用户名: 密码: 验证码:
激光诱导荧光技术研究若干自由基的光谱及其斯塔克和塞曼效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计和搭建了一套激光诱导荧光实验装置,并将之与超声射流冷却、气体放电等技术相结合,研究了NiCl、NiS和NiO自由基在若干激光波长范围内的激光诱导荧光激发谱和色散谱。同时作者在美国亚利桑那州州立大学联合培养期间,通过激光诱导荧光激技术研究了PtF、BaS、TiH/TiD等自由基的光谱及其斯塔克和塞曼效应。通过光谱分析,得到了以下主要研究成果:
     1.含镍自由基低分辨光谱研究
     在超声射流条件下,通过Ni针放电与CH2Cl2、H2S、O2与Ar的混合气反应制备了NiCl、NiS和NiO自由基。研究了NiCl在12500-15000cm-1范围内的光谱,转动分析了[13.0]2Π3/2(u'=0-5)-X2Π3/2(u"=0)跃迁序列,获得了激发态各振动态的转动常数,同位素位移,寿命等分子常数。研究了NiS在720-820nm范围内的光谱,将NiS的四个振动带归属为[12.4]3∑0-(v'=0-3)-X3∑0-(v"=0)跃迁序列,得到了转动常数,同位素位移和平衡常数等在内的分子参数。研究了NiO在510-650nm范围内的光谱,转动分析了55个谱带,因其不规则的振动间隔和同位素位移,仅将其中26个谱带归属为5个振动序列,同时通过色散谱研究了NiO基态的振动常数。
     2.PtF自由基高分辨光谱及斯塔克效应研究
     在超声射流分子束中通过激光溅射产生了PtF,利用激光诱导荧光研究了PtF的[11.9]Ω=3/2←X2Π3/2的光谱及其在静电场中的斯塔克效应。分析获得了激发态更为精确的转动常数,并首次获得了激发态的磁超精细常数。从对斯塔克光谱的分析中获得了基态和激发态的偶极矩,比较了PtF与其他含Pt双原子分子及IrF的偶极矩,对偶极矩的变化给出了定性解释。
     3.BaS斯塔克光谱研究
     通过斯塔克光谱测量了BaS基态X1∑+(v=0)和激发态A1∑+(u=3)的永久电偶极矩,新得到的偶极矩值比之前分子束共振技术所得值更为精确,且基态偶极矩值比之前也略大(10.86(2)D),基态偶极矩与激发态的变化与分子轨道理论推测的情况相符。
     4.TiH/TiD塞曼光谱研究
     在超声射流冷却条件下观察了TiH和TiD的B4ΓF5/2-X4Φ3/2光谱及其在0-5kG范围内的塞曼光谱,通过分析给出了他们的分子参数。结果表明,理论预测的5个低电子态对基态X4Φ3/2的微扰几乎可以忽略不计,但激发态B4Γ5/2的塞曼常数表现出强烈的转动量子数依赖性,分析指出此现象可能来自于附近4Φ3/2的微扰。
The main contributions presented in this dissertation are a newly built Laser-induced fluorescence (LIF) apparatus, the study on the low resoulution spectra of NiC1、NiS and NiO, and high resoulution spectra with their Stark and Zeeman effects of PtF、BaS、TiH/TiD,by using LIF combined with the techniques of gas discharge and laser ablation in supersonic molecular beam.
     1.Study on the low resolution spectroscopics of nickel containing radicals
     The NiC1、NiS and NiO radicals were produced in a supersonic jet by DC pin discharge of a mixture of CH2C12、H2S、O2in Ar. The LIF spectra of NiCl in12500-15000cm-1region were recorded and attributated to the [13.0]2Π3/2(ν=0-5)-X2Π3/2(ν"=0) transitions, the rotational constants, isotopic shifts and lifetimes were determined by rotational analysis.The LIF spectra of NiS in the region of720-820nm were recorded and rotationally analyzed, four vibronic bands were assigned to [12.4]3Σ0-(ν'=0-3)-X3Σ0-(ν"=0) transitions.55bands were rotationally analyzed for NiO in510-650nm, only26vibronic bands were grouped into five transition progressions due to their highly irregular isotopic shifts and vibrational intervals. Furthermore, dispersed fluorescence and lifetimes of the strong bands have also been measured.
     2. Study on the high resolution spectrum and its Stark effect of PtF
     The[11.9]Ω=3/2←X2Π3/2bands of PtF have been recorded field-free and in the present of a static electric field. The high precision rotational constants for the excited state and magnetic hyperfine interactions for19F and195Pt have been analyzed.The optical Stark shifts were analyzed to produced the permanent electric dipole moments, μel of2.47(11) D and3.42(6) D for[11.9] Ω=3/2and X2Π3/2states, respectively. The observed trend in μel for the PtX (X=C, N, O, S, and F) series and IrF are discussed.
     3. Study on the Stark spectrum of BaS
     The R(0) and R(1)lines of theA1Σ+(ν=3)-X1Σ+(ν=0) band of the138Ba32S were recorded at high resolution(full width at half maximun, FWHM≌35MHz) and at a field strength of up to3100V/cm. The observed Stark shifts were analyzed to produce permanent electric dipole moments, μel of10.765(8) D and5.586(22) D for the X1Σ+(ν=0) and A1Σ+(ν=3)states, respectively. The relative values of μel for BaO and BaS are discussed.
     4. Study on the Zeeman spectra of TiH/TiD
     The Zeeman effect in the(0,0) bands of B4Γ5/2-X4φ3/2system of TiH/TiD has been recorded and analyzed. Magnetic tuning of the spectral features recorded at high resolution (FWHM≌35MHz) and at a field strength of4.5kG is accurately modeled using an effective Zeeman Hamiltonian. The determined magnetic g factors for the X4φ3/2(v=0) state deviate only slightly from the expected, while the g factors for the B4Γ5/2(v=0) states deviate significantly from those of an isolated B4Γs/2state.The rotational dependence of the magnetic tuning in the state B4Γ5/2(ν=0) is attribuated to perturbation from a nearby4φ3/2state.
引文
[1]G Herzberg, Molecular spectra and molecular structure. Vol.1:Spectra of diatomic molecules (1950) New York:Van Nostrand Reinhold,1950,1952nd ed.
    [2]张允武,陆庆正,刘玉申,分子光谱学(1988)中国科学技术大学出版.
    [3]W. Demtroder,激光光谱学第二卷:实验技术(2012)科学出版社.
    [4]陈扬骎,杨晓华,激光光谱测量技术(2006)华东师范大学出版.
    [5]G Herzberg, Molecular spectra and molecular structure. Vol.2:Infrared and Raman spectra of polyatomic molecules(1945) New York:Van Nostrand, Reinhold,1945.
    [6]G Herzberg, Molecular spectra and molecular structure. Vol.3:Electronic spectra and electronic structure of polyatomic molecules(1966) New York:Van Nostrand, Reinhold,1966.
    [7]J. L. Kinsey, Laser-Induced Fluorescence Annu. Rev. Phys. Chem.,28(1977) 349.
    [8]R. N. Zare, My life with LIF:a personal account of developing laser-induced fluorescence Annu. Rev. Anal. Chem.,5(2012)1.
    [9]G A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, Photoacoustic spectroscopy Rev. Sci. Instrum., 54(1983)797.
    [10]K. Krishnan, Some Applications of Fourier Transform Infrared Photoacoustic Spectroscopy Appl. Spectrosc,35(1981)549.
    [11]J. J. Scherer, J. B. Paul, A. Okeefe, R. J. Saykally, Cavity ringdown laser absorption spectroscopy: History, development, and application to pulsed molecular beams Chem. Rev.,97(1997) 25.
    [12]M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection Science,311 (2006) 1595.
    [13]M. D. Erickson, Gas chromatography/Fourier transform infrared spectroscopy applications Appl. Spectrosc. Rev.,15(1979)261.
    [14]Y. L. Liu, Recent Progress in Fourier Transform Infrared (FTIR) Spectroscopy Study of Compositional, Structural and Physical Attributes of Developmental Cotton Fibers Materials,6 (2013)299-313.
    [15]W. Habenicht, G Reiser, D. Rieger, K. Mullerdethlefs, E. W. Schlag, High-Resolution Zero Kinetic Energy Photoelectron Spectroscopy(ZEKE-PES) Abstr. Pap. Am. Chem. Soc,201 (1991)31.
    [16]C. Harthcock, J. Zhang, W. Kong, Resonantly enhanced multiphoton ionization and zero kinetic energy photoelectron spectroscopy of benzo e pyrene Chem. Phys. Lett.,556 (2013) 23.
    [17]S. Sigurdson, V. Sundaramurthy, A. K. Dalai, J. Adjaye, Phosphorus promoted trimetallic NiMoW/gamma-A12O3 sulfide catalysts in gas oil hydrotreating J. Mol. Catal. A-Chem.,291 (2008) 30.
    [18]A. J. Bridgeman, J. Rothery, Periodic trends in the diatomic monoxides and monosulfides of the 3d transition metals J. Chem. Soc.-Dalton Trans.,(2000)211.
    [19]A.J.Burgasser, Discovery of a second L subdwarf in the Two Micron All Sky Survey Astrophys. J.,614 (2004) L73.
    [20]C.W. Bauschlicher, P. Maitre, Theoretical study of the first transition row oxides and sulfides Theor. Chim. Acta,90(1995)189.
    [21]C.Zhang, S.Takada, M.Kolzer, T. Matsumoto, K.Tatsumi,Nickel(Ⅱ)thiolate complexes with a flexible cyclo-{Ni10S20}framework Angew. Chem.-Int. Edit.,45 (2006) 3768.
    [22]张朝霞,过渡金属氟化物和含硫自由基的紫外光谱研究(2007)中国科学技术大学博士论文.
    [23]甄军锋,过渡金属硼化物和硫化物的光谱研究(2010)中国科学技术大学博士论文.
    [24]下莉,过渡金属氯化物和硫化物的光谱研究(2011)中国科学技术大学博士论文.
    [25]W. Ertmer, R. Blatt, J. Hall, Some candidate atoms and ions for frequency standards research using laser radiative cooling techniques Prog. Quant. Electron.,8(1984) 249.
    [26]M.H.Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell,Observation of Bose-Einstein condensation in a dilute atomic vapor Science,269(1995)198.
    [27]A.Auffeves, J.-M.Gerard, J.-P. Poizat, Pure emitter dephasing:A resource for advanced solid-state single-photon sources Phys. Rev. A,79 (2009) 053838.
    [28]Y. Sortais, S.Bize, C.Nicolas, A.Clairon, C.Salomon, C. Williams, Cold collision frequency shifts in a (87)Rb atomic fountain Phys. Rev. Lett.,85 (2000) 3117.
    [29]黄秉英,下育竹,冷原子喷泉的改进与应用30(2010)1-5.
    [30]W. M. Itano, D. Wineland, Laser cooling of ions stored in harmonic and Penning traps Phys. Rev. A,25(1982)35.
    [31]F. Diedrich, J.Krause, G. Rempe, M.Scully, H.Walther, Laser experiments with single atoms and the test of basic physics Physica B+C,151(1988) 247.
    [32]D. Andrews, Applied Laser Spectroscopy(1992) John Wiley & Sons, New York.
    [33]H.D. Bist, Advanced Laser Spectroscopy and Applications(1996) Allied Publishers Pvt. Ltd., New Delhi.
    [34]W. Rettig, B.Strehmel, S.Schrader, H.Seifert, Applied fluorescence in chemistry, biology and medicine(1998) Springer,1999.
    [35]D. Halmer, G. Von Basum, P. Hering, M. Miirtz, Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide Opt. Lett.,30 (2005)2314.
    [36]H.Gugel, J. Bewersdorf, S. Jakobs, J.Engelhardt, R. Storz, S.W. Hell, Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy Biophys J 87 (2004)41.
    [37]A. H. Zewail, Laser femtochemistry Science,242 (1988) 1645.
    [38]A.H.Zewail, Femtochemistry:Atomic-scale dynamics of the chemical bond J. Phys. Chem. A, 104(2000)5660.
    [39]T. Brixner, B.Kiefer, G. Gerber, Problem complexity in femtosecond quantum control Chem. Phys.,267(2001)241.
    [40]R. J. Levis, G M. Menkir, H. Rabitz, Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses Science,292 (2001)709.
    [41]G Schmidtke, W. Kohn, U. Klocke, M. Knothe, W. Riedel, H. Wolf, Diode laser spectrometer for monitoring up to five atmospheric trace gases in unattended operation Appl. Opt.,28(1989) 3665.
    [42]J.-I.Kim, R. Stumpe, R. Klenze, Laser-induced photoacoustic spectroscopy for the speciation of transuranic elements in natural aquatic systems, Springer,1990.
    [43]A. Anders, Models of DNA-dye-complexes:Energy transfer and molecular structures as evaluated by laser excitation Appl. Phys.,18(1979) 333-338.
    [44]P. Cornelius, R. Hochstrasser, Picosecond Processes Involving CO, O2, and NO Derivatives of Hemeproteins, in:Picosecond Phenomena Ⅲ, Springer,1982, pp.288.
    [45]M. Murtz, D. Halmer, M. Horstjann, S. Thelen, P. Hering, Ultra sensitive trace gas detection for biomedical applications Spectrochimica Acta Part A,63 (2006) 963.
    [46]S. Svanberg, Laser spectroscopy applied to energy, environmental and medical research App. Phys.5,46(1988)271.
    [47]J. M. Brown, A.Carrington, Rotational Spectroscopy of Diatomic Molecules (2003) Cambridge University Press, Cambridge,.
    [48]T. C. Steimle, W. L. Virgo, The permanent electric dipole moments of WN and ReN and nuclear quadrupole interaction in ReN J. Chem. Phys.,121 (2004) 12411.
    [49]T. C. Steimle, T.Ma, C. Linton, The hyperfine interaction in the A2Π1/2 and X2Σ+states of ytterbium monofluoride J. Chem. Phys.,127 (2007) 234316.
    [50]M. C. Heaven, V. Goncharov, T. C. Steimle, T. Ma, C. Linton, The permanent electric dipole moments and magnetic g factors of uranium monoxide J. Chem. Phys.,125 (2006) 204314.
    [51]J. Brown, I. Kopp, C. Malmberg, B. Rydh, An Analysis of Hyperfine Interactions in the Electronic Spectrum of AIF Phys. Scripta,17(1978) 55.
    [52]J. J. Harrison, J. M. Brown, M. Flory, P. Sheridan, S. McLamarrah, L. Ziurys, The rotational spectrum of CoF in all three spin-orbit components of the X3φ, state J. Chem. Phys.,127 (2007) 194308.
    [53]R. A. Frosch, H. Foley, Magnetic hyperfine structure in diatomic molecules Phys. Rev.,88(1952) 1337.
    [54]T. Steimle, W. Virgo, The permanent electric dipole moments for the A2Π and B2Σ+states and the hyperfine interactions in the A2Π state of lanthanum monoxide, LaO J. Chem. Phys.,116 (2002)6012.
    [55]J. Brown, M. Kaise, C. Kerr, D. Milton, A determination of fundamental Zeeman parameters for the OH radical Mol. Phys.,36 (1978) 553.
    [56]T. C. Steimle, Permanent electric dipole moments of metal containing molecules Int. Rev. Phys. Chem.,19(2000)455.
    [1]J. L. Kinsey, Laser-Induced Fluorescence Annu. Rev. Phys. Chem.,28(1977) 349.
    [2]R. N. Zare, My life with LIF:a personal account of developing laser-induced fluorescence Annu. Rev. Anal. Chem.,5(2012)1.
    [3]W. Demtroder,激光光谱学第二卷:实验技术(2012)科学出版社.
    [4]张允武,陆庆正,刘玉申,分子光谱学(1988)中国科学技术大学出版.
    [5]R. Ram, P. Bernath, S. Davis, Infrared emission spectroscopy of the [10.5]5△-X5△ system of VF J. Chem.Phys,116 (2002)7035.
    [6]A.Poclet,Y. Krouti,T. Hirao,B.Pinchemel,P. F. Bernath,Laser-induced fluorescence and Fourier transform spectroscopy of NiC1:Identification of a low-lying 2Σ+state(1768 cm-1)J. Mol. Spectrosc,204 (2000) 125.
    [7]Q. Shi, Q.Ran, W. Tam, J.-H.Leung, A.-C. Cheung, Laser-induced fluorescence spectroscopy of CrS Chem. Phys. Lett.,339 (2001)154.
    [8]T. C.Steimle, W. L. Virgo, The permanent electric dipole moments of WN and ReN and nuclear quadrupole interaction in ReN J. Chem. Phys.,121 (2004) 12411.
    [9]O. Appelblad, A.Lagerqvist, The spectrum of CuO:Rotational analysis of some blue and red bands Phys. Scripta,10(1974) 307.
    [10]R. Ram,P. Bernath, Fourier transform emission spectroscopy of the B1Π-X1Σ+,C1Σ+-X1Σ+,and G1Π-X1Σ- systems of ScH and ScD J. Chem. Phys,105(1996) 2668.
    [11]C.N.Kei-ichi, S.Saito, The microwave spectrum of cobalt monoxide:Hyperfine interactions in the X4A state J. Chem. Phys,114(2001)9390.
    [12]C.W. Bauschlicher Jr, R. Ram, P. F. Bernath, C. Parsons, D. Galehouse, The A6Σ+-X6Σ+transition of CrH, Einstein coefficients, and an improved description of the A state J. Chem. Phys,115 (2001)1312.
    [13]L. O'Brien, R. Kubicek, S.Wall, D. Koch, R. Friend, C.Brazier, Fourier Transform Spectroscopy of the Y2Σ+-X2Π1, Transition of CuO J. Mol. Phys.,180(1996) 365.
    [14]J.-r. Guo, T.-t. Wang, Z.-x. Zhang, C.-x. Chen, Y. Chen, Analysis of the LIF Spectroscopy of Nickel Hydride in 19000-21400 cm-1 Chin. J. Chem.Phys.,21(2008)308.
    [15]X.Zheng, W. Tingting, G. Jingru, C.Congxiang, C. Yang, Laser-induced fluorescence spectroscopy of NiS Chem. Phys. Lett.,394 (2004) 137.
    [16]R. Smalley, B.Ramakrishna, D. Levy, L.Wharton, Laser spectroscopy of supersonic molecular beams:application to the NO2 spectrum J. Chem. Phys,61(1974) 4363.
    [17]赵东锋,光腔衰荡光谱技术研究若干自由基的光谱(2009)中国科学技术大学博士论文.
    [1]Zhao, X.;Ma, L.,Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries Int. J. Hydrogen Energy 34 (2009) 4788.
    [2]Wronski, Z. S.,Materials for rechargeable batteries and clean hydrogen energy sources Int. Mater. Rev.,46(2001)1.
    [3]Hu,W.-K.;Gao,X.-P;Noreus,D.;Burchardt,T.;Nakstad,N.K.,Evaluation of nano-crystal sized a-nickel hydroxide as an electrode material for alkaline rechargeable cells 160 (2006) 704.
    [4]Oliva, P.;Leonardi, J.;Laurent, J. F.;Delmas, C;Braconnier, J. J.;Figlarz, M.;Fievet, F.;Guibert, A.d.,Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides J. Power Sources,8(1982) 229.
    [5]Giovanni,M.;Ambrosi,A.;Pumera,M.,The Inherent Electrochemistry of Nickel/Nickel-Oxide Nanoparticles Chem. Asian J,7 (2012) 702.
    [6]顾公望,张宏伟,微最元素与恶性肿瘤(1993).
    [7]马雪瑛,镍致癌的自由基机制26(1997)168.
    [8]More, K.R.,Spectra of the Monochlorides of Nickel,Cobalt and Iron Phys. Rev.,54(1938)122.
    [9]Reddy, S. P.;Rao, P. T.,The Band Spectra of NiC1 and NiBr in the Visible Proc. Phys. Soc,75 (1960)275.
    [10]Krishna Rao, S.V;Paddi Reddy, S.;Tiruvenganna Rao, P.,New band systems of NiC1 in the photographic infrared Z Phys. A,166(1962) 261.
    [11]Gopal, R.,Thermal emission spectrum of B-X system of NiCl molecules Curr. Sci.,50(1981) 854.
    [12]Reddy, C. V.;Narayana, A. L.;Rao, P. T., The emission band spectrum of NiC1 in the region lambdalambda 340.0-560.0 nm Acta Phys. Hung.,63(1988)295.
    [13]Hirao, T.;Dufour, C.;Pinchemel, B.;Bernath, P. F.,Laser-induced fluorescence and Fourier transform spectroscopy of the [21.9]2△5/2-X2Π3/2(21910 cm-1)and the [21.9]2△5/2-[.16]2△5/2(21750 cm-1)transitions of NiC1 J. Mol. Spectrosc,202(2000) 53.
    [14]Poclet, A.;Krouti, Y;Hirao, T.;Pinchemel, B.;Bernath, P. F.,Laser-induced fluorescence and Fourier transform spectroscopy of NiCl:Identification of a low-lying 2Σ+state(1768 cm-1)J. Mol. Spectrosc,204 (2000) 125.
    [15]Krouti, Y.;Poclet, A.;Hirao, T.;Pinchemel, B.;Bernath, P. F,The X2Πi, A2△i,and B2Σ+, low-lying states of NiCl:Laser-induced fluorescence and Fourier transform emission experiments J. Mol. Spectrosc,210 (2001)41.
    [16]Yamazaki, E.;Okabayashi,T.;Tanimoto, M.,Laboratory rotational spectrum of nickel monochloride in the ground electronic 2Π3/2 state Astrophys. J.,551(2001)L199.
    [17]O'Brien, L.C;Rice, C. A.;Kellerman, T. L.;Owen, B.;Hong, C;O'Brien, J. J.,Spectroscopy of NiC1:identification of the X2Π1/2state J. Mol. Spectrosc,235 (2006) 271.
    [18]O'Brien, J.J.;Miller, J.S.;O'Brien, L. C,Intracavity laser spectroscopy of NiC1 system G: Identification of a[13.0]2Π3/2 state J. Mol. Spectrosc,211(2002a) 248.
    [19]O'Brien, L. C; Homann, K. M.;Kellerman, T. L.;O'Brien, J. J., Fourier transform and intracavity laser spectroscopy of NiC1 system H:Identification of a[12.3]2Σ+state J. Mol. Spectrosc,211 (2002b) 93.
    [20]Rice, C. A.; O'Brien, L. C,Fourier transform spectroscopy of NiCI:identification of the [12.3]2Σ+-B2Σ+transition J. Mol. Spectrosc,221 (2003) 131.
    [21]Tumturk, S.;O'Brien, L. C;O'Brien, J. J., Fourier transform spectroscopy of NiCl:identification of a [9.1]Ω=3/2 state J. Mol. Spectrosc,225 (2004) 225.
    [22]Gibbs, K. D.;Trader, D. J.;O'Brien, L. C; O'Brien, J. J., Fourier transform spectroscopy of NiCl: Identification of the[10.3] 4φ7/2 state J. Mol. Spectrosc,240 (2006)64.
    [23]Cheung, A. S. C;Leung, J. W. H.;Jianjun, Y.;Gibbs, K. D.;Palmer, D. L.; O'Brien, L. C; O'Brien, J. J., Spectroscopy of nickel chloride:Identification of the [15.0]2Π3/2 and[15.0]2△5/2 states J. Mol. Spectrosc,238 (2006) 42.
    [24]Muzangwa, L. G; Ayles, V. L.; Nyambo, S.; Reid, S. A., Probing the electronic structure of the nickel monohalides:Spectroscopy of the low-lying electronic states of NiBr and NiCl J. Mol. Spectrosc,269 (2011) 36.
    [25]Western, C, PGOPHER, a program for simulating rotational structure University of Birstol, http://pgopher.chm.bris.ac.uk. (2011).
    [1]K. M. Lee, W. Y. Lee, Partial oxidation of methane to syngas over calcined Ni-Mg/Al layered double hydroxides Catal. Lett,83(2002)65.
    [2]P. Poizot, S.Laruelle, S.Grugeon, L.Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries Nature,407 (2000) 496.
    [3]A.J.Merer, Spectroscopy of the Diatomic 3d Transition Metal Oxides Annu. Rev. Phys. Chem., 40(1989)407.
    [4]S. Sigurdson, V. Sundaramurthy, A.K. Dalai, J. Adjaye, Phosphorus promoted trimetallic NiMoW/gamma-Al2O3 sulfide catalysts in gas oil hydrotreating J. Mol. Catal. A-Chem.,291 (2008) 30.
    [5]袁敏,刘孝恒,王学虎,杨琼芬,陆路德,汪信,二氧化钛/硫化物纳米复合光催化剂的制备及表征27(2002)16.
    [6]Y. Q. Cong, Z. Li, Q. Wang, Y. Zhang, Q. Xu, F. X.Fu, Enhanced Photoeletrocatalytic Activity of TiO2 Nanotube Arrays Modified with Simple Transition Metal Oxides (Fe2O3, CuO, NiO) Acta Phys.-Chim. Sin.,28(2012)1489.
    [7]L. Margulis, G. Salitra, R. Tenne, M.Talianker, Nested fullerene-like structures Nature,365 (1993) 113.
    [8]郭宪吉,侯文华,颜其洁,陈懿,层柱过渡金属氧化物 科学通报,22(2002)1681-1689.
    [9]G. D. Cody, Transition metal sulfides and the origins of metabolism Annu. Rev. Earth Planet. Sci., 32(2004)569-599.
    [10]R. P. Hausinger, Metallocenter assembly in nickel-containing enzymes J. Biol. Inorg. Chem.,2 (1997)279.
    [11]E. Bouwman, J. Reedijk, Structural and functional models related to the nickel hydrogenases Coord. Chem. Rev.,249 (2005)1555.
    [12]R. Angamuthu, H. Kooijman, M. Lutz, A.L.Spek, E. Bouwman, Hexanuclear [Ni6L12] metallacrown framework consisting of NiS4 square-planar and NiS5 square-pyramidal building blocks Dalton Trans.,(2007) 4641.
    [13]C.Zhang, S.Takada, M. Kolzer, T. Matsumoto, K. Tatsumi,Nickel(Ⅱ) thiolate complexes with a flexible cyclo-{Ni10S20} framework Angew. Chem.-Int. Edit.,45 (2006) 3768.
    [14]A.Munoz-Castro, Bonding and Magnetic Response Properties of Several Toroid Structures. Insights of the Role of Ni2S2 as a Building Block from Relativistic Density Functional Theory Calculations J. Phys. Chem. A,115 (2011)10789.
    [15]S.Piligkos, G. Rajaraman, M. Soler, N.Kirchner, J.van Slageren, R.Bircher, S.Parsons, H.U. Gudel, J.Kortus, W. Wernsdorfer, G. Christou, E. K.Brechin, Studies of an enneanuclear manganese single-molecule magnet J. Am. Chem. Soc,127 (2005) 5572.
    [16]M.Murugesu, F. Wernsdorfer, K.A.Abboud, G. Christou, New structural motifs in manganese single-molecule magnetism from the use of triethanolamine ligands Angew. Chem.-Int. Edit.,44 (2005) 892.
    [17]S. P. Walch, W. A. Goddard, Electronic States of NiO Molecule J. Am. Chem. Soc,100(1978) 1338.
    [18]M. Barnes, D. J. Clouthier, P. G Hajigeorgiou,G Huang, C. T. Kingston, A. J. Merer, G F. Metha, J. R. D. Peers, S. J. Rixon, The electronic spectrum of gaseous CoO in the visible region J. Mol. Spectrosc,186(1997)374.
    [19]A. J. Bridgeman, J. Rothery, Periodic trends in the diatomic monoxides and monosulfides of the 3d transition metals J. Chem. Soc.-Dalton Trans.,(2000) 211.
    [20]T. Yamamoto, M. Tanimoto, T. Okabayashi, The rotational spectrum of the NiS radical in the X3Σ-state Phys. Chem. Chem. Phys.,9 (2007) 3744.
    [21]R. S. Ram, S. Yu, I.Gordon, P. F. Bernath, Fourier transform infrared emission spectroscopy of new systems of NiS J. Mol. Spectrosc.,258 (2009) 20.
    [22]X. Zheng, W. Tingting, G. Jingru, C. Congxiang, C. Yang, Laser-induced fluorescence spectroscopy of NiS Chem. Phys. Lett,394 (2004) 137.
    [23]W. Li, Z. Junfeng, G. Jianqiang, Z. Qun, C. Yang, Spectroscopy of nickel monosulfide in 450-560 nm by laser-induced fluorescence and dispersed fluorescence techniques Chem. Phys. Lett.,493 (2010)245.
    [24]J. F. Zhen, L. Wang, C. B. Qin, Q. Zhang, Y. Chen, Laser-induced Fluorescence Excitation Spectrum of NiS in 15500-17200 cm-1 Chin. J. Chem. Phys.,22 (2009) 668.
    [25]B. Rosen, Spectra of diatomic oxides by the method of exploded wire Nature,156(1945)570.
    [26]D. W. Green, G T. Reedy, J. G Kay, Matrix-isolated FeO, NiO, and CoO:Ground-state vibrational frequencies J. Mol. Spectrosc,78(1979) 257.
    [27]V. I. Srdanov, D. O. Harris, Laser spectroscopy of NiO:The 3Σ- ground state J. Chem. Phys.,89 (1988) 2748.
    [28]E. J. Friedmanhill, R. W. Field, Analysis of the[16.0]3Σ-X3Σ-and[16.0]3Σ-[4.3]3Πi band system of the NiO molecule J. Mol. Spectrosc,155(1992) 259.
    [29]R. S. Ram, P. F. Bernath, Fourier Transform Infrared Emission Spectroscopy Of New A3Πi-X3Σ-system of NiO J.Mol. Spectrosc,155(1992) 315.
    [30]K. Namiki,S. Saito,Microwave spectrum of the NiO radical in the X3Σ- state Chem.Phys.Lett, 252(1996)343.
    [31]W. J. Balfour, J. Y. Cao, R. H. Jensen, R. H. Li, The spectrum of nickel monoxide between 410 and 510 nm:laser-induced fluorescence and dispersed fluorescence measurements Chem. Phys. Lett,385 (2004) 239.
    [32]C. Western, PGOPHER, a program for simulating rotational structure University of Birstol, http://pgopher.chm.bris.ac.uk. (2011).
    [1]Wang, T. E.;Keyes, L.;Patrick, B.O.;Love, J.A., Exploration of the Mechanism of Platinum(Ⅱ)-Catalyzed C-F Activation:Characterization and Reactivity of Platinum(Ⅳ) Fluoroaryl Complexes Relevant to Catalysis Organometallics,31 (2012) 1397.
    [2]Zhao, S.B.;Wang, R. Y.;Nguyen, H.;Becker, J.J.;Gagne, M. R.,Electrophilic fluorination of cationic Pt-aryl complexes Chem. Commun.,48 (2012) 443.
    [3]Kaspi, A.W.;Goldberg, I.;Vigalok, A.,Reagent-Dependent Formation of C-C and C-F Bonds in Pt Complexes:An Unexpected Twist in the Electrophilic Fluorination Chemistry J. Am. Chem. Soc., 132(2010) 10626.
    [4]Clot, E.;Eisenstein, O.;Jasim,N.;Macgregor, S. A.;McGrady, J. E.;Perutz, R.N.,C-F and C-H Bond Activation of Fluorobenzenes and Fluoropyridines at Transition Metal Centers:How Fluorine Tips the Scales Accounts Chem. Res.,44(2011)333.
    [5]Braun, T.;Wehmeier, F.,C-F Bond Activation of Highly Fluorinated Molecules at Rhodium:From Model Reactions to Catalysis Eur. J. Inorg. Chem.,(2011)613.
    [6]Balcells, D.;Clot, E.;Eisenstein,O.,C-H Bond Activation in Transition Metal Species from a Computational Perspective Chem. Rev.,110 (2010) 749.
    [7]Dub, P. A.;Bethegnies, A.;Poli,R.,DFT and Experimental Studies on the PtX2/X--Catalyzed Olefin Hydroamination:Effect of Halogen, Amine Basicity, and Olefin on Activity, Regioselectivity, and Catalyst Deactivation Organometallics,31 (2012)294.
    [8]Paul, A.;Musgrave, C. B.,A detailed theoretical study of the mechanism and energetics of methane to methanol conversion by cisplatin and catalytica Organometallics,26 (2007) 793.
    [9]Zhu, H.J.;Ziegler, T.,Probing the Influence of Trans and Leaving Ligands on the Ability of Square-Planar Platinum(Ⅱ) Complexes to Activate Methane.A Theoretical Study Organometallics, 28(2009)2773.
    [10]Jensen, F., Introduction to computational chemistry J. Wiley and Sons, Chichester, England, (1999).
    [11]Steimle, T. C.,Permanent electric dipole moments of metal containing molecules Int. Rev. Phys. Chem.,19 (2000) 455.
    [12]Klahn, T.;Krebs, P., Electron and anion mobility in low density hydrogen cyanide gas. Ⅰ. Dipole-bound electron ground states J. Chem. Phys.,109(1998)3959.
    [13]Handler, K. G.;Harris, R. A.;O'Brien, L. C.;O'Brien, J. J., Intracavity laser absorption spectroscopy of platinum fluoride, PtF J. Mol. Spectrosc.,265 (2011)39.
    [14]Okabayashi, T.;Kurahara, T.;Okabayashi, E. Y.;Tanimoto, M.,Microwave spectroscopy of platinum monofluoride and platinum monochloride in the X2Π3/2 states J. Chem. Phys.,136 (2012) 174311.
    [15]Liu, W. J.;Franke, R., Comprehensive relativistic ab initio and density functional theory studies on PtH, PtF, PtCl, and Pt(NH3)(2)C1-2 J. Comput. Chem.,23 (2002) 564.
    [16]Zou, W. L.; Liu, Y.;Boggs, J. E., Relativistic ab initio study on PtF and HePtF Dalton Trans.,39 (2010)2023.
    [17]Amano, T., Interpretation of magnetic hyperfine coupling constants J. Mol. Spectrosc.,144 (1990)454.
    [18]Harrison, J. J.; Brown, J. M.; Flory, M. A.;Sheridan, P.M.; McLamarrah, S. K.;Ziurys, L. M., The rotational spectrum of CoF in all three spin-orbit components of the X3φi state J. Chem. Phys., 127 (2007) 194308.
    [19]Linton, C.;Zhuang, X. J.;Steimle, T.C.;Adam, A. G.,Hyperfine interactions in the A(3)Phi(4) and X-3 Phi(4) states of iridium monofluoride, IrF J. Chem. Phys.,135 (2011).
    [20]Steimle, T. C.; Ma, T. M.;Linton, C., The hyperfine interaction in the A(2)Pi(1/2) and X-2 Sigma(+) states of ytterbium monofluoride (vol 127,234316,2007) J. Chem. Phys.,137 (2012).
    [21]Frosch, R. A.;Foley, H. M., Magnetic Hyperfine Structure in Diatomic Molecules 88(1952) 1337.
    [22]Steimle, T. C.;Jung, K. Y.;Li, B. Z., The permanent electric dipole moment of PtO, PtS, PtN, and PtC J. Chem.Phys.,103(1995)1767.
    [23]Jung, K. Y.;Steimle, T. C.;Dai, D.;Balasubramanian, K., Experimental determination of dipole moments, hyperfine interactions, and ab initio predictions for PtN J. Chem. Phys.,102(1995)643.
    [1]Steimle, T. C.,Permanent electric dipole moments of metal containing molecules Int. Rev. Phys. Chem.,19(2000)455.
    [2]Gang, L.;Jin-Guo, W.;Bernath, P.F., High resolution laser excitation spectroscopy of barium monosulfide J. Mol. Spectrosc.,271 (2012) 10.
    [3]Holleman, A.F.,Inorganic Chemistry,Academic Press, San Diego (2001).
    [4]Pacchioni, G.;Illas,F.,Does the electronegativity scale apply to ionic crystals as to molecules? A theoretical study of the bonding character in molecular and crystalline alkaline-earth oxides based on dipole moments Chem. Phys.,199(1995) 155.
    [5]Sauval, A. J.;Tatum, J. B., A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest Astrophys. J. Suppl. Ser,56(1984) 193.
    [6]Steimle, T. C.;Jamie,G.;Jinhai,C.;Ram,R.S.;Bernath,P.F.,A study of the A2Π-X2Σ+and B2Σ+-X2Σ+band systems of scandium monosulfide, ScS, using Fourier transform emission spectroscopy and laser excitation spectroscopy J. Mol. Spectrosc.,237 (2006) 36.
    [7]Wang, L.;Junfeng, Z.; Jianqiang, G.;Qun, Z.;Yang, C., Spectroscopy of nickel monosulfide in 450-560nm by laser-induced fluorescence and dispersed fluorescence techniques Chem. Phys. Lett.,493(2010)245.
    [8]Zhen, J. F.;Wang, L.; Qin, C. B.;Zhang, Q.;Chen, Y, Laser-induced Fluorescence Spectrum of CoS Between 15200 and 19000 cm-1 Chin. J. Chem. Phys.,23(2010)262.
    [9]Mathur, L. S., The absorption spectra of the monosulphides of alkaline earth elements and their latent heats of vaporization Proc. R. Soc. Lond. A-Math. Phys. Sci.,162(1937)0083.
    [10]Barrow, R. F.; Burton, W. G; Jones, P.A.,Electronic spectrum of gaseous BaS. Rotational analysis of bands of the A-X and B-X systems 67(1971)902.
    [11]Cummins,P.G.;Field,R.W.;Renhorn,I.,Argon ion laser-induced BaS B1Σ+-A1Σ+,A1Π, a3Π,and X1Σ+fluorescence spectra:Analysis of A-A′, A-a, and A′-a perturbations J. Mol. Spectrosc,90(1981)327.
    [12]Tiemann, E.; Ryzlewicz, C.; Torring, T., Rotational spectrum of BaS Z. Naturfors. Sect. A-J. Phys. Sci.,31(1976) 128.
    [13]Helms, D. A.;Winnewisser, M.; Winnewisser, G, Millimeter wave spectrum of barium sulfide in a low-pressure flame. Current millimeter wave measurements of high-temperature species J. Phys. Chem.,84(1980) 1758.
    [14]Ziurys, L. M.;Janczyk, A., Sub-millimeter spectroscopy of BaS(X1Σ+)J. Mol. Spectrosc,236 (2006)11.
    [15]Melendre.Ca; Hebert, A. J.;Street, K., Radio-frequency stark spectra and dipole moment of BaS J. Chem. Phys.,51(1969)855.
    [16]Fang, W.; Steimle, T. C., The Stark effect in the A1Σ+-X1Σ+(0,0) band of barium monoxide, BaO Chem. Phys. Lett.,484(2010) 110.
    [17]Field, R. W.;English, A. D.; Tanaka, T.;Harris, D. O.; Jennings, D. A., Microwave optical double resonance spectroscopy with a cw dye laser:BaO X1Σand A1Σ J. Chem. Phys.,59(1973)2191.
    [1]Institut, P.,Molecules in Space, University zu Koln, Physikalisches Institut (2013) http://www.astro.uni-koeln.de/cdms/molecules.
    [2]Smolders, K.; Verhoelst, T.;Neyskens, P.;Blommaert, J.; Decin, L.; VanWinckel, H.; Van Eck, S.; Sloan, G C.;Cami, J.;Hony, S.;De Cat, P.;Menu, J.;Vos, J., Discovery of a TiO emission band in the infrared spectrum of the S star NP Aurigae Astron. Astrophys.,543(2012)1.
    [3]Kaminski, T.; Gottlieb, C.;Menten, K.;Patel, N.; Young, K.;Brunken, S.; Muller, H.;McCarthy, M.;Winters, J.; Decin, L., Pure rotational spectra of TiO and TiO2 in VY Canis Majoris A&A 551 (2013).
    [4]Burrows, A.; Hubbard, W.B.; Lunine, J.I.;Liebert, J., The theory of brown dwarfs and extrasolar giant planets Rev. Mod. Phys.,73(2001)719.
    [5]Kirkpatrick, J. D.;Reid,I.N.;Liebert, J.;Cutri, R. M.; Nelson, B.; Beichman, C. A.; Dahn, C. C; Monet, D. G.; Gizis, J. E.;Skrutskie, M. F., Dwarfs cooler than "M":The definition of spectral type "L" using discoveries from the 2-Micron All-Sky Survey (2MASS) Astrophys. J.,519(1999)802.
    [6]Burgasser, A. J., Discovery of a second L subdwarf in the Two Micron All Sky Survey Astrophys. J.,614 (2004) L73.
    [7]Burrows, A.; Dulick, M.; Bauschlicher, C.W.;Bernath, P. F.;Ram, R. S.; Sharp, C. M.; Milsom, J. A., Spectroscopic constants, abundances, and opacities of the TiH molecule Astrophys. J.,624 (2005) 988.
    [8]Sharp, C. M.;Burrows, A., Atomic and molecular opacities for brown dwarf and giant planet atmospheres Astrophys. J. Suppl. Ser,168(2007)140.
    [9]Reiners, A.; Basri, G., The first direct measurements of surface magnetic fields on very low mass stars Astrophys. J.,656 (2007) 1121.
    [10]Smith, R. E.; Gaydon, A. G., The spectrum of titanium hydride, TiH and TiD 4(1971)797-&.
    [11]Yerle, R., TiH in M-type stars and sunspots Astron. Astrophys.,73(1979)346.
    [12]Steimle, T.C.; Shirley, J. E.;Simard, B.;Vasseur, M.; Hackett, P., A laser spectroscopic study of gas-phase TiH J. Chem. Phys.,95(1991)7179.
    [13]Launila, O.; Lindgren, B., Spectroscopy of TiH:Rotational analysis of the 4Γ-X4φ(0,0) band at 530 nm J. Chem. Phys.,104(1996)6418.
    [14]Andersson, N.;Balfour, W. J.;Lindgren, B., Rotational analysis of the 4Γ4-4φspectrum of TiD J. Mol. Spectrosc,217 (2003) 298.
    [15]Andersson, N.; Balfour, W. J.; Bernath, P.F.;Lindgren, B.; Ram, R. S., Emission spectra of TiH and TiD near 938 nm J. Chem. Phys.,118 (2003) 3543.
    [16]Danielsson, M., Laser induced fluorescence of TiD:analysis of the B4Γ-X4φ transition Phys. Scr,76(2007)699.
    [17]Scott, P. R.; Richards, W. G., On the low-lying electronic states of TiH J. Phys. B-At. Mol. Opt. Phys.,7(1974)500.
    [18]Furche, R; Perdew, J. P., The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry J. Chem. Phys.,124 (2006) 044103.
    [19]Goel, S.;Masunov, A. E., Potential energy curves and electronic structure of 3d transition metal hydrides and their cations J. Chem. Phys.,129 (2008) 214302.
    [20]Chong, D. P.; Langhoff, S. R.; Bauschlicher, C. W.; Walch, S. P., Theoretical Dipole-Moments for the 1st-Row Transition-Metal Hydrides J. Chem. Phys.,85(1986) 2850.
    [21]Anglada, J.; Bruna, P. J.;Peyerimhoff, S. D.,Theoretical investigation of the low-lying electronic states of TiH Mol. Phys.,69 (1990) 281.
    [22]Koseki, S.;Ishihara, Y.;Umeda, H.;Fedorov, D. G; Gordon, M. S., Dissociation potential curves of low-lying states in transition metal hydrides. I. Hydrides of Group 4 J. Phys. Chem. A,106 (2002)785.
    [23]J. M. Brown, A. Carrington, Rotational Spectroscopy of Diatomic Molecules (2003) Cambridge University Press, Cambridge,.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700