用户名: 密码: 验证码:
贮液结构地震反应数值分析及应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贮液结构是一种极为重要的结构,与人民群众日常生产和生活息息相关。随着贮液不同,贮液结构广泛应用于生命线工程和能源与化工领域,如水塔、水箱、储油罐、储酸罐、消化池、降温池、冷凝器等,其结构形式也多种多样,包括半地下式、立式、卧式、支承式等。
     由于存在液固耦合作用,这种结构动力反应极为复杂,尤其是强地震动作用下,引起的震害现象千差万别。历次震害表明,高烈度区大量贮液结构受到破坏,如浮放支座移位、支承结构移位、基底开裂、结构壁断裂等等,这些地震灾害直接导致贮液结构损坏,其原有功能丧失,生产和生活被迫中断,造成极大的经济损失。
     此外,贮液结构内部的贮液有时也是极大危险源,贮液结构受到破坏后,容易引起贮液泄露,进而引发火灾、爆炸、环境污染等次生灾害。2011年3月11日日本东海岸发生9.0级地震,地震和随后的海啸造成福岛核电站中的贮液结构系统受损,致使降温系统失去功能,引发了重大核泄漏事故。
     从上世纪三十年代开始,大批学者针对贮液结构地震反应进行了相关研究,其中包括建立理论分析模型、液固耦合作用效应、简化方法工程应用、地震反应规律分析、抗震设计方法和数值分析技术等等。但是从工程应用角度,贮液结构地震反应仍然有很多课题需要去研究,包括有限元建模方法、非线性算法、地震反应规律分析、工程抗震分析应用方法、优化设计等等。
     本文基于此背景,针对贮液结构地震反应及相关数值分析方法进行了研究,主要工作和取得的成果如下:
     1.总结了贮液结构解析解难点是求解给定边界条件和初始条件下的Laplace方程,弹性壁解析解和Housner简化计算均是建立在脉冲压力和对流压力理论假设基础上的;Haroun-Housner模型和有限元数值模型分别是建立在Housner刚性壁理论和速度势理论基础上的,本文对四种方法进行了对比,说明了有限元数值模型的可靠性。
     2.基于数值迭代理论,进行了贮液结构非线性数值迭代计算方法的研究。利用经典的N-R数值迭代理论,提出改进N-R算法,考虑切线刚度和法线刚度共同协作的方式,增加单步迭代步长,提高非线性数值迭代求解效率;基于改进N-R算法,提出超N-R算法,建立数值迭代和材料本构之间的关联性,进一步提高非线性数值迭代求解效率,并通过大量试算给出对于钢材,比例系数77较为稳定的取值范围在1.46左右;并针对贮液结构非线性数值分析方法,提出采用外挂开发模式和生死单元技术相结合的方法进行数值模拟,通过举例,验证该方法的可行性和有效性。这两种算法极大地提高了贮液结构非线性数值反应分析的计算效率。
     3.基于APDL语言,进行了有限元建模数值二次开发研究。提出外挂模式的有限元二次开发方法,成功实现了在ANSYS平台上进行用户自定义子程序编制和调用;基于该方法,有效地简化了利用ANSYS进行复杂贮液结构地震反应建模、计算、数据处理等工作,便于工程技术人员应用。本文的有限元二次开发工作包括:提出针对大型复杂的有限元模型,进行三维梯度网格优化划分方法,以提高网格划分质量;提出编制针对有限元结构信息存储、读取、批处理等程序,利用波前法技术,实现通过刚度矩阵修改等多种方法进行数据存储量和计算量的压缩,以提高有限元分析的高效性和实用性。
     4.基于模态影响线控制网格划分技术、ATOS转换程序的开发、圣维南原理子模型技术等多方面说明了贮液结构有限元分析模型的有效性;基于此,对贮液结构基本地震反应规律进行了研究,获取了贮液结构液固耦合体系特性,以及地震动输入、壁厚、贮液量、径高比等因素对贮液结构地震反应的影响;并研究了贮液结构弹性变形对液动压力、结构有效应力、基底弯矩、基底剪力等的影响,为贮液结构抗震分析和设计提供了理论依据。
     5.基于有限元数值分析和插值理论,对常规立式贮液结构“象足”效应问题进行了研究,通过编制了样条插值分析和拟合程序,提出对“象足”效应易发位置进行快速确定的函数形式,并通过大量计算,给出了拟合函数中各系数取值参照表。利用该方法,实现了快速确定“象足”效应位置,据此,可以一定程度上针对“象足”效应进行高效的抗震设计应用。
     6.基于ESO形状拓扑理论,进行了贮液结构轮廓形状优化设计方法的研究,介绍了基于Mises应力、刚度约束、频率控制的ESO优化算法;提出将单元非连续性分类方式引入到ESO理论中,可以有效地解决在贮液结构轮廓拓扑计算过程中,为提高效率而增加删除率BDR,时引起的结构刚度矩阵奇异、拓扑过程不连续问题,提高了贮液结构拓扑分析的稳定性。
     7.基于智能优化算法,进行了贮液结构参数优化设计方法的研究,对穷举法、ACO算法、PSO算法和DE算法进行了介绍和分析;提出将ACO方法和子结构方法进行互相嵌入使用,通过该方法可以有效减小贮液结构参数优化计算的计算量;提出了PSO-DE联合优化方法对,利用飞行、变异、交叉理论,扩大了全局搜索范围,避免了优化计算过早陷入局优,提高了优化算法效率,并加速了迭代收敛的速度。
     本文的研究工作为贮液结构地震反应研究提供了有效的数值分析方法,为贮液结构地震反应研究结果在工程中的应用提供了极大地便利性,为贮液结构工程抗震设计提供了重要的应用方法,为贮液结构防灾减灾工作提供了重要的理论和应用基础。
LCS (Liquid container structure) is a kind of very important structure which is closely linked with people's daily life. For different liquid, LCSs, such as water tower, water tank, storage tank, acid tank, digestion pool, cooling tank, and condenser, are widely used in lifeline engineering, energy and chemical industry fields. The structural forms of LCS are varied, including half-underground type, horizontal type, vertical type and supporting type, etc.
     For liquid-structure interaction, the seismic response of LCS is very complex. Especially under the strong earthquake action, the damage patterns are varied. Previous earthquakes have demonstrated that, in the high intensity zones, a number of LCSs were damaged such as floating support moving, support structure moving, foundation cracking, and wall fracturing, etc. Great economic loss would be caused by the directly damages of LCSs, and the production and life would be forced to be interrupted.
     In addition, the liquid of LCS sometimes is a kind of dangerous source. When the LCS is damaged during earthquake, the terrible secondary disasters such as fire, explosion and environment pollution could be caused by liquid leakage. On March11,2011, the M9.0East Coast Earthquake occurred in Japan, the LCS of Fukushima Nuclear Power Station was damaged by the earthquake and subsequent tsunami. For this reason, the cooling system was failure to be controlled which caused nuclear leakages.
     The related research on the seismic response for the LCS could be traced back to1930's, which consists of establishment of theoretical analysis model, liquid-structure coupling effect, simplification method for engineering application, seismic response analysis, method of seismic design and numerical analysis technique, and so on. However, in the view of engineering application, there are many subjects should be discussed deeply such as FE (finite element) analytical method, nonlinear algorithm, seismic response analysis, application method of seismic design for engineering and optimization design, etc.
     Based on the mentioned above, study on the seismic response analysis and application method for the LCS are mainly carried out in the thesis. The main work and achievements are listed as follows:
     1. It is concluded that the difficulty of analytical solution of LCS is to solve the Laplace equation with given boundary conditions and initial conditions. And the analytical solution about elastic wall theory and Housner simplified method are both established on base of the theory of impulse pressure and convenes pressure. To numerical solution about LCS, the Haroun-Housner analysis model is based upon the rigid wall theory and FE model upon velocity potential theory. In this thesis, an example is used to make comparison among the four methods, and the result shows that FE numerical model is reliable.
     2. Based on classical N-R nonlinear iteration principle algorithm, the advanced N-R algorithm is proposed to solve nonlinear numerical calculation about LCS. In this algorithm, both tangent stiffness and normal stiffness are considered that increases the single iteration step length and improved the calculation efficiency. Based on the advanced N-R algorithm, the super N-R algorithm is proposed by establishing the relation between numerical iteration theory and the constitutive relation of material. The super N-R algorithm works more efficient than the advanced N-R method. By a large number trial calculations, the stable proportional coefficient value η of steel is suggested to be around1.46. Plug-in mode and technique of birth-death element are combined to verify the effectiveness of the both improved nonlinear iteration algorithms in the simulation process of LCS by examples. The results provide the proof that the two algorithms improve calculation efficiency of nonlinear numerical seismic response analysis of LCS greatly.
     3. By using APDL language, the second developing method of establishing FE model is studied which make user subroutines programed and called successfully in ANSYS environment. Based on this method, it is simplified effectively to build FE model, calculate and analyze data for the complex structure form of LCS, which provides convenience for engineers to make seismic analysis about LCS. The main work about second development in this thesis includes several contents as follows:to provide gradient meshing technique for3D complex FE model which could improve the meshing quality; to provide the subroutines about save, read and batch process; to provide the method of stiffness matrix modification based on the technique of wave front. With these methods, the quantity of storage and calculation are decreased, and the efficiency and practicality of FE model are improved.
     4. Based on the technique of influence line by modal analysis to control meshing quality, ATOS subroutines realizing transformation of FE model from ANSYS to other general finite element software and sub-model approach of the Saint-Venant principle, the effectiveness of FE model during seismic analysis about LCS is improved. Hereby, the FE model of LCS is built and the seismic response is studied such as the influence of factors of basic frequency, earthquake load input, thickness, liquid storage and diameter-height ratio. Besides, the influence on the hydrodynamic pressure, the effective stress, base moment and base shear from elastic deforms of LCS are analyzed. These studies provide the basis for seismic analysis and design of LCS.
     5. Based on the analysis about seismic response of vertical LCS and interpolation theory, earthquake damage such as elephant-foot buckling is studied. According to the elephant-foot buckling damage, a new function form is proposed to help obtain the location of elephant-foot damage quickly by programming subroutines of spline interpolation and numerical fitting. Based on a lot of calculations, the value table of coefficients in the function is suggested. With this method, it shows that the fast determination of elephant-foot location has been realized, which could provide the base for more efficient seismic design to apply.
     6. Based on the shape topology theory, ESO (Evolutionary Strucure Optimization), the method of topological design about the outline of LCS during seismic design is studied. ESO methods such as based Misses stress, stiffness constraint and frequency control are introduced. The method, introducing non-continuous classification of elements into ESO topology theory, is developed. This method could solve the problem increasing the delete rate, BDRi which causes the irreversibility of stiffness matrix or elements discontinuity during the process of topology calculation. And in this method the stability of topology analysis on outline of LCS is improved.
     7. Based on the intelligent algorithms, parameter optimization design method of LCS is studied. The intelligent algorithms such as exhaustive algorithm, ACO algorithm, PSO algorithm and DE algorithm are introduced. The method of combination ACO algorithm with substructure technique is provided to decrease the computational cost about the parameter optimization calculation of LCS. And the PSO-DE algorithm is proposed to optimization calculation. Considered flight, mutation and cross in this method, the global searching scope could be expanded to avoid the optimization trapps in local optimum and the speed of convergence increased, and the optimization efficiency could be improved much.
     In this thesis, effective numerical analysis method and implementation technology are provided to study on seismic response of LCS. Based on it, by using the analysis results, great convenience is brought to the engineering application Besides, some efficient application methods is proposed to seismic design of LCS, the important theories and application base are provide for the work of disaster prevention and mitigation engineering of LCS.
引文
[1]ADINA分析指南[R],北京亚得公司.2005.
    [2]ANSYS动力学分析指南[R],北京安世亚太科技公司.2000.
    [3]蔡国琰,曲乃泗,赖国璋.贮液罐结构水弹性抗震分析[J].大连工学院学报.1979,(3):86-100.
    [4]曹源,金先龙,李政.冲击载荷下柔性储液罐动态响应数值模拟及规律分析.爆炸与冲击[J].2011,3 1(5):469-474.
    [5]曹志远,张佑启.结构和内部流体相互作用问题的半解析方法[J].应用数学和力学,1985,6(1):1-8.
    [6]常压立式储罐抗震鉴定技术标准SY 4064-1993[S].中华人民共和国能源部.1993.
    [7]陈贵清,杨雪梅.超大型储液罐流固耦合振动分析.唐山学院学报[J].2011.24(3):5-8.
    [8]陈建胡,陈玲俐,叶志明.立式锚固储液罐与地基相互作用地震反应分析[J].油气田地面工程,2008,27(6):7-8.
    [9]陈建平,周儒荣,韦忠瑄.用结构有限元程序进行液体晃动动力分析[J].中国机械工程,2003,14{9):1631-1633.
    [10]陈世一,蔡强康.锚固立式圆柱形储液罐抗震研究的回顾与展望[J].抚顺石油学院报,1997,17(1):31-36.
    [11]陈志平.大型非锚固储油罐应力分析与抗震研究[D].杭州:浙江大学,2006.
    [12]程旭东,朱兴,胡晶晶.大型LNG储罐预应力混凝土外墙应力分析与结构优化.油气储运[J].2011,30(11):819-823.
    [13]程旭东,胡晶晶,徐剑.大型储罐地震作用下罐壁抗失稳可靠度分析[J].中国石油大学学报:自然科学版,2011,35(3):140-143.
    [14]仇伟德,蔡强康.地震作用下刚性旋转壳贮液罐液体的动力响应[J].地震工程与工程振动,1983,3(1):72-87.
    [15]戴鸿哲,王伟,穆海燕,郑天心.外浮顶对大型立式储液罐地震反应影响分析[J].哈尔滨工业大学学报,2009,41(2):23-26.
    [16]戴鸿哲,王伟,穆海燕等.大型外浮项立式储液罐被动控制方法[J].哈尔滨工业大学学报,2008,40(10):1537-1541.
    [17]戴鸿哲,王伟,肖志刚,球形储液罐液—固耦联地震反应及减振方法[J].哈尔滨工业大学学报,2010,42(4):515-520.
    [181 邓民宪,张永凯,师俊平.常压立式储油罐地震应力的有限元计算[J].地震学刊,2000,20(3):18-23.
    [19]杜英军,谢根栓.基于Ansys的锚固式储液罐模态分析[J].石油化工设备,2005.34(6):20-22.
    [20]杜颖,刘习军,贾启芬.流固耦合动力学问题的研究[J].机床与液压,2004.
    [21]范德宝等.球形储液罐地震反应分析[J].低温建筑技术.2008,126(6):88-90.
    [22]范喜哲,郑天心,王伟等.地震作用下立式储液罐罐壁“象足”变形仿真分析[J]. 地震工程与工程振动,2007,27(3):104-109.
    [23]冯卫民,宋立,肖光宇.基于ADINA的压力管道流固耦合分析[J].武汉大学学报,2009.2(2):264-267.
    [24]葛颂,陈志平,沈建民.立式储液罐“象足”屈曲的准静态数值模拟[J].压力容器,2006,23(1):6-9.
    [25]葛颂.大型立式储液罐抗震分析的数值模拟研究[D].杭州:浙江大学,年份(硕士学位论文).
    [26]构筑物抗震设计规范GB50191-93[S].国家技术监督局、中华人民共和国建设部联合发布.1994.
    [27]核电厂抗震设计规范GB50267-97[S].国家技术监督局、中华人民共和国建设部联合发布.1998.
    [28]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨工业大学出版社.2007.
    [29]蒋伟华,吴昌胜.陈志平.基于基础沉降的大型储液罐有限元建模方法[J].金华职业技术学院学报,2008,8(4):5-10.
    [30]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].地震出版社.1983.
    [31]克拉夫(著),王光远(译).结构动力学[M].高等教育出版社.2006.
    [32]立式圆筒形钢制焊接油罐设计规范GB50341-2003[S].国家技术监督局、中华人民共和国建设部联合发布.2003.
    [33]李庆阳,王能超,易大义.数值分析[M].清华大学出版社.2008.
    [34]李忠诚,李忠献.大亚湾核电站反应堆厂房楼层反应谱分析评估.核科学与工程.2006.26(1):72-78.
    [35]李忠献,李忠诚,梁万顺.考虑土-结构相互作用和岩土参数不确定性的核电厂结构地震响应分析.地震工程与工程振动.2006.26(2):114-148.
    [36]李文刚,金玉姬,高锐.水平地震激励下储罐液体晃动分析[J].自然灾害报,2007,16(2):138-142.
    [37]廖旭,高常波,项忠权.大连石油化工有限公司立式储罐抗震分析[J].世界地震工程,1998,(04).
    [38]林均岐,李山有,李谊瑞.立式储液罐地震反应数值分析[J].地震工程与工程震动,2006,26(4):152-155.
    [39]林均岐,李山有,李谊瑞等.立式储液罐地震破坏快速评估方法[J].地震工程与工程振动,2006,26(3):138-141.
    [40]刘焕忠,李青,庄茁等.发展附加质量模型应用于储液罐的动力分析[J].工程力学,2005,22:161-171.
    [41]刘洁平,胡明祎,张令心.考虑液固耦合水池地震反应分析方法及其应用[J].哈尔滨工业大学学报.2011,43(1):182-187.
    [42]路明等.大型储油罐动力模态分析[J].沈阳工业学院学报,2000,19(3):11-16.
    [43]孟振虎,高锡祺.圆柱形储液罐垂直地面运动分析[J].江苏石油化工学院学报,1995,7(14):45-51.
    [44]穆海燕.立式储液罐地震反应分析及被动控制方法研究[D].哈尔滨:哈尔滨工业大学,2006.
    [45]秦延龙.三万方浮顶油罐地震反映的模型试验与分析[G].圆柱形储液罐抗震 论文集.北京:地震出版社,1986:46-58.
    [46]曲乃泗.水弹性结构的动力、抗震分析.圆柱形储液罐抗震论文集[C].北京:地震出版社,1986.78-92.
    [47]荣见华,郑建龙,徐飞鸿.结构动力修改及优化设计[M].人民交通出版社.2002.
    [48]束廉阶,顾炜,施广明等.大型低温液化天然气钢筋混凝土储罐预应力设计与施工[J].工业建筑,2007,11:32-44.
    [49]宋亚军,章继峰,王伟.立式储液模型罐的振动台试验研究[J].低温建筑技术,2007,4:69-71.
    [50]宋亚军,章继峰,王伟.立式圆柱型储液容器的小幅响应分析[J].低温建筑技术,2007,5:71-72.
    [51]孙建刚,崔利富,赵长军,张营.15×104m3立式储罐隔震设计分析.地震工程与工程振动[J].2010,30(4):153-158.
    [52]孙建刚,宫克勤,齐含兵等.水平地震作用下无锚固储液罐应力与应变响应分析[J].地震工程与工程振动,2007,27(3):110-115.
    [53]孙建刚,郝进锋,张云峰.储液罐液-固耦联振动固有特性有限元分析.大庆石油学院学报[J].1998,22(3):96-112.
    [54]孙建刚,王振,杨宇等.模型储液罐三维地震反应振动台试验研究[J].地震工程与工程振动,2008,28(5):122-132.
    [55]孙建刚,袁朝庆,郝进锋.橡胶基底隔震储液罐地震模拟试验研究[J].哈尔滨工业大学学报,2005,37(6):806-809.
    [56]孙建刚,袁朝庆,郝进锋.圆柱储液容器提离控制研究[J].哈尔滨工业大学学报,2001,33(6):763-768.
    [57]孙建刚,张丽,袁朝庆.立式储罐基底隔震动力反应特性分析[J].地震工程与工程振动,2001,21(3):140-144.
    [58]孙建刚,周利剑,李晓莉等.水平地震激励下储液罐液体晃动与提离分析[J].地震工程与工程振动,2007,27(5):134-138.
    [59]孙建刚.立式储罐地震响应控制研究[D].哈尔滨:中国地震局工程力学研究所,2002.
    [60]孙晋,易平.应用SMA复合橡胶垫的大型储液罐抗震控制分析[J].科技资讯,2008,14:42-46.
    [61]谭晓晶.大型储液罐流固耦合地震反应分析[D].哈尔滨:中国地震局工程力学研究所,2007.
    [62]唐友刚,董艳秋,项忠权等.储液罐液-固-土耦合非线性翘离振动分析[J].地震工程与工程振动,1997,3(24):102-109.
    [63]唐友刚.储液罐翘离实验研究及液-固-土耦合非线性振动分析.[D].天津:天津大学力学与工程测试系,1996.
    [64]王健,谢根栓.储液罐固液耦合下的自振特性分析.石油化工设备[J].2007,36(3):44-46.
    [65]王翠翠.考虑液固耦合储液罐非线性地震反应分析[D].哈尔滨:中国地震局工程力学研究所,2008.
    [66]汪定伟.智能优化算法[M].高等教育出版社.2007.
    [67]王建军,李其汉,陆明万,自由液面流体流动问题的数值分析研究[J].计算力学学报,2003,20(1):101-107.
    [68]王建军,李其汉,朱梓根等.自由液面大晃动的流固耦合数值分析方法研究进展[J].力学季刊,2001,22(4):447-454.
    [69]王健,谢根栓.储液罐固液耦合下的自振特性分析[J].石油化工设备.2007,36(3):45-46.
    [70]王健,谢根栓.锚固式圆柱形拱顶储液灌充液情况下的模态分析[J].化工装备技术,2006,27(1):39-53.
    [71]王健.大型储液罐的地震反应初探[J].压力容器,2008,25(6):25-27.
    [72]王社良ANSYS在大型储油罐上的应用[J].计算机技术,2009,36(10):42-44.
    [73]王勖成.有限单元法[M].清华大学出版社.2003.
    [74]王永学.任意容器液体晃动问题的数学模拟[D].大连:大连理工大学,1989.
    [75]王振.立式浮放储罐三维地震反应分析及试验研究[D].哈尔滨:哈尔滨工程大学,2006.
    [76]温德超.储液罐提离的试验研究和多重非线性耦合的三维静、动力分析[D].大连:大连理工大学.1992.
    [77]温德超等.在激励下储液峪提离的非线性耦联振动的实验研究[J].实验力学,S(4).1990,12.
    [78]项忠权,孙家孔.石油化工设备抗震.地震出版社[M].1995,201-210.
    [79]邢献军,杨必应,周晓清等.大型低温常压液化石油气储罐的设计[J].压力容器,2001,18(1):48-50.
    [80]徐建国,陈淮,王博.渡槽结构考虑流固耦合的横向地震响应研究[J].工程力学.2006,21(6):197-202.
    [81]徐微,项忠权.在地面水平振动作用下储罐的辐射阻尼[J].地震工程与工程振动,1992,(02).
    [82]袁朝庆,孙建刚等.储罐抗震计算模型的简化[J].压力容器,2008,25(4):16-20.
    [83]袁中立,闫伦江.LNG低温储罐的设计及建造技术[J].石油工程建设,2007,33(5):19-22.
    [84]张光浩,崔文勇.2万m3储液罐隔震应力分析.北京化工大学学报[J].2011,38(1):116-119.
    [85]张林林.储液罐动态响应分析[D].北京:北京化工大学,2007.
    [86]张云峰,袁朝庆,孙建刚.储液罐三维地震响应分析[J].大庆石油学院学报,2003,27(2):71-74.
    [87]张军,胡晓敏,罗旭耀(译)Marco Dorigo(著).蚁群优化[M].清华大学出版社,2007.
    [88]郑天心,王伟,吴灵宇.考虑液体晃动和罐底提离储液罐的研究[J].哈尔滨工业大学学报,2007,39(2):173-176.
    [89]周建伟,方秦,张亚栋.地下储液罐抗爆炸地冲击作用的流固耦合有限元分析[J].防灾减灾工程学报,2009,29(1):35-43.
    [90]周利剑,孙建刚,梁立孚.立式储罐耗能及变形的数值分析与计算[J].大庆石油学院学报,2006,30(2):128-130.
    [91]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析[D].哈尔滨:哈尔滨工程大学,2006.
    [92]周敏.储液容器非线性动态分析[D].北京:清华大学,1989.
    [93]邹道勤,邬瑞锋,曲乃泗.储液罐在竖向地震作用下的动力、稳定分析[J].计算结构力学及其应用,1988,5(3):51-59.
    [94]Aaron C Acton. Visualizing structural matrices in ANSYS using APDL[R]. ANSYS 11.0.2008.
    [95]A.K. Chopra. Dynamics of Structures[M]. Theory and Applications to Ear thquake Engineering. Prentice-Hall, Englewood Cliffs, NJ. 1995.
    [96]A.S. Veletsos, J.Y. Yang. Dynamics of fixed-based liquid-storage tanks[C]. Proceedings of US-Japan Seminar Earthquake Engineering. Research.1976, pp. 317-341.
    [97]A.S. Veletsos, J.Y. Yang. Earthquake response of liquid storage tanks[C]. Proceedings Annual EMD Specialty Conference ASCE, Raleigh, N.C.1977, pp. 1-24.
    [98]A.S. Veletsos, P. Shivakumar. Dynamic response of rigid tanks with inhomogeneous liquid [J]. Earthquake Eng. Struct. Dyn.24 (1995) 991-1015.
    [99]A.S. Veletsos. Seismice effects infexible liquid storage tanks[C]. Proceedings of the fifth World Conference on Earthquake Engineering, Vol.1, Rome, Italy. 1963, pp.367-390.
    [100]Abramson HN. The dynamc behaviour of liquid in moving containers[R]. Report SP 106 of NASA.1996.
    [101]ACI 350 Design of liquid-containing concrete structures and commentary[S]. Farmington Hills (MI):American Concrete Institute.2001.
    [102]ACI 371R-98 (American Concrete Institute)[S]. Guide to the Analysis Design and Construction of Concrete-pedestal Water Tower. ACI 371R.1995.
    [103]ADINA. Automatic Dynamic Incremantal Nonlinear Analysis[R]. ADINA R & D, Inc, Watertown, MA 02472, USA.2004.
    [104]Akyildiz, H., C, elebi, M.S. A liquid sloshing in a moving rectangular tank[R]. I.T.U Faculty of Naval Architecture and Ocean Engineering. Department of Ocean Engineering, Final Report.2001.
    [105]Akyildiz, H., Unal, E. Experimental studies on liquid sloshing[R]. I.T.U Faculty of Naval Architecture and Ocean Engineering. Department of Ocean Engineering, Final Report.2004.
    [106]A. M. EI Ansary, A.A. El Damatty. A.O. Nassef, A coupled finite element genetic algorithm for optimum design of stiffened liquid-filled steel conical tanks[J]. Thin-Walled Structures.2011,49(4):482-493.
    [107]American Petroleum Institute (API).Welded storage tanks for oil storage[S].API 650. Washington DC:American Petroleum Institute Standard,1998.
    [108]American Water Works Association (AWWA)[S]. Welded steel tanks for water storage. AWWA D-100, Denver, CO.2005.
    [109]ANSYS. V.10.0. Swanson analysis systems[R] Inc. Houston (Pennsylvania, USA).2006.
    [110]A. Parker, J.O. Hamblen. Optimal value for the Newton-Raphson division algorithm[J]. Information Processing Letters.1992,42(3):141-144.
    [111]Armenio V, La Rocca M. On the analysis of sloshing of water in rectangular containers:numerical study and experimental validation[J]. Ocean Engineering. 1996; 23(8):705-739.
    [112]ASCE. Guidelines for seismic evaluation and design of petrochemical facilities[S]. Reston (Virginia):American Society of Civil Engineers; 1997.
    [113]Bang-Fuh Chen, Roger Nokes. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank[J]. Journal of Computational Physics; 2005,209:47-81.
    [114]Bathe KJ, Wilson EL, Peterson FE. SAPIV — A structural analysis program for static and dynamic response of linear system[R]. College of Engineering, University of California, Berkeley, EERC 73-11; June 1973. Revised April 1974.
    [115]Bauer HF. Fluid oscillations in the containers of a space vehicle and their influence upon stability[R]. NASA TRR 187; 1964.
    [116]C.A. Brebbia, J.C. Telles, L.C. Wrobel. Boundary Element Techniques[J]. Theory and Applications in Engineering. Springer, New York,1984,
    [117]Casadci, E. Gabellini, G. Fotia, F. Maggio, A. Quarteroni. A mortar spectral/finite element method for complex 2d and 3d elastodynamic problems[J]. Comput. Methods Appl. Mech. Eng.191 (2002):5119-5148.
    [118]C, elebi, M.S., Akyildiz, H. Nonlinear modeling of liquid sloshing in a moving rectangular tank[J]. Ocean Engineering.2002.29 (12):1527-1553.
    [119]C.J. Tang, V.C. Patel, L. Landweber. Viscous effects on propagation and reflection of solitary waves in shallow channels[J]. Comput. Phys.1990,88 (1): 86-114.
    [120]Chavez, J.W., Fenves, G.L. EAGD-SLIDE:a computer program for the earthquake analysis of concrete gravity dams including base sliding[R]. Structural Engineering, Mechanics, and Materials, Department of Civil and Environmental Engineering, Report No. UCB/SEMM-94/02, University of California, Berkeley, USA.1994.
    [121]Chen JZ, Kianoush MR. Seismic response of concrete rectangular tanks for liquid containing structures[J]. Canadian Journal of Civil Engineering 2005;32(4):739-52.
    [122]Chen W, Haroun MA, Liu F. Large amplitude liquid sloshing in seismically excited tanks[J]. Earthquake Engineering and Structural Dynamics 1996; 25:653-69.
    [123]Chen, C.P., Barber, R.B. Seismic design of liquid storage tanks to earthquakes[J]. International Symposium on Earthquake Structural Engineering, St. Louis, MO,1976,2:1231-1247.
    [124]C. Panos, K.I. Kouramas, M.C. Georgiadis, E.N. Pistikopoulos. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank[J]. Computers & Chemical Engineering; 2010,34(9):1341-1347.
    [125]D.C. Barton, J.V. Parker. Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks[J]. Earthquake Eng. Struct. Dyn. 1987,15:299-322.
    [126]Dexuan Zou, Haikuan Liu, Liqun Gao, Steven Li. A novel modified differential evolution algorithm for constrained optimization problems[J]. Computers & Mathematics with Applications.2011,61(6):1608-1623.
    [127]Dohrmann, S. Key, M. Heinstein. A method for connecting dissimilar finite element meshes in two dimensions[J]. Numer. Methods Eng.2000, 48(5): 655-678.
    [128]Dogangun n, A., Durmus, A., Ayvaz, Y. Finite element analysis of seismic response of rectangular tanks using added mass and Lagrangian approach[C]. Proceedings of the Second International Conference on Civil Engineering Computer Applications Research and Practice, Bahrain,1996,1:371-379.
    [129]Dogangun, A., Durmus, A., Ayvaz, Y. Earthquake analysis of flexible rectangular tanks using the Lagrangian fluid finite element[J]. European Journal of Mechanics-A/Solids.1997,16:165-182.
    [130]Dogangun, A., Durmus, A., Ayvaz, Y. Static and dynamic analysis of rectangular tanks by using the Lagrangian fluid finite element[J]. Computers & Structures.1996,59:547-552.
    [131]Dogangun, A., Livaoglu, R. Hydrodynamic pressures acting on the walls of rectangular fluid containers[J]. Structural Engineering and Mechanics.2004.17: 203-214.
    [132]Dorigo M,Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents[J]. IEEE Trans. Syst. Man Cybernet.1996,26(1):29-41.
    [133]Durgesh C Rai. Performance of elevated tanks in Mw 7.7 Bhuj earthquak e of January 26th,2001[R]. Proc. Indian Acad. Sci. (Earth Planet. Sci.).2 003,112(3):421-429.
    [134]E.L. Wilson, M. Khalvati. Finite elements for the dynamic analysis of fluid-solid systems[J]. Int. J. Numer. Methods Eng.1983,19:1657-1668.
    [135]Epstein, H.I. Seismic design of liquid-storage tanks[J]. ASCE Journal of Structural Division.1976,102:1659-1673.
    [136]Eurocode-8. Design of structures for earthquake resistance[S]—Part Ⅰ. 1:General rules—Seismic action and general requirements for structures-Part 4: Silos, tanks and pipelines. European Committee for Standardization, Final PT Draft.2003.
    [137]Faltinsen OM. A numerical non-linear method of sloshing in tanks with two dimensional flow[J]. Journal of Ship Research.1978,18(4):224-241.
    [138]Fischer, F.D., Rammerstorfer, F.G., Scharf. K. Earthquake resistant design of anchored and unachored liquid storage tanks under three dimensional earthquake excitation[J]. Schuellor, G.I. (Ed.), Structural Dynamics—ecent Advances. Springer, Amsterdam,1991,317-371.
    [139]Glover F, Tabu search[J]. ORSA Journal on Computing.1989,1:190-206.
    [140]Grant Steven, Osvaldo Querin. Evolutionary structural optimisation (ESO) for combined topology and size optimisation of discrete structures[J]. Computer Methods in Applied Mechanics and Engineering.2000,188(4):743-754.
    [141]Gustavo A. Lozano, Chakkrit Na Ranong, Jose M. Bellosta von Colbe, Rudiger Bormann, Jobst Hapke, Georg Fieg, Thomas Klassen, Martin Dornheim. Optimization of hydrogen storage tubular tanks based on light weight hydrides [J]. International Journal of Hydrogen Energy.2012,37(3):2825-2834.
    [142]H.J.P. Morand, R. Ohayon. Fluid Structure Interaction[M]. Applied Numerical Methods. Wiley, Singapore,1995.
    [143]Halil Sezen, Ramazan Livaoglu, Adem Dogangun. Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks[J]. Engineering Structures.2008,30:794-803.
    [144]Haroun MA, Abou-Izzeddine W. Parametric study of seismic soil-tank interaction[J]. H:Vertical excitation. Journal of structural Engineering, ASCE 1992;118(3):113-121.
    [145]Haroun MA, Tayel MA. Response of tanks to vertical seismic excitations[J]. Earthquake Engineering and Structural Dynamic.1985,13:583-95.
    [146]Haroun, M.A., Ellaithy, M.H. Seismically induced fluid forces on elevated tanks[J]. Journal of Technical Topics in Civil Engineering.1985,111:1-15.
    [147]Haroun, M.A., Housner, G.W. Seismic design of liquid storage tanks[J]. ASCE Journal of Technical Councils.1981,107 (1):191-207.
    [148]Hayashi D et al. Distributed optimization by using artificial life[C].Tras. IEE Japan.1996, 116-C (5):584-590.
    [149]Hernandez H, Heredia-Zavoni E. Respuesta sismica de tanques cilindricos para almacenamiento de liquidos[J]. Revista de Ingenieria Sismica. Sociedad Mexicana de Ingenieria Sismica 2000; 62:63-88.
    [150]Holland J H. Adaptation in Natural and Areficial Systems[C].Ann Arbor: Univesity of Michigan.1975.
    [151]Hoskins LM, Jacobsen LS. Water pressure in a tank cause by simulated earthquake[J], Bulletin of the Seismological Society of America.1934,24:1-32.
    [152]Housner GW. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the Seismological Society of America.1957,47:15-35.
    [153]Housner GW. The dynamic behavior of water tanks[J]. Bulletin of the Seismological Society of American.1963,53(2):49-57.
    [154]Hu Mingyi, Zhang Lingxin. Application of optimization analysis on structure damage identification based on ACO algorithm[J]. Key Engineering Materials, 2011.450:506-509.
    [155]Huang ZJ,Hsiung CC.Nonlinear shallow-water flow on deck[J].Journal of Ship Research 1996;40(4):303-315.
    [156]Hugo Hernandez-Barrios, Emesto Heredia-Zavoni, A lvaro A. Aldama-Rodriguez.Nonlinear sloshing response of cylindrical tanks SUbjected to earthquake ground motion[J]. Engineering Structures. 2007,29:3364-3376.
    [157]J.F. Chen, J.M. Rotter. J.G. Teng. Sttengthening silos and tanks against elephant's foot buckling[C]. Fourth International COilference on Advances in Steel Structures.2005.1:459-466.
    [158]J.Mackerle. Fluid-structure interaction problems,finite element and boundary element approach a bibliography (1995-1998)[J].Finite Elem. Anal. Des.1999. 31:231.240.
    [159]J.W. Tedesco, C.N. Kostem, A. Kalnins. Free vibration analysis of cylindrical liquid storage tanks[J]. Comput. Struct.1987,26(6):957-964.
    [160]J.W. Tedesco, D.W. Landis, C.N. Kostem. Seismic analysis of cylindrical liquid storage tanks[J]. Comput. Struct.1989,32(5):1165-1174.
    [l61]Jones AF, Hulme A. The hydrodynamics of water on deck. Journal of Ship Research.1987,31(2):125-135.
    [l62]Kaushik and Sudhir K. Jain. Impact of Great December 26, 2004 Sumatra Earthquake and Tsunami on structures in Port Blair Hemant[J]. Journal of performance of construsted facilities. ASCE 2007,3(4):128-142.
    [163]K.C. Park, C.A. Felippa, G.Rebel. A contact formutation based on localized Lagrange multipliers: formulation and application to two-dimensional problems[J]. Int. J. Numer. Methods Eng.2002,54,263-297.
    [164]K.C. park, C.A. Felippa, R. Ohayon. Partitioned fomulation of internaI fluid-structure interaction problems by localized Lagrange multipliers[J]. Comput. MethOds Appl. Mech. Eng.2001,24:2989-3007.
    [165]K.C. Park. C.A. Felippa, U.A. Gumaste. A Iocalized version of the method of Lagrange multipliers and its applicatiotis[J]. Comput. Mech. 2000,24,476-490.
    [166]Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc. IEEE int. Conf. Neural Network, Peth, Australia,1995,11:l 942-1948.
    [167]Kianoush MR, Mirzabozorg H, Ghaemian H. Dynamic analysis of rectangular liquid containers in three-dimensional space[J]. Canadian Journal of Civil Engineering.2005.334-347.
    [l68]Kim JK, Koh HM, Kwahk IJ. Dynamic response of rectangular flexible fluid containers[J]. Journal of Engineering Mechanics, ASCE 1996;122(9):667-678.
    [l69]Kirkpatrick S, GeIatt C, Vecchi P.Optimization by simulated annealing [J].Science.1983,220:671-679.
    [170]K. Magnucki, J. Lewinski. P Stasiewicz. Optimal sizes of a ground-based horizontal cylindrical tank under strength and stability constraints[J]. Inter national Jonrnal of Pressure VesseIs and Piping.2004,81(12):913-917.
    [171]Lifeline Performance from the September 21,1999 Ji Ji Earthquake in Central Taiwan[R]. ASCE-TCLEE American Society of Civil Engineers Technical Council on Lifeline Earthquake Engineering.1999.
    [172]Linhares.Synthesizing a Predatory Search Strategy for VLSI Layouts[C]. IEEE Trans. On Evolutionary Computation.1999,3(2):147-152.
    [173]L.S.Jacobsen,Impulsive Hydrodynamics of Fluid Inside a Cylindrical Tank and of Fluid Surrounding a Cylindrical Pier[J]. Bull,Seism,Soc,Am.1949,3 9,189-204.
    [174]M. Batikha.Strengthening metallic cylindrical shells against elephant's foot buckling with FRP [J].Thin-Walled Structures.2009,47(10):1078-1091.
    [175]M.R. Kianoush. Effect of vertical acceleration on response of concrete rectangular liquid storage tanks[J]. Engineering Structures.2006,28:704-715.
    [176]M. Tummala. Optimization of thermocontrolled tank for hydrogen storage in vehicles[J]. International Journal of Hydrogen Energy.1997,22(5):525-530.
    [177]Min Zhou. Study on elephant-foot buckling ofbroad liquid storage tanks by nonlinear theory of shells[J]. Computers & Structures.1992,44(4):783-788.
    [178]Monzur Alam Imteaz, Abdallah Shanableh, Ataur Rahman, Amimul Ahsan. Optimisation of rainwater tank design from large roofs:A case study in Melbourne[J]. Conservation and Recycling.2011,55(11):1022-1029.
    [179]Morand, H.J.-P., Ohayon, R. Internal pressure effects on the vibration of partially filled elastic tanks[C]. In:Proceedings of the World Congress on Application of Finite Element Methods to Structural Mechanics, Bournemouth, UK, TP ONERA 66.1975.
    [180]Moiseyev, N.N., Rumyantsev, V.V. Dynamic stability of bodies containing fluid[J]. Applied Physics and Engineering, Vol.6. Springer, Berlin.1968.
    [181]Murat Saatcioglu, Denis Mitchell, Rene Tinawi, N. John Gardner, Anthony G. Gillies, Ahmed Ghobarah, Donald L. Anderson, and David Lau. The August 17, 1999, Kocaeli (Turkey) earthquake—damage to structures[J]. Can. J. Civ. Eng. 2001,28:715-737.
    [182]NOAA's National Geophysical Data Center (NGDC)[R]. Earthquake Damage, Northern Iran, June 20,1990.
    [183]Ohayon, R., Valid, R. True symmetric variational formulations for fluid-st ructure interaction in bounded domains—finite element results[M]. Numeri cal Methods in Coupled Systems.1984.
    [184]Okamoto T, Kawahara M. Two-dimensional sloshing analysis by Lagragian finite element method[J]. International Journal for Numerical Methods in Fluids. 1990,11:453-477.
    [185]Park JH, Koh HM, Kim J. Liquid-structure interaction analysis by coupled boundary element-finite element method in time domain[C]. In:Proceedings of 7th international conference on boundary element technology, BE-TECH/92. Southampton (England):Computational Mechanics Publication.1990,89-92.
    [186]Priestley MJN, Davison BJ, Honey GD, Hopkins DC, Martin RJ, Ramsey G et al. editors. Seismic design of storage tanks[R]. New Zealand National Society for Earthquake Engineering. Wellington.1986.
    [187]R. Afshar, M. Bayat, R.K. Lalwani, Y.H. Yau. Elastic behavior of glass-like functionally graded infinite hollow cylinder under hydrostatic loads using finite element method[J]. Materials & Design.2011,32(2):781-787.
    [188]Raffaele Bornatico, Michael Pfeiffer, Andreas Witzig, Lino Guzzella. Optimal sizing of a solar thermal building installation using particle swarm optimization[J]. Energy.2012,41(1):31-37.
    [189]R. Das, R. Jones, Y.M. Xie. Design of structures for optimal static strength using ESO[J]. Engineering Failure Analysis.2005,12(1):61-80.
    [190]Rai, D.C. Seismic retrofitting of R/C shaft support of elevated tanks[J]. Earthquake Spectra.2002,18:745-760.
    [191]Ruben Ansola, Javier Canales, Jose A. Tarrago. An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads[J]. Finite Elements in Analysis and Design.2006,42(14):1220-1230.
    [192]S. Abbasbandy. Improving Newton—Raphson method for nonlinear equations by modified Adomian decomposition method[J]. Applied Mathematics and Computation.2003,145(2):887-893.
    [193]Samer A. Barakat, Salah Altoubat. Application of evolutionary global opti mization techniques in the design of RC water tanks[J]. Engineering Struc tures.2009,31(2):332-344.
    [194]Pierre C. Sames, Delphine Marouly, and Thomas E. Schellin. Sloshing in Rectangular and cylindrical tanks[J]. Journal of ship research,2002,46(3): 186-200.
    [195]Sassan Eshghia and Mehran S. Razzaghia. Performance of Industrial Facilities in the2003 Bam, Iran, Earthquake[J]. Earthquake Spectra, December 2005.21 (Sl):395-410.
    [196]Schotte, J.-S., Ohayon, R. Interactions between sloshing modes and incompressible hydroelastic modes for internal fluid-structure systems[C]. In: Bathe, K.J. (Ed.), Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Elsevier, Amsterdam, Boston, USA.2001, 2:957-959.
    [197]Schotte, J.-S., Ohayon, R. Vibration analysis of elastic tanks partially filled with incompressible liquids in presence of a gravity field[C]. Proceedings of Launch Vehicle Vibrations, First European conference on Launcher Technology, CNES Toulouse, France.1999.
    [198]Schotte, J.-S., Ohayonb R. Effect of gravity on a free—free elastic tank p artially filled withincompressible liquid[J]. Journal of Fluids and Structure s.2003,18:215-226.
    [199]S.M. Hakimi, S.M. Moghaddas-Tafreshi. Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran [J]. Renewable Energy.2009,34(7):1855-1862.
    [200]Solaas F, Faltinsen OM. Combined numerical solution for sloshing in two-dimensional tanks of general shape[J]. Journal of Ship Research 1997: 41:118-129.
    [201]Tan, H., Chopra, A.K. EACD-3D-96—Three-dimensional Earthquake Analysis of Concrete Dams [R]. Department of Civil and Environmental Engineering. University of California, Berkeley, USA.1996.
    [202]Tefaruk Haktanir. Three-step N-R algorithm for the maximum-likelihood estimation of the general extreme values distribution parameters [J]. Advances in Engineering Software.2008,39(5):384-394.
    [203]Tong, P. Liquid sloshing in an elastic container[D].California Institute of Technology, AFOSR-66-0943.1966.
    [204]Ulrich K. Deiters. A modification of Newton-Raphson algorithm for phase equilibria calculations using numerical differentiation of the Gibbs energy [J]. Fluid Phase Equilibria.1985,19(3):287-293.
    [205]V.R. Panchal, R.S. Jangid. Variable friction pendulum system for seismic isolation of liquid storage tanks[J]. Nuclear Engineering and Design 2008.238: 1304-1315.
    [206]Veletsos AS. Tang Y. Dynamics of vertically excited liquid storage tanks[J]. Journal of Structural Engineering, ASCE 1986; 112(6):1134-1145.
    [207]Veletsos, A.S. Seismic Response and Design of Liquid Storage Tanks[S]. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems. ASCE, New York,1984.
    [208]Veletsos. S.A., Prasad, M.A., Tang, Y. Design approaches for soil structure interaction[R]. Technical Report NCEER-88-00331, National Center for Earthquake Engineering Research.1988.
    [209]W. Guggenberger. Collapse design of large steel digester tanks[J].Thin-Walled Structures.1994,20(1):109-128.
    [210]Weiyi Qian, Ajun li. Adaptive differential evolution algorithm for multiobjective optimization problems[J]. Applied Mathematics and Computation.2008,201(1):431-440.
    [211]Westergaard, H.M. Water pressures on dams during earthquakes[C]. Proceedings of the ASCE,1931,57:1303.
    [212]Wilson, E.L. Three-dimensional Static and Dynamic Analysis of Structures—a Physical Approach with Emphasis on Earthquake Engineering[C]. Third ed. Computers and Structures Inc, Berkeley, CA, USA,2002.
    [213]Wilson, E.L., Khalvati, M. Finite elements for the dynamic analysis of fluid-solid systems[J]. International Journal of Numerical Methods in Engineering.1983,19:1657-1668.
    [214]W.J. van Rooyen, D.L.W. Krueger, E.H. Mathews, M. Kleingeld. Simulation and optimisation of gas storage tanks filled with heat sink[J]. Nuclear Engineering and Design.2006,236(2):156-163.
    [215]Wu GX, Ma QW, Eatock Taylor R. Numerical simulation of sloshing waves in a 3D tank based on a finite element method[J]. Applied Ocean Research.1998 (20):337-355
    [216]X.Y. Yang, Y.M. Xie, G.P. Steven. Evolutionary methods for topology optimisation of continuous structures with design dependent loads[J]. Computers & Structures.2005,83(12):956-963.
    [217]Y. Calayir, A.A. Dumanoglu, Static and dynamic analysis of fluid and fluid-structure systems by the Lagrangian method[J]. Comput. Struct.1993,49 (4):625-632.
    [218]Yong-Jun Wang, Jiang-She Zhang, Gai-Ying Zhang. A dynamic clustering based differential evolution algorithm for global optimization[J]. European Journal of Operational Research,2007,183(1):56-73.
    [219]Yoshiaki KAWATA. Disaster Reduction Systems Developed After The 1995 Kobe Earthquake Disasters in Japan[R]. The International Workshop on Project Management, Kochi, Japan, March 9th-11th.2005.
    [220]Zeiny, A. Nonlinear time-dependent seismic response of unanchored liquid storage tanks[D]. Ph.D. Dissertation, University of California, Irvine, CA, USA. 1995.
    [221]Zhang Lingxin, Hu Mingyi, Wu Pingchuan. Application analysis of an improved N-R iterative method about finite element numerical calculation[J]. Source:Key Engineering Materials.2011,450:518-521.
    [222]Zheng Juan, Long Shuyao, Li Guangyao. The topology optimization design for continuum structures based on the element free Galerkin method[J]. Engineering Analysis with Boundary Elements.2010,34(7):666-672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700