics of Roll Edge Contact in Cold Rolling of Thin Strip[J].International Journal of Mechanical Sciences,2006,48(7):697-706.
    [56] Z.Y.Jiang, A.K.Tieu. Contact Mechanics and Work Roll Wear in Cold rolling of Thin Strip[J].Wear,2007,263(7-12):1447-1453.
    [57]王国栋,张树堂.四辊轧机轧辊弹性变形的矩阵计算法[J].重型机械,1982,(8):9-18.
    [58]赵立新.六辊轧机辊系变形分析[J].重型机械,1987,(11):8-18.
    [59]刘雪峰,汪凌云.基于影响函数的轧机辊系变形分析及板形预报[J].重庆大学学报(自然科学版),2000,23(6):87-90.
    [60]徐建忠,张凤琴,龚殿尧,等.四辊轧机轧辊弹性变形解析模块的开发[J].轧钢,2003,20(2):8-11.
    [61]赵旭亮,王淑君,徐建忠,等.四辊轧机轧辊弹性变形的研究[J].东北大学学报(自然科学版),2008,29(6):834-837.
    [62]孙蓟泉,周欣科,张慧霞.关于轧辊弹性变形的影响函数法研究[J].山东冶金,2009,31(4):1-4.
    [63] Zhao Tieyong, Xiao Hong. Improved Model to Solve Influence Coefficients of Work RollDeflection[J]. Journal of Central South University of Technology,2010,17(5):1000-1005.
    [64]刘爱民,刘光明.四辊CVC轧机轧辊弹性变形分析[J].轧钢,2011,28(3):21-23.
    [65] Z.Y.Jiang, A.K.Tieu. A3-D Finite Element Method Analysis of Cold Rolling of Thin Strip withFriction Variation[J]. Tribology International,2004,37(2):185-191.
    [66] Z.Y.Jiang, A.K.Tieu, C.Lu. A FEM Modelling of the Elastic Deformation Zones in Flat Rolling[J].Journal of Materials Processing Technology,2004,146(2):167-174.
    [67] Z.Y.Jiang, A.K.Tieu, X.M.Zhang. Finite Element Modelling of Mixed Film Lubrication in ColdStrip Rolling[J]. Journal of Materials Processing Technology,2004,151(1-3):242-247.
    [68]周顺新,钟掘,刘光连.轧机辊系弹性变形的有限元计算[J].中南矿冶学院学报,1994,25(6):733-737.
    [69]徐致让,薛家国.四辊轧机辊系变形分析的有限元法[J].力学与实践,2000,22(5):22-24.
    [70]时旭,刘相华,王国栋,等.四辊冷轧机轧辊弯曲和压扁变形的有限元分析[J].东北大学学报(自然科学版),2004,25(10):957-960.
    [71]刘华,杨荃,何安瑞.有限元法计算铝带轧机的辊系变形[J].轻金属,2005,(11):60-63.
    [72]魏娟,杨荃,何安瑞.六辊轧机辊系变形的有限元分析[J].冶金设备,2006,(4):5-7.
    [73]王新洲,付兴,时旭,等.四辊轧机辊系压扁的有限元分析[J].塑性工程学报,2006,13(6):83-86.
    [74]张清东,孙向明,白剑.六辊CVC轧机辊系变形的有限元分析[J].中国机械工程,200,18(7):789-792.
    [75] Ki Ho YUN, Tae Jin SHIN, Sang Moo HWANG. A Finite Element-based On-line Model for thePrediction of Deformed Roll Profile in Flat Rolling[J]. ISIJ International,2007,47(9):1300-1308.
    [76]李学通,吴志贺,杜凤山,等.四辊平整机轧制过程辊系变形有限元分析[J].塑性工程学报,2006,15(2):126-130.
    [77]李学通,吴志贺,杜凤山.四辊平整机辊系与带材耦合变形有限元分析[J].钢铁研究学报,2008,20(10):29-31.
    [78]白剑,刘治田,严洪凯,等.基于APDL的轧机辊系变形仿真研究[J].冶金设备,2010,(5):42-44.
    [79]常铁柱,韩培恋,王建兵,等.20辊轧机辊系变形和力能参数计算[J].冶金设备,2011,(5):6-9.
    [80]王国栋,张树堂.冷轧辊热凸度计算[J].鞍钢技术,1983,(3):26-30.
    [81]王宏旭,连家创,陈淑云.铝箔中轧机热凸度的数值模拟[J].有色金属加工,1996,(2):37-42.
    [82]郭剑波,连家创,涂月红.热带钢连轧机工作辊温度场和热凸度计算[J].燕山大学学报,1998,22(3):255-258.
    [83]张绚丽,张杰,魏钢城,等.带钢热连轧机工作辊温度场及热辊形的理论与实验研究[J].冶金设备,2002,(3):1-3.
    [84]王仁忠,何安瑞,杨荃,等.宽带钢热连轧工作辊热辊形模型[J].北京科技大学学报,2004,26(6):655-657.
    [85]白金兰,周存龙,王军生,等.单机架可逆冷轧机工作辊热变形计算[J].塑性工程学报,2008,15(1):150-154.
    [86] Wang Liansheng, Yang Quan, He Anrui, et al. Improvement of Prediction Model for Work RollThermal Contour in Hot Strip Mill[J]. Journal of Central South University of Technology,2010,17(6):1251-1257.
    [87]李维刚,刘相华,郭朝晖.带钢热连轧工作辊温度场与热凸度的数值模拟[J].中国有色金属学报,2012,22(11):3176-3184.
    [88]陈宝官,陈先霖, A.K.Tieu.用有限元法预测板带轧机工作辊热变形[J].钢铁,1991,26(8):40-44.
    [89]孔祥伟,李壬龙,王秉新,等.轧辊温度场及轴向热凸度有限元计算[J].钢铁研究学报,2000,12(增刊):51-54.
    [90] Kong Xiangwei, Xu Jianzhong, Ye Hezhou, et al. FEM Calculation of Work Roll Temperature andThermal Ceown[J]. Journal of Iron and Steel Research, International,2004,11(1):22-25.
    [91]杜凤山,郭振宇,朱光明.多道次可逆轧机工作辊温度场及热辊型的研究[J].冶金设备,2004,(2):12-15.
    [92] Guo Zhongfeng, Li Changsheng, Xu Jianzhong, et al. Analysis of Temperature Field and ThermalCrown of Roll During Hot Rolling by Simplified FEM[J]. Journal of Iron and Steel Research,International,2006,13(6):27-30.
    [93]邹家祥.轧辊磨损预报计算[J].钢铁,1986,21(7):23-27.
    [94]连家创,黄传清,陈连生.2050CVC热连轧机精轧机组轧辊磨损的研究[J].钢铁,2002,37(3):24-27.
    [95]李晓燕,张杰,陈先霖,等.单机架平整机轧辊的磨损及对其板形的影响[J].北京科技大学学报,2002,24(3):326-328.
    [96]李长生,张晓明,刘相华,等.轧制过程轧辊磨损数学模型实验研究[J].机械工程学报,2002,38(7):28-30.
    [97]付华高,李长生,刘相华,等.冷轧轧辊磨损数学模型研究[J].钢铁研究,2003,(4):26-29.
    [98]贾生晖,曹建国,张杰,等.冷连轧机SmartCrown轧辊磨损辊形对板形调控能力影响[J].北京科技大学学报,2006,28(5):468-470.
    [99]周莲莲,郑志刚,杨征,等.四辊冷轧机基于机理与工况相结合的工作辊磨损模型研究[J].燕山大学学报,2009,33(4):283-287.
    [100]连家创,段振勇,芦盛江.带材轧后失稳大挠度屈曲变形的研究[J].东北重型机械学院学报,1985,(2):1-10.
    [101]林振波,张波,连家创,等.冷轧带材板形判别模型的分析与讨论[J].钢铁,1995,30(8):39-43.
    [102]林振波,连家创.冷轧带材临界屈曲问题的有限条法研究[J].东北重型机械学院学报,1995,19(4):288-293.
    [103]林振波,连家创.冷轧带材板形判别模型的有线条分析[J].东北重型机械学院学报,1996,20(3):207-210.
    [104]林振波,连家创,段振勇.板形判别模型的建立及试验验证[J].轻合金加工技术,1996,24(11):19-22.
    [105]林振波,周泽亭,刘兴阁.轧后带材板形判别模型的研究进展[J].黑龙江冶金,1997,(1):23-27.
    [106]刘宏民,彭艳,褚宇鹏.板带轧制板形判别的条元法[J].燕山大学学报,2002,26(2):95-98.
    [107] Peng Yan, Chu Yupeng, Liu Hongmin. Shape Discrimination Analysis of Rolled Strip Based StripElement Method[J]. Journal of Iron and Steel Research, International,2004,11(1):29-32.
    [108]许良,王振范,刘相华,等. HC轧机板形优化模型的研究[J].钢铁,1997,32(6):33-36.
    [109]张清东,陈先霖,徐乐江,等. CVC四辊冷轧机板形预设定控制研究[J].钢铁,1997,32(7):29-33.
    [110]刘玉礼,连家创,金晓光,等.400HC轧机板形设定控制数学模型[J].钢铁,1998,33(7):28-32.
    [111]顾云舟,张杰,张清东,等.冷连轧机组弯辊力自动设定的实现[J].北京科技大学学报,2000,22(2):174-176.
    [112]彭艳,刘宏民,胡建平,等.冷轧带材板形分析及预设定控制软件(FAPCSR)及其应用[J].钢铁,2003,38(2):34-37.
    [113]胡建平.六辊冷轧机轧辊横移和弯辊力设定策略分析[J].钢铁技术,2006,(1):25-28.
    [114]梁勋国,徐建忠,王国栋,等. UCM冷连轧机弯辊力设定值优化的研究[J].轧钢,2008,25(5):21-25.
    [115]白振华,康晓鹏,吴首民.双UCM平整机组板形参数在线设定技术[J].钢铁,2009,44(5):39-43.
    [116]曹建国,孟小明,杨光辉,等.基于遗传算法的UCM双机架冷轧机弯辊力设定模型[J].天津大学学报,2011,44(7):650-654.
    [117] Cao Jianguo, Xu Xiaozhao, Zhang Jie. Preset Model of Bending Force for6-high Reversing ColdRolling Mill Based on Genetic Algorithm[J]. Journal of Central South University of Technology,2011,18(5):1487-1492.
    [118]龚殿尧,徐建忠,张进,等. UCM可逆式轧机板形设定模型的建立[J].轧钢,2011,28(6):1-3.
    [119]张云鹏,王长松,张清东.基于效应函数的冷轧机板形闭环控制策略[J].北京科技大学学报,1999,21(2):195-197.
    [120]梁勋国,徐建忠,王国栋,等.冷轧板形的闭环反馈控制原理及应用效果[J].冶金自动化,2006,(6):36-39.
    [121]张清东,李博,郑武,等.冷带轧机板形闭环反馈控制策略及模型研究[J].系统仿真学报,2009,21(24):7858-7862.
    [122]郑武,张清东,王博,等. UCMW冷连轧机板形闭环控制模型优化研究[J].冶金设备,2009,(5):20-24.
    [123]李志明,彭艳,刘宏民.基于影响矩阵自学习的板形闭环控制方法[J].塑性工程学报,2011,18(2):45-51.
    [124]白振华,韩林芳,马续创,等.虚拟板形仪的设计及相应板形闭环控制系统的开发[J].钢铁,2012,47(11):51-54.
    [125]郝亮,邸洪双,龚殿尧,等.带钢冷轧闭环反馈控制最优化算法程序开发[J].机械工程学报,2012,48(6):39-43.
    [126]王国栋,刘相华,等.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000:333-334.
    [127]徐乐江.板带冷轧机板形控制与机型选择[M].北京:冶金工业出版社,2007:41-284.
    [128]连家创,戚向东.板带轧制理论与板形控制理论[M].北京:机械工业出版社,2013:179-345.
    [129]曹建国,张杰,张少军,等.轧钢设备及自动控制[M].北京:化学工业出版社,2010:37-74.
    [130]邸洪双,王哲,栗守维,等.带有中间辊横移的新型六辊轧机的刚度特性[J].东北大学学报(自然科学版),1999,20(6):637-640.
    [131]魏娟,杨荃,何安瑞,等.六辊轧机刚度特性有限元分析[J].塑性工程学报,2007,14(6):51-54.
    [132]杜凤山,张尚斌,黄华贵,等.六辊轧机刚度特性有限元[J].塑性工程学报,2010,17(3):148-152.
    [133]杨光辉,张杰,李洪波,等.宽带钢冷轧机辊系纵向刚度特性对比[J].北京科技大学学报,2012,34(5):576-581.
    [134] V.B.金兹伯格.高精度板带轧制理论与实践[M].北京:冶金工业出版社,2002:508-528.
    [135] V.B.金兹伯格.板带轧制工艺学[M].北京:冶金工业出版社,1998:512-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700