用户名: 密码: 验证码:
用于新型原子钟的外腔半导体激光器数字自动稳频系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单模窄线宽的可调谐半导体激光器广泛应用于冷却原子、抽运原子态和原子激发荧光等,半导体激光器的应用是新型原子钟的特征。具有一定抗振能力,并能够在失锁时自动报警通讯,自动恢复原参数重新稳频工作是原子钟,尤其是保障空间原子钟长期可靠运行的关键。
     随着虚拟仪器技术的发展与普及,基于计算机的虚拟仪器应用越来越广泛。本论文提出将虚拟仪器应用于外腔半导体激光器数字自动稳频系统。首先介绍了半导体激光器稳频原理和基于原子饱和吸收谱线的激光稳频原理。利用铯原子D2线的饱和吸收峰频率作为参考频率,通过光电转换,利用比例加积分(PI)反馈控制将激光输出频率锁定在参考频率上的方法设计并实现了一套数字自动稳频系统。文章对实现的各个环节进行了详尽的分析研究。将整个系统分为温控系统模块、数据采集模块、数据处理模块,再细化分成功能单一的模块,然后对这些硬件和软件模块分别进行设计和调试。
     对外腔半导体激光器数字自动稳频系统的调试和测试结果表明该系统可以自动搜索铯原子D2线的饱和吸收峰,并将外腔半导体激光器的输出频率锁定到选定的饱和吸收峰上,在意外失锁后能自动恢复锁定。且具有一定的抗干扰能力,有良好的长期稳定性。文章最后对影响测量精度的主要因素进行了深入的分析。
     该系统人机界面友好,操作简单方便,参数容易修改和维护,已用于铯喷泉钟的实验研究中。
A tunable diode laser with single mode and narrow linewidth is widely used in atom-cooling, pumping atomic, exciting atomic fluorescence and so on. The application of semiconductor diode laser is a new feature of new atomic clocks. Develop a robust external cavity diode laser (ECDL) is a key to assure atomic clocks especially space atomic clocks can run stably for a long period. This laser is insensitive to mechanical vibration and can give a warning signal when frequency of the laser is out of range, then relocked again.
     With the development and popularization of computer technology, the Virtual Instrument(VI) based on computer is applied more and more widely. The automatic digital frequency locking system with VI is presented in this paper. First, The principle of frequency stabilization of semiconductor is introduced. Then, we designed and realized a system to make the laser locked to the frequency of Cs atom absorption spectrum by PI feedback control. The strict research about all units of the ECDL automatic digital frequency locking system is presented in the paper. The entire system can be divided into several modules: temperature control module, data acquisition module, software interface module, data processing units. These units have been subdivided into single function parts, which are designed and tested respectively.
     We had tested the system with the ECDL. The result is that our system could lock the output frequency of the laser to the frequency of the any Cs absorption spectrum peak automatically and relock it quickly when the frequency of the laser is out of range. Moreover, it has ability of anti-inference and good performance of long time stability. Finally, the main factors which influence the precision of the system are analyzed in detail in this paper.
     This system has characters of good transformation and friendly human-machine interface. Meanwhile, it’s convenient to operate panel and modify parameter. Now, it has been used in the research of Cs atomic fountain clock.
引文
[1]漆贯荣,时间科学基础[M],高等教育出版社,2006.
    [2]周渭,黄秉英,李成福等,计量测试技术手册[M],中国计量出版社,1996.
    [3]王义遒,王庆吉,傅济时等,量子频标原理[M],科学出版社,1986.
    [4]王义遒,原子钟及其进展[J],物理教学,2003,25(4):2-4.
    [5]王义遒,建立自主完善的时间频率系统是国运所系[J].电讯技术-时间频率技术增刊,2008,48(4): 1-17.
    [6]伊林,陈徐宗,原子钟研究及其进展[J],科学,2005,57(5):8-10.
    [7]黄秉英,新一代原子钟[M],武汉大学出版社,2006.
    [8]王庆华,翟造成,原子频标的进展和时频技术新进展[J],自然杂志,1997,20(2):81-86
    [9]张首刚,新型原子钟发展现状[J],时间频率学报,2009,32(2):1-19.
    [10]范琦,郭文阁,杜志静等,相干布局囚禁现象用于原子频标[J],时间频率学报,2006,29(2):107-114.
    [11] B. J. Dalton, and P. L. Knight, Coherent Population Trapping and the Effect of Laser Phase Fluctuation [J], Laser Physics, 1983, 182.
    [12] Cunyun Ye. Tunable External Cavity Diode Lasers[M]. Singapore: World Scientific, 2004.
    [13]陈翼翔,薛大键,程波涛,陆璇辉,王育竹,半导体激光器稳频技术的发展动态[J],激光与红外,35(1):18-21.
    [14]陈徐宗,半导体激光器稳频原理与技术[M],2005.
    [15] W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse,A computer-based digital feedback control of frequency drift of multiple lasers[J], Review of Scientific Instruments , 1998, 69(11).
    [16] Dejan V. Pantelic, Bratimir M. Panic, and Aleksander G. Kovacevic, Digital control of an iodine stabilized He–Ne laser by using a personal computer and a simple electronic system[J], Review of Scientific Instruments, 2003, 74(6):3155-3159.
    [17] F. Allard, I. Maksimovic, M. Abgrall and Ph.Laurent, Automatic system to control the operation of an extended cavity diode laser[J], Review of Scientific Instruments, 2003, 75(1):54-58.
    [18] Jianwei Zhang, Kaikai Huang, and Donghai Yang, Compact extended cavity diode laser system for small optically pumped cesium beam frequency standards[J], Chinese Optics Letters, 2006, 4(9):525-528.
    [19] Lei Dong, Wangbao Yin, Weiguang Ma and Suotang Jia. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line[J]. Meas.Sci. Technol, 2007, 18, 1447–1452.
    [20] Dong BW. The basic development and application of virtual apparatus intelligent instrument[J]. Practical Testing Technology, 2000(3):29-30.
    [21]宋宇峰. LabwindowsCVI逐步深入与开发实例[M ].北京:机械工业出版社, 2003.
    [22]史君成,张淑伟,律淑珍,虚拟仪器设计[M].北京:国防工业出版社, 2007.
    [23]刘君华.虚拟仪器编程语言Labwindows/CVI教程[M ].北京:电子工业出版社,2001.
    [24]薛新红,虚拟仪器技术的发展现状和前景展望现代测量与实验室管理,2006, 4:8-12.
    [25]惠俊军,王志贤,基于Labwindows/CVI的虚拟仪器的开发[J],机械工程师,2004,30:31.
    [26]林平卫,王平,李明寿,李天初,陈伟亮,NIM4 #铯冷原子喷泉钟电子测控系统的研制[J],现代测量与实验室管理,2004,(3):10-13,35.
    [27]岳红光,半导体激光器可控智能装置的研究,长春理工大学硕士学位论文,2008,25-2.
    [28] K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb[J]. Phys. 1992, 60, 1098.
    [29] TaeBong Eom, HyunSeung Choi and SunKyu Lee, Frequency stabilization of an internal mirror He–Ne laser by digital control[J], Review of Scientific Instruments, 2002, 73(1):221-224.
    [30]马杰,赵延霆,赵建明等,利用偏振光谱对外腔式半导体激光器实现无调制锁频[J],中国激光,2005,32(12):1605-1608.
    [31]张靖,陶桦,卫栋等,Rb原子饱和吸收稳频半导体激光器系统[J],光学学报,2003,23(2):197-201.
    [32]董磊,马维光,尹王保,李昌勇,贾锁堂,利用数字锁相放大器对甲烷气体进行谐波探测的实验研究[J],光谱学与光谱分析,2005,25(3):473-476.
    [33]董磊,马维光,尹王保,李昌勇,贾锁堂,基于LabVIEW的外腔二极管激光器稳频实验[J],光电子·激光,2005,16(3):255-258.
    [34]袁杰,陈徐宗,陈文兰等,外腔半导体激光器的设计与高次谐波稳频[J],红外与激光工程,2007,36(2):152-154.
    [35]陈文兰,袁杰,齐向晖等,外腔半导体激光器设计与高次谐波稳频[J],中国激光,2007,34(7):895-900.
    [36]谢楷,赵建,MSP430系列超低功耗单片机系统设计与实践[M],2008.
    [37]王哲,曾华林,周燕,范松涛,何军,谢福增,基于单片机的外腔半导体激光器控制系统的设计[J],内蒙古师范大学学报,2007,36(5):316-616.
    [38]金杰,颜祺,陈立,丁钧,外腔半导体激光器的高精度双稳温度控制[J],激光杂志,2006,27(2):38,41.
    [39]李发泉,王玉平,程学武,龚顺生,稳频半导体激光器的温度控制技术[J],光学与光电技术,2005,3(3):29-31,43.
    [40] National Instruments.NI-DAQ.National Instruments[Z]. 2001.
    [41] NI, DAQ SCB-68 68-Pin Shielded Connector Block User Manual[Z]. 2002.
    [42] Labwindows/CVIAdvaneedAnalysisLibraryReferenceManual [Z]. 2001.
    [43] Labwindows/CVIPrograrnrnerRefereneeManual[Z]. 2001.
    [44] PI , Designing with Piezoelectric Transducers:Nanoposition Fundamentals[Z]. 2005
    [45] Alan V.Oppenheim, Ronald W.Schafer and John R.Buck, Discrete-Time Signal Processing[M]. Prentice Hall, Englewood Cliffs, New Jersey, 1989.
    [46] S. K. Mitra, Digital Signal Processing—A Computer-Based Approach[M], McGraw-Hill, New York, 2001.
    [47] Tsuchida H,Tako T.Limit of the frequency stability in A1GaAs semiconductor lasers[J].Jpn J Appl Phys,1983,22(12):1870-1875.
    [48]董磊,马维光,尹王保,李昌勇,贾锁堂,基于1.6/μm甲烷气体吸收线的半导体激光器频率稳定性分析[J],光子学报,2005,34(4):399-492.
    [49]宋璐,张全法,FIR数字低通滤波器工频干扰抑制能力的提高[J],电子测量技术,2009,32(6):124-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700