用户名: 密码: 验证码:
西藏仓木错—多桑南北向地堑构造特征及成因机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原新生代以来发育的一系列近南北走向的地堑构造和断陷盆地是青藏高原最为典型的构造现象之一。这些近南北走向的地堑构造在整个青藏高原普遍存在,尤其是在冈底斯构造带内最为发育。这些地堑构造记录了青藏高原演化过程中的大量信息。因此,对冈底斯构造带中较为典型的近南北走向的地堑构造进行构造特征及动力学机制研究,对于研究整个青藏高原南北向构造的成因及青藏高原新生代晚期以来所处的构造环境有十分重要的理论意义。
     本文选取冈底斯西部较为典型的仓木错—多桑南北向地堑作为研究对象,本着由宏观到微观,由地堑构造的平面展布到地堑主要横向剖面特征,由浅层次的变形特征到深部动力作用的研究思路。通过野外路线地质调查,遥感解译,构造地貌学分析,裂变径迹年代学等研究手段,同时收集地震地质、地球物理场资料,整理分析出南北向断裂的地质特征,并对其形成过程及动力学机制进行探讨。力求为冈底斯—拉萨地块新生代构造特征及演化提供进一步的资料。
     研究区地处青藏高原腹地,在Ⅰ级大地构造单元上属冈底斯—念青唐古拉板片,次级大地构造单元属革吉-措勤复合弧后盆地。研究区内南北向地堑构造带大致位于东经:83°25′-83°45′,北纬:31°20′-32°14′。主要由仓木错—多桑地堑与隆格尔地垒组成,总体延伸方向为NE15°~20°左右,延长约127km,宽10~15km。根据其平面上构造线走向大致可分为北、中、南三段,呈“Z”字型折线展布,遥感影像特征明显。
     仓木错—多桑地堑带主要由东西两侧边界断层和内部活动断层组成。断层多为陡倾的正断层,剖面上呈对倾阶梯状组合。断层岩多为构造角砾岩,靠近破碎带的岩层中可见近于垂直的张裂隙,反映出脆性变形的特征。
     仓木错—多桑地堑带中控制的最老地层为中新统芒乡组。地堑带内部有的正断层明显切割了第四系全新统阶地沉积物,属于活动断层。从地堑盆地内沉积物横向变化特征看,该地堑带早期东侧边界断裂发育,后期西侧边界断裂发育。
     根据多桑地堑西侧隆格尔断隆山花岗岩体磷灰石、锆石裂变径迹冷却路径所得隆升剥蚀速率与正常地温梯度为35℃/km相同时期内所得的平均隆升速率相对比,表明多桑地区两侧断隆山快速隆升及地堑盆地的快速沉降应在16.8Ma之后。
     通过对多桑地堑带东西两侧正断层的第四纪地质、地貌剖面测量和大量的冰碛物采样测年(ESR法)研究得出晚更新世时期为其活动最为强烈的时期,其平均隆升速率达4.44mm/a。
     通过对收集到的重力探测、爆炸地震探测及大地电测探测资料进行综合分析可知,本研究区在中下地壳范围内可能存在一低速高导层,并存在有幔源熔融体的混入。据布格重力异常反演所得莫霍面深度变化情况,推测本区地堑范围内深部很可能位于莫霍面的深槽内,其北部班公-怒江缝合带莫霍面被抬升约10km。并结合本区地堑两侧出露喜马拉雅晚期岩体及脉岩发育的事实,推断地堑正断层的形成很可能与深部动力的作用有关。
     仓木错—多桑地堑带的形成机制可能由于前期受到南北向的挤压形成区域性的X共轭剪裂隙;后期由南向北挤入的地壳物质由于北侧和北西方向的阻挡很可能向东侧运移,伴随着深部的热作用,在地壳深部形成一个东西向的张应力场。该阶段的构造环境主要表现为东西向的伸展环境,在伸展的过程中使前期形成的X共轭剪裂隙追踪并部分贯通,最终形成现今的构造形态。
A series of nearly north-south graben and fault basin structure are the one of the most typical structural features of Qinghai-Tibet Plateau since the Cenozoic. These nearly north-south graben structures are prevailing in the Qinghai-Tibet Plateau, especially in the tectonic belt of Gangdise. Mass information about evolution of the Tibetan Plateau is recorded by the graben structure. Therefore, the study on structures and dynamics mechanism of more typical nearly north-south graben structure in Gangdise belt will have important theoretical significance on research of the causes of north-south graben structure and the Tibetan Plateau tectonic environment since the late Cenozoic.
     This paper selects Cangmucuo - Duosang north-south graben structure of western Gangdise as an object of study. Research thinking is in line with the macro to micro, from the distribution of the plane to the characteristic of horizontal section along the graben, from the deformation of shallow to the dynamic effect of deep. By the route geological survey, remote interpretation, structural geomorphology analysis, fission track dating and so on, while collecting seismic geological, geophysical data, we compile and analyze the characteristics of north-south fault, and more discussing its formation process and kinetic mechanisms. So we can further provide information to elaborate the tectonic characteristics and evolution of Gangdise-Lhasa block .
     Study area is located at the Qinghai-Tibet Plateau, belonging to the Gangdise - Nyainqentanglha plate of tectonic units on classⅠ, and the GeJi - Cuoqin complex back-arc basin of sub-tectonic units. The active tectonics belt is formed by Cangmucuo-Duosang grabens and Longgeer graben mainly distributing in the longitude belt: 83°25'-83°45 ', latitude: 31°20'-32°14'. The overall extension is in NE15°~ 20°, the length of about 127km, width 10 ~ 15km. According to its plane structure alignment, it can be divided into northern, central, and southern section, was "Z" shaped line, and remote sensing image clarity.
     Canmucuo- Duosang graben is mainly maked up by east and west boundary faults and the internal active faults. Steep normal faults, the section with the right combination of tilting ladder are the chiefly characters of most faults. Fault rocks are mostly tectonic breccia, near the fracture zone, rocks can be seen near vertical tensile cracks, reflecting the characteristics of brittle deformation.
     Canmucuo- Duosang graben with the oldest strata is Miocene Mangxiang group. Fault with internal graben are active which are being significantly cut the Holocene Quaternary terrace deposits.The lateral variation of sediments show that the east side of the graben boundary faults universally early and then the west.
     According Longgeer fault uplift mountain apatite, zircon fission track and normal geothermal gradient of Duosang graben, the uplift ablation rate and normal geothermal gradient is 35℃/ km , comparing with the average uplift rate during the same period, the rapid uplift of both sides off the table fault uplift mountain region and rapid subsidence of the graben basin should be after 16.8Ma.
     By the Quaternary geology of normal faults with east and west sides, geomorphology profile measurement and sampling a large number of Moraine dating (ESR method) studies of Duosang graben obtained the most intense period of its activities during the late Pleistocene, its uplift rates is up to 4.44mm / a, reflecting the region is subjected to the role of stretching east to west since the late Pleistocene. Collected gravity detection, explosive detection and land seismic data integrated electrical test probe analysis shows the study area is likely to exist within a low-speed high-conductivity layer in the lower crust, and the mantle melt mixed. According to Bouguer gravity anomaly inversion changes from the depth of Moho surface, suggesting that this region deep within the graben is likely to face a deep trough in the Moho, and the northern part of the Bangong - Nu River suture zone Moho surface was uplifted of about 10km. Combined with the exposed of the Himalayan rocks and dikes in the late development sides of the graben of the facts, infer the formation of graben normal faults is likely to have the role of the deep motivation.
     Cangmucuo– Duosang graben formation mechanism may be due to pre-formed X-conjugate shear fracture by the north-south regional compression; late to squeeze into the crust from to south north because the north resisting cause the east and west both sides of migration, then form a deep east-west extensional stress field, so that tensile stress transfer to the main process of the tensile .pre-formed conjugate shear fracture X-track and part of the link, eventually forming Construction of the current form.
引文
[1]徐开礼,朱志澄.构造地质学[M].北京:地质出版社.1989.3.
    [2]陶晓风,吴德超.普通地质学[M].北京:科学出版社.2007.5.
    [3]赵政璋,李永铁,叶和飞,张昱文.青藏高原大地构造特征及盆地演化[M].北京:科学出版社.2001.4.
    [4]吴珍汉,叶培盛,胡道功等.青藏高原腹地的地壳变形与构造地貌形成演化过程[M].北京:地质出版社.2003.9.
    [5]韩同林.喜马拉雅岩石圈构造演化—西藏活动构造[M].北京:地质出版社.1987.9.
    [6]国家地震局地质研究所.西藏中部活动断层[M].北京:地震出版社.1992.12.
    [7]邓起东.活动构造研究及其应用[M].北京:大地构造与成矿学.2005.2.
    [8]李祥根等.中国新构造运动概论[M].北京:地震出版社.2003.3.
    [9]活动断裂研究委员会主编.活动断裂研究[M].北京:地震出版社.1991.12.
    [10]许学汉.新构造研究与应用[M].北京:地震出版社.1994.9.
    [11]成都理工大学地质调查院.1:25万赛利普幅区域地质调查报告[R].2005.
    [12]四川省地质调查院.1:25万物玛幅区域地质调查报告[R].2006.
    [13]谢国刚.西藏冈底斯—拉萨陆块中部构造格局及地质演化[D].中国地质大学, 2004.
    [14]朱菲菲.雅鲁藏布江中游谢通门南北向活动断裂带特征及工程效应研究[D].成都理工大学.2008.
    [15]肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质论评,1998,(04):373-380.
    [16]李德威.青藏高原隆升机制新模式[J].地球科学,2003,(06):594-600.
    [17]张进江.北喜马拉雅及藏南伸展构造综述[J].地质通报,2007,(06):640-649.
    [18]张进江,丁林.青藏高原东西向伸展及其地质意义[J].地质科学, 2003,(02):179-189.
    [19]张进江,郭磊,丁林.申扎—定结正断层体系中-南段构造特征及其与藏南拆离体系的关系[J].科学通报,2002():38-43.
    [20]王冠民.西藏措勤盆地构造沉积演化及含油气远景[J].石油学报, 2001,(01):31-35.
    [21]贺日政,高锐.西藏高原南北向裂谷研究意义[J].地球物理学进展, 2003,(01):35-43.
    [22]雍永源.青藏高原西南部的南北向构造及其意义.青藏高原及邻区地质与资源环境学术讨论会论文摘要汇编.2003:109-110.
    [23]王瑜,李齐,万景林,李大明.西藏南部地区南北向构造的形成及动力学探讨[J].地震地质, 2000,(22增刊) :117-124.
    [24]邓起东.中国活动构造研究的进展与展望[J].地质论评,2002, (02) :168-177.
    [25]杨德明,李才,王天武.西藏冈底斯东段南北向构造特征与成因[J].中国区域地质,2001,(04):394-397.
    [26]徐纪人,赵志新.青藏高原及其周围地区区域应力场与构造运动特征[J].中国地质,2006, (02):275-285.
    [27]徐纪人,赵志新,石川有三.青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制[J].地球物理学报,2005,(04):861-869.
    [28]孔祥儒,王谦身,熊绍柏.青藏高原西部综合地球物理剖面和岩石圈结构与动力学[J].科学通报,1999,(12):1257-1265.
    [29]孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究[J].中国科学(D辑),1996,(04):308-315.
    [30]熊绍柏,刘宏兵.青藏高原西部的地壳结构[J].科学通报,1997,(12):1309-1311.
    [31]马晓冰,孔祥儒.青藏高原岩石圈热状态及其东西部差异[J].地球物理学进展,2001,(03):12-20.
    [32]陶晓风,刘登忠,朱利东等.西藏措勤中—新生代沉积盆地演化[J].成都理工大学学报(自然科学版) ,2008,(01):103-107.
    [33]陶晓风,刘登忠,朱利东等.西藏措勤地区夏康坚地垒的形成及隆升特征[J].地质通报,2003,(12):942-943.
    [34]王冠,陶晓风.西藏阿里地区多桑地堑的构造特征及成因机制[J].沉积与特提斯地质,2009,(1):47-51.
    [35]刘细元,徐祖丰,黄俊平等.邦多-措麦地区新构造运动特征及其演化简析[J].资源调查与环境,2005,(3):157-167.
    [36]吴中海,张永双,胡道功等.藏南错那-沃卡裂谷的第四纪正断层作用及其特征[J].地震地质,2008,(01):144-159.
    [37]吴中海,赵希涛,吴珍汉等.西藏当雄—羊八井盆地的第四纪地质与断裂活动研究[J].地质力学学报,2006,(03):306-315.
    [38]陈正位,谢平,申旭辉等.藏南宁金抗沙西麓断裂晚第四纪活动特征[J].地球物理学进展,2006,(01):118-126.
    [39]李亚林,王成善,伊海生等.青藏高原新生代地堑构造研究中几个问题的讨论[J].地质评论,2005,(05):439-501.
    [40]宁树正.西藏崩错地区新生代构造特征研究[J].高原地震,2006,(04):25-31.
    [41]李才,翟庆国,徐锋,朱志勇.西藏查藏错—申扎南北向活动构造带运动学特点[J].地质评论,2005,(04):353-359.
    [42]潘裕生,钟嘉猷,周勇.青藏高原南北向地堑系的实验研究[J].地质科学,2003,(02):172-178.
    [43]崔志强,刘登忠,刘海军,赵培松.西藏措勤盆地新构造运动遥感研究[J].新疆地质,2007,(3):313-316.
    [44]Molnar P,Tapponnier P. Active tectonics of Tibet .[J].Geo- phys.Res. 1978, 83 :5361-5375 .
    [45]Hou,Z Q,Gao Y F,Qu X M,et al. Origin of adakitic in- trusives generated during mid-Miocene east-west extension in southem Tibet . [J].Earth Planet.Sci.Letts. 2004, 220 :139-155 .
    [46]Yin A. Mode of Cenozoic east-west extension in Tibet suggest- ing a common origin of rifts in Asia during the Indo-Asian collision[J]. Geophys. Rcs. 2000,105:21745-21759.
    [47]Williams H,Turner S,et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcan- ism[J]. Geophy,2001,29:339-342.
    [48]Blisniuk P M,Hacker B R. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature,2001,412:628-632.
    [49]Searle M P. Cooling history,erosion,exhumation,and kine- matics of Himalaya- Karakoram- Tibet orogenic belt[M] . The tectonics of Asia. NewYork:Cambridge University Press,1996:109-137.
    [50]Coleman M,Hodges K V. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west ex- tension[J].Nature,1995,4:49-52.
    [51]Klootwljk CT·Conaghan P J,Powell C M. 1985. The Himalayan arc:Iarge-seale continental subduction,oroclinal bending and back-arc spreading:Earth and Planetary Science Letters,75,316~319.
    [52]Le Fort P. 1981. Manaslu leucogranite a collisional signature of the Himalaya,a model for its genesis and emplacement. [J]. Geophys Res. 86:10545~10586.
    [53]McCaffery R,Nabelek J. 1998. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet Plateau[J]. Geology,26:691~694.
    [54]Armijo R,Tapponnier P,Mereier J P. 1986. Quaternary extension in southern Tibet[J]. Journal of Geophysical Researeh,91(13):13803~13872.
    [55]Searle M P. 1996. The rise and fall Tibet[J]. Nature,26:791~794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700