用户名: 密码: 验证码:
废热半导体温差发电技术的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着工业化的高速发展,全球性的环境恶化和能源危机正威胁着人类的长期稳定发展。为此,各国政府对绿色环保技术的研究与利用给予了前所未有的关注和支持。温差发电技术是利用热电转换材料直接将热能转化为电能,是一种全固态能量转换方式,无需化学反应或流体介质,因而在发电过程中具有经济、环保和方便等优点,已在航空和军事等一些特殊领域发挥了无可替代的作用。随着半导体技术的发展和更新,以半导体为主要转换材料的温差发电技术正逐步向工业化和民用化的方向发展。在当前节能减排的热潮之下,温差发电技术更以其独特的优势在低品位能源的回收利用等方面将会发挥更加重要的作用。
     本文就是基于温差电技术的基本原理,对废热半导体温差发电技术进行了理论和实验研究。主要完成了如下基本工作:
     1)基于半导体温差电技术的原理和基本效应,采用有限时间热力学理论,建立了内外均不可逆情况下常规和二级半导体温差发电器的理论模型和性能分析的数学模型。并以工作效率、输出功率和火用效率为目标函数,通过仿真模拟计算分析了二级半导体温差发电器的性能特性,计算出不同情况下二级半导体温差发电器的最大效率、输出功率和火用效率,进而优化了温差发电器的内部结构,确定了工作电流的最佳范围;
     2)在实验研究方面,设计并搭建了以废水为热源的半导体温差发电系统的性能测试平台,并在此基础之上对整个废热温差发电系统进行了相关的优化和改进。而后,对优化后的废热温差发电系统进行了实验研究,完成了多工况下不同温差的发电器性能研究,得到了可靠的实验数据,并总结出了一系列温差发电器的运行规律,为温差电技术的进一步研究奠定了理论基础。
     3)基于以上废热温差发电系统,采用仿真模拟的方法分析了不同负载下系统各性能参数随冷热端温差的变化,通过仿真模拟和实验测试的分析比较,验证了其理论模型的合理性。
     本文通过对废热半导体温差发电器性能的研究,总结了输出功率、工作效率和火用效率等发电性能参数随外电路、温度工况等因素的变化规律。尤其是对将废热资源作为热源的温差发电系统的研究,为半导体温差发电器在回收低品位热源的热能方面提供了许多具有实用价值的可行方法。
With the high-speed development of industrialization, global environmental deterioration and energy crisis are threatening the long-term steady development of mankind, for this reason, government of all countries have given attention and support to the research and use of green environmental protection technology. Thermoelectric generation technology, as an entire solid-state energy conversion way, can directly transform the heat energy into the electrical energy using the thermoelectric transformation material and without chemical reaction or fluid medium. Thus it is more economical, environmentally friendly and convenient. It has played an irreplaceable role in some special fields such as aviation and military affairs. In addition, with the development and updater of semiconductor technology, thermoelectric generation technology with semiconductor as its major conversion material is developing progressively into industrialization and civil use. Especially under the current upsurge of the energy saving and emission reducing, thermoelectric generation technology has played a pivotal role in the recycling of low grade energy for its unique advantage.
     The thesis is based on basic principle of thermoelectric generation technology to do theoretical and experiment research into the waste heat thermoelectric generation technology. Some basic work have completed are as follows:
     1) Based on basic principles of the thermoelectric generation technology and basic effect, then by adapting the finite-time thermodynamics theory, the thesis establishes the general and two-stage semiconductor thermoelectric generator theoretical model and performance analysis mathematical model in the case of the internal and external irreversibility. Then the thesis takes the work efficiency、output power and energy efficiency as the objective functions to analyze the performance characteristics of the two-stage semiconductor thermoelectric generator and calculate the maximum efficiency、output power and energy efficiency of the generator in different conditions with emulation simulated calculation. Thereby, the internal structure of the generator is optimized and the optimal range of the electric current is determined.
     2) In the aspect of experimental research, the author designs and builds a platform which taking waste water as thermal source to test the performance of semiconductor thermoelectric generation system. On this foundation, the author optimizes and improves the entire waste heat thermoelectric generation system, does an experimental research on thermoelectric generation system which has been improved, completes the research to the generator’s performance under mufti-operating modes and different temperature differences, obtains the reliable empirical datum and summarizes a series of movement rules establishes theoretical foundation for further research on thermoelectric generation technology.
     3) Based on the waste heat thermoelectric generation system and employed the simulation method, the change of systematic performance dates with temperature difference under different loads has been analyzed. And the reasonability of theoretical model has been verified through analysis and comparison of imitate and test.
     The thesis summarizes the laws that the electricity generation performance parameters such as work efficiency、output power and energy efficiency and so on change along with external circuit, temperature operating and other factors through the research on the performance of waste heat source semiconductor thermoelectric generator. Especially, the research on thermoelectric generation system which taking waste water as thermal source provides some practicable methods in the low-grade heat source directly using by semiconductor thermoelectric generator.
引文
[1]高敏,张景韶, DMR[英].温差电转换及其应用[M].北京:兵器工业出版社, 1996, 226-230.
    [2]朱成章.世界能源的未来[J].中国电力, 2003, 36(9): 11-20.
    [3]耿莉萍.中国地热资源的地理分布和勘探[J].地质和勘探, 1998, 1: 50-56.
    [4]冒东奎.太阳能热力发电技术进展[J].甘肃科学学报, 1996, 3: 54-56.
    [5]张征,曾美琴,司广树.温差发电技术及其在汽车发动机排气余热利用中的应用[J].能源技术, 2004, 25(3): 120-123.
    [6]章韶敬.温差电转换及其应用[M].北京:兵器工业出版社, 1996.
    [7] Rinehart G H. Design characteristics and fabrication of radioisotope heat sources for space missions [J]. Progress in Nuclear Energy, 2001, 39: 305-319.
    [8]钟广学.半导体制冷器件及其应用[M].北京:科学出版社, 1989.
    [9] Paul. H. Egli. Thermoelectricity. London, 1956.
    [10] HEIKES-URE.Thermoelectricity: Science and Engineering. London Press, 1995.
    [11] Chen J, Lin B, Wang H, et al. Optimal design of a multicouple thermoelectric generator[J]. Semicond. Sci Technol, 2000, 15: 184-188.
    [12] S.B. Riffat, Xiaoli Ma. Thermo electrics: a review of present and potential applications [J]. Applied Thermal Engineering, 2003, 23: 913-935.
    [13]何元金,陈宏,陈默轩.温差发电——一种新型绿色的能源技术[J].工科物理, 2000, 10(2): 36-41.
    [14] Kyeo H K. Khajetoorians A, Shi L, et al. profiling the thermoelectric power of Semiconductor junctions with nanometer resolution [J]. Science, 2004, 303: 816-818.
    [15]王凤跃.温差电——一门占老而又年轻的科学[J].电子文摘报, 2002, (5): 274.
    [16] Kyono T, Suzuki R.O, Ono K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser [J]. IEEE Transactions on Energy Conversion, 2003, (18): 330-334.
    [17] Wulf Glatz, Simon Muntwyler, Christofer Hierold. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator [J]. Sensors and Actuators A, 2006, (132): 337-345.
    [18] Stevens J.W. Heat transfer and thermoelectric design considerations for a ground-source thermoelectric generator[C]. In: Proceedings of the 18th International Conference onThermoelectric. Baltimore, USA, Int. Thermoelectric. Soc, 1999: 68-71.
    [19] Hongxia Xi, Lingai Luo, Gilles Fraisse. Development and applications of solar-based thermoelectric technologies [J]. Renewable and Sustainable Energy Reviews, 2007, (11): 923-936.
    [20]黄志勇,吴知非,周世新等.温差发电器及其在航天与核电领域的应用[J].原子能科学技术, 2004, 38(Suppl.): 42-47.
    [21]陆姗姗,廖波.微热电发电系统[J].军民两用技术与产品, 2006, (7): 40-41.
    [22]林玉兰,吕迎阳,梁广等.基于半导体温差发电模块的锂电池充电装置[J].电源技术, 2006, 30(1): 38-40.
    [23] H. Glosch, M. Ashauer, U. Pfeiffer, et al. A thermoelectric converter for energy supply [J]. Sensors and Actuators, 1999, (74): 246-250.
    [24]河南省科学院能源研究所.半导体热电堆发电循环的热力学研究[J/OL]. [2006-6-29]. http://www. chinapower.com.cn/articleattachment/1000/art1029796.doc.
    [25]陈浩.半导体热电堆发电性能的研究[D].西安:西安交通大学硕士学位论文, 2001.
    [26]钱剑锋.热电式微电源设计及性能研究[D].杭州:浙江大学硕士学位论文, 2005.
    [27]潘玉灼,林比宏.结构参数与不可逆性对热电发电器性能的影响[J].泉州师范学院学报(自然科学版),2006, Vo1.24 No.6: 13-18.
    [28]贾磊,胡芫,陈则韶.温差发电的热力过程研究及材料的塞贝克系数测定[J].中国工程科学,2005, Vo1.7 No.12: 31-34.
    [29]宋瑞银,李伟,杨灿军等.微小型热电发电器建模及优化设计研究[J].太阳能学报, 2006, Vo1.27 No.6: 554-558.
    [30]宋瑞银,李伟,杨灿军等.微型热电发电器的性能测试分析[J].中国机械工程,2006, Vo1.17 No.20: 2159-2163.
    [31]郑文波,王禹,吴知非等.温差发电器热电性能测试平台的搭建[J].实验技术与管理, 2006, Vo1.23 No.11: 62-65.
    [32]李洪俊,黄光宏,李俊等.半导体热电发电技术进展及其在暖风机中的应用构想[J].能源技术, 2005, Vo1.26 No.5: 216-219.
    [33]孙炜,胡亢,陈泽韶等.温差发电和动力装置联合回收液化天然气冷能[J].太阳能学报, 2005, Vo1.26 No.5: 722-726.
    [34]郑艺华,马永志.温差发电技术及其在节能领域的应用[J].节能技术, 2006 Vo1.24 No.2: 142-145.
    [35]刘红武,张征.新型发动机排气温差发电器结构探索[J].节能技术,2006, Vo1.24 No.6: 507-509.
    [36]林玉兰,吕迎阳,梁广等.基于半导体温差发电模块的铿电池充电装置[J].电源技术,2006, Vo1.30 No.1: 38-43.
    [37]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社, 2004.
    [38]陈宏芳,杜建华.高等工程热力学[M].北京:清华大学出版社, 2003.
    [39]杨思文,金六一,孔庆煦等.高等工程热力学[M].北京:高等教育出版社, 1988.
    [40] Edmund J W, Arthur B E. Thermoelectric Devices Solid-state Refrigerators and Electrical Generators in the Classroom [J]. Journal of Chemical Education, 1996, 73(10): 940-945.
    [41] Riffat S B, Xiaoli Ma. Thermoelectric: a review of present and potential applications [J].Applied Thermal Engineering, 2003, 23: 913-915.
    [42] Guyer E C. Handbook of Applied Thermal Design [M]. McGraw Hill, New York, 1988.
    [43] Morelli D T, Caillat T, Flourial J P, et al. Low temperature transport properties of p-type CoSb3[J]. Phys RevB, 1995, 51(15): 9622-9628.
    [44] Thomson W. On a Mechanical Theory of Thermoelectric Currents [J]. Proceedings of the Royal Society of Edinburgh, 1851, 91-98.
    [45] S R de Groot. Thermodynamics of Irreversible Processes. Amsterdam: North Holland publishing Co, 1952.
    [46]屈健,李茂德.半导体制冷电极工作性能的数值模拟[J].热科学与技术, 2005, 4: 373-376.
    [47]徐德胜.半导体制冷与应用技术(第二版) [M].上海:上海交通大学出版社, 1999.
    [48]张同俊,彭江英,杨君友等.热电功能材料及其在发电和制冷方面的应用前景[J].材料导报, 2002, 16(5): 11-13.
    [49]李伟江,李玉东,腊冬等.低温下半导体温差发电器火用分析[J].能源技术, 2006, 27(5): 198-199.
    [50]约飞,高煜.温差电制冷[M].北京:科学出版社, 1958: 5-14.
    [51] E.密勒.温差电材料和器件[M].上海:上海科学技术出版社, 1964: 85-97.
    [52] Pramanick A. K., Das P. K.. Constructal design of a thermoelectric device[J]. Int. J. Heat Mass Transfer, 2006, (49): 1420-1429.
    [53]陈金灿,严子浚.半导体温差发电器性能的优化分析[J].半导体学报, 1994, 15(2): 123-129.
    [54]吴丽清,陈金灿,严子浚.半导体温差发电器的输出功率[J].厦门大学学报(自然科学版), 1996, 35(2): 210-213.
    [55] Omer S A,Infield D G. Design optimization of thermoelectric devices for solar power Generation [J]. Solar Energy Materials & Solar Cells, 1998, 53: 67-82.
    [56] Helmers L, Muller E, Schilz J, et al. Graded and stacked thermoelectric Generatorsnumerical Description and maximization of output power[J]. Mat-er.Sci. Eng. B, 1998, 56: 60-68.
    [57] Chen J, Lin B, Wang H, et al. Optimal design of a multi-couple thermoelectric generator[J]. Semicond. Sci Technol, 2000, 15: 184-188.
    [58]贾磊,陈则韶,孙炜.半导体温差发电器件的热力学分析[J].中国科学技术大学学报,2004, 34(6):685-686.
    [59] Lingen Chen, Jun Li. Fengrui Sun et Performance optimization for two-stage semiconductor Thermoelectric generators[J]. Science Direct, 2005, 82: 303-304.
    [60]周颖慧.新型半导体温差发电器的优化设计[J].厦门大学学报(自然科学版),2001,40(4):884-885.
    [61]屈健,李茂德,乐伟等.半导体温差发电器的工作性能优化[J].低温工程, 2005, 144(2): 20-23.
    [62] Chen L, Gong J, Sun F, et al. Effect of heat transfer on the performance of thermoelectric generators [J]. Int. J. Therm. Sci., 2002, (41): 95-99.
    [63] KOno, R.O.Suzuki. Thermoelectric Power Generation: Converting low-grade heat into Electricity[J]. Minerals, Metals & Materials Soc.1998, SO (5):12-31.
    [64] J.Esarte, G . Min, D .M .Rowe. Modeling heat exchangers for thermoelectric generators. J. Power. Sources, 2001, 93: 72-76.
    [65] Omer S A,Infield D G. Design optimization of thermoelectric devices for solar power Generation [J]. Solar Energy Materials & Solar Cells, 1998, 53: 67-82.
    [66] Jensak Eakburanawat, Itsda Boonyaroonate. Development of a thermoelectric battery-charger With microcontroller-based maximum power point tracking technique [J]. Applied Energy, 2006, (83): 687-704.
    [67]李军,陈林根,孙丰瑞.热电发电机换热面积最优分配[J].华北电力大学学报, 2004, 31(6): 40-43.
    [68] Douglas T Crane, Gregory S. Jackson. Optimization of cross flow heat exchangers for Thermoelectric waste heat recovery. Energy Conversion & Management, 2004, 45:1565-1582.
    [69] R. Y Nuwayhid,R Moukalled. Evolution of power and entropy in a temperature gap system With electric and thermoelectric influences. Energy. Conveys .Mgmt, 2003, 44(5): 647-665.
    [70]张军. UPS电源的使用和维护[J].有线电视技术, 2005, (21): 101-103.
    [71]朱松然.蓄电池乎册[M].天津大学出版社, 1998.
    [72]桂长青.新型贮能元件超级电容器[J].船电技术, 2003, (1): 23-26.
    [73]张娜,张宝宏.电化学超级电容器的研究进展[J].应用科技, 2003, 30 (9): 54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700