用户名: 密码: 验证码:
轧制与冷却路径对Q460特厚板组织性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内各宽厚板生产线的陆续投入生产,以及国家提出的将国内宽厚板生产线建设成世界高、精、尖精品材生产基地的计划进入实施阶段,各中厚板企业都在加大高附加值产品的研制和生产。在大型化和高效化施工的要求下,采用一块大单重特宽特厚钢板,可以减少焊缝。特厚板的用途非常广泛,使用量最大的是管线和船舰,其次是锅炉容器、压力容器、化学反应合成塔、重油高温高压脱硫装置、水电涡轮、桥梁、机器基座及部件、兵器、模具、装甲及建筑构件等方面。本文研究工作结合首秦金属材料有限公司高强低合金结构钢特厚板研发课题进行。主要工作如下:
     1.在MMS-300热模拟试验机上进行了Q460钢未变形及变形量为0.4的热模拟试验,分别绘制了900℃未变形及变形条件下的连续冷却转变(CCT)曲线,对不同条件下的金相显微组织进行了分析。通过研究发现随着冷却速度的增加,γ→a的相变点随之降低,先共析铁素体晶粒尺寸随着冷却速度的增加逐渐细化。奥氏体变形明显细化了铁素体晶粒,增加了铁素体的百分含量,使组织分布更加均匀,同时加速了铁素体的相变过程。奥氏体变形促进了Q460钢的相变,使相变温度升高,CCT曲线想左上方移动。
     2.进行了实验室热轧试验,实验钢组织分析表明,两阶段控轧和直接轧制得到的组织均为铁素体+珠光体。轧制方式对实验钢板的拉伸和冲击性能影响不大,冷却方式对其影响较大,水冷钢板比空冷钢板的屈服强度和抗拉强度提高了约60MPa。
     3.对试验钢板析出物进行了EDS成分分析:析出物有TiN、TiC、Nb(CN)、VN,析出顺序为:TiN、TiC、Nb(CN)、VN;先析出的TiN由于粒度较大,对提高材料性能的贡献不大,后析出的细小碳氮化物阻止了奥氏体晶粒长大,细化了组织,提高了试验钢的强度和韧性。
     4.对实验钢进行了正火处理,虽然使钢板强度有所下降,但显著提高了实验钢的低温冲击韧性,-20℃冲击功提高了150J以上。使其达到了国标Q460D要求。冲击断口扫描分析,试验钢经正火处理后-20℃冲击断口为韧性断裂。
     5.通过Q460(100mm)特厚板工业试验研究,确定了适合于首秦进行Q460C特厚板轧制的工艺路线,采用两阶段控轧,粗轧开轧温度大于1050℃,待温厚度为160mm,精轧开轧温度890±10℃,终轧温度820-850℃,终冷温度为600-660℃,冷却速度5-7℃/s。并在此基础上进行了Q460D级以上特厚板的轧制工艺设计。
With the widen and heavy plate production lines putting into produce gradually, as well as proposed by the state that build the widen and heavy plate production lines into the world's high-grade, quality timber production basement plans into implementation stage, the plate enterprises are increasing high value-added plates' research and production. As the request of large-scale and efficient construction, using a large single-wide respecial extra-thick steel plate can reduce the weld. The use of extra-thick steel plate is widespread, it is mainly used on pipelines and ships, and it is also widely used on Boiler containers, pressure vessels, chemical synthesis tower, high temperature and high pressure fuel oil desulfurization unit, hydropower turbines, bridges, machinery and components base, weapons, mold, armor, and building components and so on.The research of this paper is under the background of the Shouqin Metal Material Co. Ltd. HSLA structural steel extra-thick steel plate R & D issue. The main work and results are as follows:
     1.The experiments of Q460 steel were made at the MMs-300 thermo-mechanical simulator in austenite without deformation and 40% compressive deformation with different deformation pass. The continuous cooling transformation (CCT) curves were constructed in austenite without deformation and 40% compressive deformation at 900℃. Microstructure in different conditions were analysised. From the research, it was found that as the cooling rate increase, the y→a phase transformation point reduced, and also refined the first eutectoid ferrite grain size.The austenite deformation obviously refined ferrite crystal grain, increased the ferrite percentage, and caused the organization to distribute more uniform, while accelerated the ferrite transformation. The austenite deformation promoted the Q460 steel transformation, increased the transformation temperature.
     2. Laboratory experiments were carried out.Microstructure analysis of the test steel shows that with both two-stage controlled rolling and direct rolling craft,the organization are ferrite and pearlite. Rolling path has little effect on the tensile and impact properties of the tested steel, but cooling way obviously affects it, the water-cooling makes steel plate's yield strength and tensile strength enhance approximately 60MPa than that by air-cooling.
     3. EDS analysis was carried out to precipitates of the test plate. It shows that the precipitates contain TiN, TiC, Nb (CN), VN, and the precipitated sequence is TiN, TiC, Nb(CN), VN. As the size of TiN particle first precipitated is larger,it make little contribution to inhance material properties, while because of the smaller size the latter precipitates (such as Nb(CN)) prevent austenite grain growth, refines the organization, and improves the strength and toughness of the test steel.
     4. Normalizing experiments were carried out on the tested steel, it made the yield strength of steel reduced 60~80MPa, tensile strength lowered 90~100MPa, however, low-temperature impact toughness of steel was significantly improved,-20℃impact energy was increased more than 150J,made it reach to the national standard of Q460D. By SEM analysis to the impact of fracture at -20℃after normalizing ductile fracture.
     5. Through industrial pilot to Q460 (100mm thick) steel, appropriate rolling craft route to Q460C (100mm thick) plate in the Shouqin is performed. Two stages controlled rolling is adopted, in which the first stage rolling starts above 1050℃, the thickness of temperature holding is 160mm, the second stage rolling starts at 890±10℃, the final rolling temperatures are 820~850℃; finish cooling temperature is 600~660℃, cooling rate is 5~7℃/s.
引文
[1]东涛,孟繁茂,付俊岩.微合金化钢知识讲座[J],中信微合金化技术中心.2001,(2):9-20.
    [2]E.O.Hall.The brittle fracture of metals[J],Journal of the Mechanics and Physics of Solids,1953,1(4):227-233.
    [3]崔忠圻,刘北兴.金属学与热处理原理[M],哈尔滨:哈尔滨工业大学出版社,2004,156-157.
    [4]Yamaguchi K, Mellor P B. Thickness and grain size dependence of limit strains in sheet metal stretching[J], Int J Mech Sci,1976,18(3):85-90.
    [5]Gladman. T, Holmes. B, Mclvor. I. D. Effect of Second Phase Particles on the Mechanical Properties of Steel[J], The Iron and Steel Institute,1971,6(4):68.
    [6]R.Bengchea.B.LoPen and I.Gutierren.Mierostruetural Evolution during the Austrnite-to-Ferrire Transformation from Deformed Austenite[J], Metallurgieal and Materials Transactions A.1998,22A:417-426.
    [7]汀日志,雷廷权,谭舒平.锅炉用ASTMA299钢动态再结晶及形变促发A-F转变的研究[J],钢铁,1992,(8):50.
    [8]V. M. Khlestov.E. V. KonoPleva and H. J. Mequeen. Kineties of Austenite Transformation during Thermomeehanical Processes[J],Canadian MetallurgiealQuarterly,1998.37(2):75-89.
    [9]田村今男等著,王国栋,刘振宇,熊尚武译.高强度低合金钢的控制轧制与控制冷却[M],北京:冶金工业出版社,1992年
    [10]T. Tanaka. J. Soc. Materials Sci[M]. JaPan,1980,30:6-11.
    [11]H. Yada. Y. Matsumura and T. Senuma:Proceedings of international Conferenee On Physieal Metallurgy of Thermomechanical Proeeeding of Steels and Other Metals.ed.I.Iron and Steel Institute of JaPan, Tokyo.1988:200.
    [12]Weng Yuqing. HSLA Steels'2000. ed. Liu Guoquan, Wang Fuming et al[J], Metallurgical Industry Press.Beijing.2000:3-10.
    [13]侯豁然,宋立秋,刘清友等.一种超低碳微合金钢形变诱导相变过程的组织分析[J],新一代钢铁材料研讨会论文集,中国金属学会,北京,2001:329-332
    [14]杨忠民,赵燕,王瑞珍等.形变诱导铁素体的形成机制[J],金属学报,2000,36(8):818.
    [15]杨忠民,赵燕,王瑞珍等.低温变形低碳钢超细铁素体的形成[J],金属学报,2000,36(10):1061.
    [16]唐荻.新形势下对轧钢技术发展方向和钢材深加工的探讨[J],中国冶金,2004,(8):14-21.
    [17]吴香菊.82B盘条控轧控冷工艺的研究[D],沈阳:东北大学,2006.
    [18]夏佃秀,李兴芳,李建沛.控制轧制和控制冷却技术的新发展[J],山东冶金,2003,(10):38-39.
    [19]乔兵.贝氏体非调质钢SBL的控制轧制与控制冷却[D],沈阳:东北大学,1999.
    [20]王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1987,2.
    [21]E. V Pereloma, J. D. Boyd. Effects of simulated on line accelerated cooling processing on transformation temperatures and microstructure in microalloyed steels[J], Part2Plate processing.Mater.Sci. and Technol.,1996,12(12):1043-1051.
    [22]冯光宏,杨钢,杨德江.加速冷却对低碳锰铌钛钢力学性能的影响[J],钢铁,2000,35(3):22-25.
    [23]L. J. Cuddy. Microstructures developed during thermomechanical treatment of HSLA steels [J], Metall.Traps. A,1981,12A:1313-1320.
    [24]刘相华,佘广夫,焦景民等.超快速冷却装置及其在新品种开发中的应用[J],钢铁,2004,9(8):71-79.
    [25]彭良贵,刘相华,王国栋,超快冷却技术的发展[J],轧钢,2004,21(1):12.
    [26]李熏.中国大百科全书[M],北京:中国大百科全书出版社,1984,338.
    [27]翁宇庆.超细晶钢一钢的组织细化理论与控制技术[M],北京:冶金工业出版社,2003,126.
    [28]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],沈阳:东北大学,2003.
    [29]Fulvio scicliano and John J.Jonas. Mathematical Modeling of the Hot Strip Rolling of Mocroalloyed Nb Multiply-alloyed Cr-Mo and plain C-Mn Steels[J], Metallugical and materials,2000, (31):51.
    [30]朱伏先,佘广夫,张中平,冷却工艺对HP295焊瓶钢板屈强比的影响[J],钢铁,2005,40(8):38-42.
    [31]杨春楣,彭建.终轧温度和轧后冷却对含NbV微合金钢性能的影响[J],金属成型工艺,2000,18(3):12-14.
    [32]俞德刚,王世道.贝氏体相变理论[M],上海:上海交通大学出版社,1998,397-417.
    [33]朱伏先,佘广夫,张中平.冷却工艺对HP295焊瓶钢板屈强比的影响[J],钢铁,2005,40(8):38-42.
    [34]沈显璞,雷廷权,刘剑壮.碳素双相钢拉伸断裂过程的动态观察[J],金属学报,1985,21(3):151-152.
    [35]沈显璞,雷廷权.一种新的双相钢强度表达式[J],金属学报,1984,20(4): 271-277.
    [36]R. G. Davies. The Dual Phase Steel[J], Metal Trans,1978,9A:451.
    [37]Qingbo YU, Xianghua LIU, Guodong WANG. The Effect of Delay Time after Hot Rolling on the Grain Size of Ferrite[J], ISIJ Int,2004,44(4):710-714.
    [38]黄文长,冯继军.EBSD分析技术及其在材料科学研究中的应用[J],汽车工艺与材料,2004,18(4):19-20.
    [39]张小立,庄传晶.EBSD及其在钢铁研究领域中的应用[J],材料导报,2006,20(11):96-97.
    [40]A. Oudin, P.D. Hodgson. EBSD analysis of a Ti IF steel subjected to hot torsionin the ferritic region[J], Materials Science and Engineering,2008, (486):72-79.
    [41]B. Eghbali. Microstructural characterization of a warm deformed microalloyed steel[J], materials characterization,2008, (59):473-478.
    [42]雍岐龙,裴和中.铌在钢中的物理冶金学基础数据[J],钢铁研究学报,1998,10(2):67-69.
    [43]雍岐龙,郑鲁.微合金化钢中NbC在铁素体中的沉淀和沉淀强化[J],金属学报,1984,20(1):12-14.
    [44]徐曼,孙新军.低碳含钒钢组织变化及V(C、N)析出规律[J],钢铁钒钛,2005,26(2):25-30.
    [45]林慧国,傅代直.钢的奥氏体转变曲线[M],北京:机械工业出版社,1988,159.
    [46]崔忠圻,金属学与热处理[M],北京:机械工业出版社,1986,270.
    [47]Zhao M C, Yang K, Xiao FR, et al. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J], Materials Science and Engineering A,2003,355(12): 126-136.
    [48]王祖滨.新世纪初期低合金高强度钢的发展[J], 中国冶金,2003,63(2): 16-19.
    [49]王祖滨,宋青.世纪之交看低合金高强度钢的发展[J],钢铁,2001,36(9):66-70.
    [50]东涛,刘嘉禾.我国低合金钢及微合金钢的发展、问题和方向[J],钢铁,2000,35(11):71-75.
    [51]王佳夫,林清华,漆世泽等.冷却速度对高强度低合金钢组织和性能的影响[J],钢铁研究学报,2004,16(5):51-55.
    [52]Medina S F, Vega M I, Chapa M. Critical cooling temperature and phase transformation kinetics instructural steels determined by mean flow stress and dilatometry[J], Materials Science and Technology,2000,16(2):163-170.
    [53]徐京娟,邓志煜,张同俊.金属物理性能分析[M],上海:上海科学技术出版社,1988,108-112.
    [54]刘宗昌.材料组织结构转变原理[M],北京:冶金工业出版社,2006,16-30.
    [55]董瀚,孙新军,刘清友等.变形诱导铁素体相变-现象与理论[J],钢铁,2003,38(10):63.
    [56]翁宇庆.超细晶钢—钢的组织细化理论与控制技术[M],北京:冶金工业出版社,2003,126.
    [57]翁宇庆,孔令航,王国栋等.超细晶钢-钢的组织细化理论与控制技术[M],北京:冶金工业出版社,2003,312-315.
    [58]崔忠圻,刘北兴.金属学与热处理原理[M],哈尔滨:哈尔滨工业大学出版社,2004,190-191.
    [59]傅杰,朱剑,迪林.微合金钢中的TiN的析出规律研究(J).金属学报,2000,36(8):79-82.
    [60]王淑清,陈秀芳,赵秉军.微钦低碳钢板的微观组织观察与分析(J),钢铁,2000,(18):24-25.
    [61]R. Kuziak, H. Hartman, M. Budach, et al. Effect of processing parameters on precipitation reactions occurring in a Ti-bearing IF steel [J], Materials Science Forum,2005,500-501: 689-694.
    [62]毛新平,孙新军,康永林等EAF-CSP流程钛微合金化高强钢板的组织和性能研究[J],钢铁,2005,40(9):65-68.
    [63]王国栋,赵德文.现代材料成形力学[M],沈阳:东北大学出版社,2004,205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700