用户名: 密码: 验证码:
城市内河沉积物重金属的分布特性及异位生态修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属具有生物毒性、持续性和非生物降解性,是一种危害性极强的污染物。上个世纪,由于工业化和城市化的快速发展,导致环境中、尤其是水体生态系统中的重金属含量激增,沉积物是多种污染物质,包括金属元素的天然“储蓄库”,因而沉积物对水质量的一个重要指标。本文针对北方地区城市内河沉积物重金属污染的现象,通过对沉积物中重金属的含量、分布特性、污染来源及风险评价的研究,通过对污染地区植被及根际真细菌群落的调查及检测分析,筛选适于生态修复的植物品种,同时采用盆栽试验和分子生物学方法探索了生态修复的效果及机理,以期为今后重金属污染内河沉积物的生修复提供参考,并为人类健康和生态保护提供依据。
     选择一条典型的环工业区北方城市内河作为研究对象,通过对河流理化性质及Pb、Zn、Cd、Ni、Cr、Cu、As和Hg的含量的分析,评价了河流重金属的污染程度,并分析了河流表层沉积物中重金属的分布规律及及来源。结果表明所有表层沉积物中重金属的浓度均高于国家沉积物Ⅰ类标准。表层沉积物重金属的污染程度依次为:Cd> Zn> Pb> Cu> Ni> Cr> Hg>As;采样点的重金属污染程度依次为采样点F>采样点D>采样点C>采样点B>采样点A>采样点E。沉积物中的重金属主要源自人类活动,包括工业排放、交通运输、市政废水和木器制造业等,而Hg则主要源于大气中Hg的沉降。
     通过对表层沉积物中重金属的污染及健康风险的评价,表明表层沉积物均受到了重金属的污染,受检重金属中Cd的生态风险最高,采样区域中D采样点受污染最严重,河道表层沉积物中重金属的潜在生态风险由高到低依次为:Cd>Hg>Pb>Cu>Ni>As>Zn>Cr;重金属对儿童和成人造成的健康风程度险依次为:As> Cd> Cr(Ⅵ)> Pb>Hg> Ni> Cr(Ⅲ)> Zn> Cu。
     根据重金属赋值形态的分析结果,重金属的迁移及生物可利用性依次为:Cd>Pb>Zn>Ni>Cr>Cu>Hg。基于河流的理化性质、重金属的沉降与释放以及重金属的分布规律构建重金属在河流中的动态模型:。
     水体重金属:V_w dCw/d_t=_Vs(C_s-C_s')k_e+V_w(C_-C-w)k_h-V_w(C_w-C_j)k_j+v_h(C_h-C_w)-v_j(C_w-C_j)-V_w(C_w-C_w')k_s
     沉积物重金属:V_S dC_s/dt=V_w(C_w-C_w')k_s+V_s(C_(hs-C_s)k_h'-V_s(C_s-C_(js))k_j'-V_s(C_sC_s')k_e+S_i
     通过对重金属耐性植物的调查分析,共发现了分属7个科的18种优势植物,通过CANOCO软件,采用余度分析(RDA)的方法按照重金属的耐受性可以将重金属耐性植物划分为4个类群:重度污染耐受型植物、中度污染恢复型植物、恢复型植物和As污染恢复型植物类群,并筛选得到了12种具有重金属耐性的优势植物。通过进一步检测分析了这12种优势植物对As、Cd、Cr、Cu、Pb、Ni和Zn的修复潜力,结果表明龙葵适于重金属高度复合污染环境的Cd修复;酸模和酸模叶蓼分别适于重金属高度复合污染环境下Pb和Zn污染修复潜力;酸模和苦荬菜也具有Zn的修复潜力,但是酸模适于污染水平较低沉积物Zn的修复,而大部分优势植物属于重金属规避型植物。通过盆栽试验进一步研究了酸模、龙葵和酸模叶蓼对沉积物重金属的修复潜力,结果表明这四种植物均能够有效提高沉积物中的重金属的活性及真细菌的总量;沉积物重金属污染的生物修复应采用植物联合修复及合理刈割的管理方式。
     分别构建了适用于受污染城市内河沉积物的重金属植物有效性的多元线性回归预测模型及重金属植物有效性总权重的离子冲量数学模型,用以预测重金属复合污染沉积物中重金属对植物的有效性,总权重的离子冲量模型为:lgwI_p=0.888lgwI_(HM)+0.886lgCS-0.098lgOM-1.21lgCEC-2.250lgpH+2.267(R=0.915,F=49.375,n=54,p<0.001)。
     采用DGGE和16S rDNA克隆文库技术深入比较分析了优势植物根际圈细菌群落结构与照沉积物的细菌群落结构的差异。过通过序列比对分析,两个根际圈文库细菌群落组成较为相似,共鉴定得到81个OTUs,其中21个为两个文库共有OTUs,而沉积物文库中没有与两个根际圈文库重叠的OTUs。两种植物根际圈文库的结构组成较为相似,通过比对分析发现根际圈文库中多为PGPRs和重金属污染土壤抗性细菌,并且优势菌多为β-变形菌;而厚壁菌和放线菌为对照沉积物样品文库的主要菌种。
Pollution associated with metals is a serious problem because of their toxicity,persistence, and nondegradability in the environment. Over the past century, thelevels of metals in aquatic ecosystems have increased drastically as a result of rapidindustrialization and urbanization. The metals have accumulated in sediments. Assediment is the main sink for various pollutants, including metals, sediment qualityhas been considered as an important indicator of water contamination. Althoughthere are many researches on the sediment contamimated by heavy metals, fewapplication and study on ecological restoration of sediment has been carried out.Therefore, this paper developed the study on the distribution, sources, andecological risk assessment of heavy metals in surface sediments, screen thecandidate plant variety for bioremediation in sediment, based on the fieldinvestigation and laboratory analysis. Method of molecular biology technique wasused to evaluate the effects of ecological restoration and investigated the mechanismof plant-microorganism combined remediation. The results obtained here could notonly provide the reference for the future bioremediation in urban river sediment, butalso be used in the exploration of strategies to protect human health and theecosystem.
     This paper was conducted in order to determine the degree of metal pollution inthe surface sediment of an urban river across residential and industrial zones ofHarbin, China. Six sampling sites located at Xinyi river were chosen for collectingthe surface sediment samples. The sediment samples have been subjected to a totaldigestion technique and analyzed by inductive coupling plasma mass spectrometry(ICP-AES) for metals including Pb, Zn, Cd, Ni, Cr, Cu and As and AtomicFluorescence Spectrometer (AFS-2202E) for Hg. The average concentrations of As,Cu, Zn, Pb, Cr, Hg and Cd determined in the surface sediments are higher than theclassⅠstandard of Marine Sediment Quality. And the average concentration of Ni inthe surface sediments is higher than the maximum accepted level of River SedimentQuality of Hong Kong. It revealed that the surface sediments in all the samplingsites were polluted with As, Cu, Zn, Pb, Cr, Hg, Cd and Ni, especially in site D.
     According to the pollution assessment of heavy metal in sediment samples, thesurface sediments were contaminated with As, Cu, Zn, Pb, Cr, Hg, Cd and Ni, andthe Cd pollution was most serious. Cd poses the highest ecological risk in thesediments. While site D was the most seriously polluted among sampling sites. Thecontamination degree of heavy metals in surface sediments were in the order of Cd> Zn> Pb> Cu> Ni> Cr> Hg>As, and site F>site D> site C> site B> site A>site E. It was found that the primary inputs of heavy metals were anthropocentric disturbance, mainly including the effluent of industrial and municipal wastewater.While, Hg mainly derived from atmospheric pollution. The potential ecological riskindex (RI) and health risk assessment had been calculated. The potential ecologicalrisk of heavy metals in surface sediments were in the order of Cd> Hg> Pb> Cu>Ni> As>Zn>Cr, and1the the total health risk were in the order of As> Cd> Cr(Ⅵ)> Pb>Hg> Ni> Cr(Ⅲ)> Zn> Cu.
     According to the results of fractionation profile, the mobility andbioavailability of heavy metals were in the order of Cd> Pb>Zn>Ni>Cr>Cu>Hg.Based on the physicochemical properties of river, sedimentation, release anddistribution of heavy metals, dynamic models of heavy metals in polluted river wereconstructed:
     In water:V_w dCw/d_t=_Vs(C_s-C_s')k_e+V_w(C_-C-w)k_h-V_w(C_w-C_j)k_j+v_h(C_h-C_w)-v_j(C_w-C_j)-V_w(C_w-C_w')k_s
     And in sediment:V_S dC_s/dt=V_w(C_w-C_w')k_s+V_s(C_(hs-C_s)k_h'-V_s(C_s-C_(js))k_j'-V_s(C_sC_s')k_e+S_i
     18dominant species of plant, belonged to7families, were found in30plots inmud along the riverbank. RDA was introduced to analyze relationship betweenvegetation community and heavy metals in rhizospheres. As the results, the heavymetal tolerant species could be classified into4groups by the clustering analysis,such as high contamination tolerance, moderate contamination recovery, recoveryand As contamination recovery. And12metal-tolerant plants were screened. Presentresearch conducted field and pot experiments on dominant plants to find out theirphytoextraction potential. Results indicated the uptake of metals by plants showedspeaciality in different species. Solanum nigrum had a greater accumulation oncadmium (Cd) than other plants. High biomass, wide spread root system and heavymetals tolerance make S. nigrum as an attractive choice for the remediation ofsediment highly contaminated. Rumex dentatus was found a lead (Pb)-accumulatingplant. While Polygonum lapathifolium was the potential material forphytoremediating Cd in highly metals polluted condition. R. dentatus and Ixerischinensis were good Zn remediation candidates in contamination soils, but I.chinensis only suitable for moderate contamination. These other plants were themetals excluders or mainly held in the roots. The results of pot experiment showedthat R. acetosa L., S. nigrum L. and P. lapathifolium L. could increase activities ofheavy metals and bacterial number significantly. The bioremediation of heavymetals polluted sediment should adopt plant-microorganism combinated remediationand rational multi-cutting management.
     The statistical models of7heavy-metal phytoavailablities were constructed, taking a series of physicochemical properties of sediment samples and plants intoconsideration. The models of heavy-metal phytoavailabilties showed there wascorrelation between phytoavailabilty and physicochemical properties of sedimentsamples and other metals. phytoavailability of Cu was affected by total-Cdsignificantly. The model expressed in terms of total WI could bemathematically described bylgwI_p=0.888lgwI_(HM)+0.886lgCS-0.098lgOM-1.21lgCEC-2.250lgpH+2.267(R=0.915,F=49.375,n=54,p<0.001).
     The difference among sediment samples and five rhizospheric samples ofdominant plant species, R. dentatus, S. nigrum, Cynodon dactylon, P. lapathifoliumand Populus canadensis, screened from field investigation were indicated andanalyzed by DGGE and16S rDNA libraries. Among the combined81OTUsidentified among S. nigrumand P. canadensis libraries, with the remaining21OTUscommon to both libraries. But there were few common OTUs among sediment andthe rhizospheric libraries. The highest relative amount of phylotypes and clones inboth rhizosphere libraries was observed for Betaproteobacteria. Results of16SrDNA sequence analysis showed metal resistant and plant growth promotingbacteria accounted for a considerable proportion in both rhizosphere libraries. Whilerepresentatives of the Actinobacteria and Firmicutes were the most numerousphylotypes in sediment clone library.
引文
[1]Ayyasamy P M, Chun S, Lee S. Desorption and dissolution of heavy metals fromcontaminated soil using Shewanella sp.(HN-41) amended with various carbonsources and synthetic soil organic matters[J]. J. Hazard Mater.,2009,161:1095-1102.
    [2]叶铁桥.重金属污染事件频发[N].中国青年报,2012,2(1):07.
    [3]Atkinson C A, Jolley D F, Simpson S L. Effect of overlying water pH, dissolvedoxygen, salinity and sediment disturbances on metal release and sequestrationfrom metal contaminated marine sediments[J]. Chemospher.2007,69:1428-1437.
    [4]Brunner I, Luster J, Günthardt-Goerg M S, Frey B. Heavy metal accumulationand phytostabilisation potential of tree fine roots in a contaminated soil[J].Environ. Pollu.,2008,152:559-568.
    [5]Morin S, Duong T T, Dabrin A, et al. Long-term survey of heavy-metal pollution,biofilm contamination and diatom community structure in the Riou Mortwatershed, South-West France. Environ. Pollut.,2008,151:532-542.
    [6]Duruibe J O, Ogwuegbu M O, Egwurugwu J N. Heavy metal pollution andhuman biotoxic effects[J]. Int. J. Phys. Sci.,2007,2(5):112-118.
    [7]Meybeck M, Lestel L, Bonté P, et al. Historical perspective of heavy metalscontamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France)following a DPSIR approach (1950–2005)[J]. Sci. Total Environ.,2007,375:204-231.
    [8]Osán J, T r k S, Alf ldy B, et al. Comparison of sediment pollution in the riversof the Hungarian Upper Tisza Region using non-destructive analyticaltechniques[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,6:123-136.
    [9]Farkas A, Erratico C, Vigano L. Assessment of the environmental significance ofheavy metal pollution in surficial sediments of the River Po[J]. Chemosphere,2007,68:761-768.
    [10]Kabata-Pendias A, Pendias H, Trace Elements in Soils and Plants (3rd Edn.)[M],CRC Press, Boca Raton, Florida, USA.,2001:413.
    [11]Cavet J S, Graham A I, Meng W, et al. A cadmium-lead-sensing ArsR-SmtBrepressor with novel sensory sites. Complementary metal discrimination byNmtR AND CmtR in a common cytosol[J]. J. Biol. Chem.,2003,278(45):44560-44566.
    [12]Seaward M R D, Richardson D H S. Atmospheric sources of metal pollutionand effects on vegetation[M]. In: Shaw AJ (ed) Heavy metal tolerance in plantsevolutionary aspects. CRC Press, Boca Raton,1990:75-94.
    [13]Vermette S J, Bingham V G. Trace elements in Frobisher Bay rain water[J].Arctic.,1986,39:177-179.
    [14]Pacyna J M. Atmospheric trace elements from natural and anthropogenicsources[M]. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere,Chap2. Wiley, New York.1986.
    [15]Saeedi M, Hosseinzadeh M, Jamshidi A, et al. Assessment of heavy metalscontamination and leaching characteristics in highway side soils, Iran. EnvironMonit. Assess.,2009,151:231-241.
    [16]Zu Y Q, Li Y, Chen J J, et al. Hyper accumulation of Pb, Zn and Cd inherbaceous grown on lead-zinc mining area in Yunnan, China[J]. Environ. Int.,2005,31:755-762.
    [17]Verkleji J A S. The effects of heavy metals stress on higher plants and their useas bio monitors[M]. In: Markert B (ed) Plant as bioindicators: indicators ofheavy metals in the terrestrial environment. VCH, New York,1993:415-424.
    [18]Lacerda L D. Global mercury emissions from gold and silver mining[J]. Water.Air. Soil. Pollu.,1997,97:209-221
    [19]Kraal H, Ernst W. Influence of copper high tension lines on plants and soil[J].Environ. Pollu.1976,11:131-135.
    [20]Angino E E, Magnuson L M, Waugh T C, et al. Arsenic in detergents-possibledanger and pollution hazard[J]. Sci.,1970,168:389-392.
    [21]Al-Hiyaly S A, McNeilly T, Bradshaw A D. The effect of zinc concentrationfrom electricity pylons-evolution in replicated situation[J]. New Phytol.,1988,110:571-580.
    [22]Annibaldi A, Truzzi C, Illuminati S, et al. Determination of water-soluble andinsoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarcticaerosol by square wave anodic stripping voltammetry: distribution and summerseasonal evolution at Terra Nova Bay (Victoria Land). Anal. Bioanal. Chem.,2007,387:977-998.
    [23]Pezzetta J M, Iskandar I K. Sediment characteristics in the vicinity of thepulliam power plant, green bay, Wisconsin[J]. Environ. Geol.,1975,1(3):155-165.
    [24]Müller G, F rstner U. Heavy metals in sediments of the rhine and elbe estuaries:Mobilization or mixing effect?[J]. Environ. Geol.,1975,1(1):33-39.
    [25]Gallo M, Trento A, Alvarez A, et al. Dissolved and particulate heavy metals inthe Salado River (Santa Fe, Argentina)[J]. Water Air Soil Poll.,2006,174:1-4.
    [26]Ghrefat H A, Yusuf N, Jamarh A, et al. Fractionation and risk assessment ofheavy metals in soil samples collected along Zerqa River, Jordan[J]. Environ.Earth. Sci.,2011,66(1):199-208
    [27]Koshle A, Pervez Y, Pervez S. Spatial and temporal variation of mercury load insurface water and sediments around an integrated steel plant in India[J]. TheEnvironmentalist,2011,29(4):421-430.
    [28]Wakida F T, Lara-Ruiz D, Temores-Pe a J, et al. Heavy metals in sediments ofthe Tecate River, Mexico[J]. Environ. Geol.,2008,5493:637-642.
    [29]Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganismsand microbial processes in agricultural soils[J]. Soil. Biol. Biochem.,1998,30:389-1414.
    [30]Baath E. Effects of heavy metals in soil microbial processes and populations (areview)[J]. Water Air Soil Pollut.,1989,47:335-379.
    [31]Fu C, Guo J S, Pan J, et al. Potential Ecological Risk Assessment of HeavyMetal Pollution in Sediments of the Yangtze River Within the Wanzhou Section,China[J]. Biol. Trace Elem. Res.,2007,129(1-3):270-277.
    [32]Liu J, Zhang X H, Tran H, et al. Heavy metal contamination and riskassessment in water, paddy soil, and rice around an electroplating plant[J].Environ. Sci. Pollut. Res. Int.,2011,18(9):1623-1632.
    [33]李莲芳,曾希柏,李国学,等.北京市温榆河沉积物的重金属污染风险评价[J].环境科学学报,2007,27(2):289-297.
    [34]何灿,高良敏,刘玉玲,等.淮南泥河沉积物中重金属总量及形态分析[J].环境化学,2010,29(4):766-767.
    [35]周怀东,袁浩,王雨春,等.长江水系沉积物中重金属的赋存形态[J].环境化学,2008,27(4):515-519.
    [36]袁浩,王雨春,顾尚义,等.黄河水系沉积物重金属赋存形态及污染特征[J].生态学杂志.2008,11:1966-1971.
    [37]林春野,何孟常,李艳霞,等.松花江沉积物金属元素含量、污染及地球化学特征[J].环境科学,2008,29(8):2123-2130.
    [38]王荔娟,于瑞莲,胡恭任,赵元慧.晋江感潮河段表层沉积物重金属污染特征[J].华侨大学学报(自然科学版),2008,1(20):154-157.
    [39]李佳宣,施泽明,郑林,等.沱江流域水系沉积物重金属的潜在生态风险评价[J].地球与环境,2010,12(5):92-98.
    [40]魏荣菲,庄舜尧,杨浩,等.苏州河网区河道沉积物重金属的污染特征[J].湖泊科学.2010,22(4):527-537.
    [41]鲍争争,何义亮,靳强,等.深圳市内某河表层沉积物重金属含量及污染评价[J].2010,29(2):205-209.
    [42]乔俊,邵德智,罗水明,等.天津滨海新区黑潴河沉积物中重金属污染特征及地区性重金属污染指标选择[J].环境科学研究.2010,23(11):1343-1350.
    [43]董德明,路永正,李鱼,等.吉林省部分河流与湖泊表层沉积物中重金属的分布规律[J].吉林大学学报(地球科学版),2005,35(1):91-96.
    [44]戴奇,李双,周忠良,等.上海城区河道底栖动物群落特征与沉积物重金属潜在生态风险[J].生态学杂志,2010,29(10):1985-1992.
    [45]Khan A G. Vetiver grass as an ideal phytosymbiont for Glomalian fungi forecological restoration of heavy metal contaminated derelict land-poor[M]. In:The third international conference on Vetiver, Guangzhou, China.2003b.
    [46]Mudgal V, Madaan N, Mudgal A. Heavy metals in plants: phytoremediation:plants used to remediate heavy metal pollution[J]. Agric. Biol. J. N. Am.,2008,1:40-46.
    [47]Khan A G. Mycotrophy and its significance in wetland ecology and wetlandmanagement[M]. In: Proceedings Croucher Foundation Study Institute:WetlandEcosystems in Asia-Function and Management,2003:11-15.
    [48]Shu W S, Xia H P, Zhang Z Q, et al. Use of vetiver and three other grasses forrevegetation of Pb/Zn mine tailings: field experiment. Int. J.Phytorem.,2002,4:47-57.
    [49]Vassilev A, Schwitzguébel J P, Thewys T, et al. The use of plants forremediation of metal-contaminated soils[J]. The Scientific World Jo.,2004,4:9-34.
    [50]Guala S D, Vega F A, Covelo E F. Development of a model to select plants withoptimum metal phytoextraction potential[J]. Environ. Sci. Pollut.,2011,18(6):997-1003.
    [51]McGrath S P, Zhao F J. Phytoextraction of metals and metalloids fromcontaminated soils[J]. Curr. Opin. Biotechnol.,2003,14:277-282.
    [52]Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals[J]. Curr.Opin. Biotechnol.,1997,8:279-284.
    [53]Liang H M, Lin T H, Chiou J M, et al. Model evaluation of the phytoextractionpotential of heavy metal hyperaccumulators and non-hyperaccumulators[J].Environ. Pollut.,2009,157(6):1945-1952.
    [54] Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake of Thlaspicaerulescens grown in nutrient solution[J]. Soil. Sci. Soc. Am. J.,1995,59:125-133.
    [55]Li Y M, Chaney R L, Angle J S, et al. Phytoremediation of heavy metalcontaminated soils[M]. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI,Stottmeister U (eds) Bioremediation of contaminated soils. New York, MarcelDekker,2000:837-857.
    [56]Conesa H M, Garci′a G, Faz á, et al. Dynamics of metal tolerant plantcommunities’ development in mine tailings from the Cartagena-La Unio’nMining District (SE Spain) and their interest for further revegetationpurposes[J]. Chemosphere.2007,68:1180-1185.
    [57]Jabeen R, Ahmad A, Iqbal M. Phytoremediation of Heavy Metals: Physiologicaland Molecular Mechanisms[J]. Bot. Rev.,2009,75:339-364.
    [58]Zhuang X, Chen J, Shin H, et al. New advances in plant growth promotingrhizobacteria for bioremediation. Environ. Intern.,2007,33:406-413.
    [59]郑晓丹,周金福,许旭萍.抗镉细菌的筛选鉴定及其抗性研究[J].安徽农学通报,2010,16(4):35-37.
    [60]刘红娟,党志,张慧,等.蜡状芽孢杆菌抗重金属性能及对镉的累积[J].农业环境科学学报,2010,1:31-35
    [61]Joshi P K, Swarup A, Maheshwari S, et al. Bioremediation of Heavy Metals inLiquid Media Through Fungi Isolated from Contaminated Sources[J]. Indian. J.Microbiol.,2011,51(4):482-487.
    [62]Gauri S S, Archanaa S, Mondal K C, et al. Removal of arsenic from aqueoussolution using pottery granules coated with cyst of Azotobacter and portlandcement: Characterization, kinetics and modeling[J]. Bioresource Technol.,2011,102:6308-6312.
    [63]Müller A K, Westergaard K, Christensen H, et al. The effect of long-termmercury pollution on the soil microbial community[J]. FEMS. Microbiol. Ecol.,2001,36:11-19.
    [64]Abou-Shanab R A, Ghozlan H, Ghanem K, et al. Behaviour of bacterialpopulations isolated from rhizosphere of Diplachne fusca dominant inindustrial sites[J]. World J. Microbiol Biotechnol.,2005,21:1095-1101.
    [65]Chaudri A M, McGrath S P, Giller K E, et al. Enumeration of indigenousRhizobium leguminosarum biovar Trifolii in soils previously treated withmetal-contaminated sewage sludge [J]. Biol. Biochem.,1993,25:301-309.
    [66]Weissenhorn I, Leyval C. Root colonization of maize by a Cd-sensitive and aCd-tolerant Glomus mosseae and cadmium uptake in sand culture[J]. Plant.Soil.,1995,175:233-238.
    [67]Becerra-Castro C, Kidd P S, Prieto-Fernándezá, et al. Endophytic andrhizoplane bacteria associated with Cytisus striatus growing onhexachlorocyclohexane-contaminated soil: isolation and characterization [J].Plant Soil,2011,340(1-2):413-433.
    [68]Pishchik V N, Provorov N A, Vorobyov N I, et al. Interactions between plantsand associated bacteria in soils contaminated with heavy metals. Microbiology,2009,78(6):785-793.
    [69]Wani P A, Khan M S, Zaidi A. Effect of metal tolerant plant growth promotingRhizobium on the performance of pea grown in metal amended soil[J]. Arch.Environ. Contam. Toxicol.,2008,55(1):33-42.
    [70]Mamaril J C, Paner E. T., Alpante B. M. Biosorption and desorption studies ofchromium (iii) by free and immobilized Rhizobium (BJVr12) cell biomass[J].Biodegradation.1997,8:275-285.
    [71]Aleem A, Isar J, Malik A. Impact of long-term application of industrialwastewater on the emergence of resistance traits in Azotobacter chroococcumisolated from rhizospheric soil[J]. Bioresour Technol.,2003,86:7-13.
    [72]Delorme T A, Gagliardi J V, Angle J S, et al. Influence of the zinchyperaccumulator Thalaspi caerulescens J. and C. Presl and the nonmetalaccumulator Trifolium pratense L. on soil microbial populations[J]. Can. J.Microbiol.,2001,47:773-776.
    [73]Mengoni A, Barzanti R, Gonnelli C, et al. Characterization of nickel-resistantbacteria isolated from serpentine soil[J]. Environ. Microbiol.,2001,3:691-698.
    [74]Whiting S N, de Souza M P, Terry N. Rhizosphere bacteria mobilize Zn forhyperaccumulation by Thlaspi caerulescens[J]. Environ. Sci. Technol.,2001,35:3144-3150.
    [75]Abou-Shanab R A, Angle J S, Delorme T A, et al. Rhizobacterial effects onnickel extraction from soil and uptake by Alyssum murale [J]. New Phytol.,2003,158:219-224.
    [76]de Souza M P, Huang C P A, Chee N, Terry N. Rhizosphere bacteria enhancethe accumulation of selenium and mercury in wetland plants[J]. Planta,1999,209(2):259-263.
    [77]Masalha J, Kosegarten H, Elmaci O, et al. The central role of microbial activityfor iron acquisition in maize and sunflower[J]. Biol. Fertil. Soils.,2000,30:433-439.
    [78]Davies F T Jr, Puryear J D, Newton R J. Mycorrhizal fungi enhanceaccumulation and tolerance of chromium in sunflower (Helianthus annuus)[J].J. Plant. Physiol.,2001,158:777-786.
    [79]Khan A G, Kuek C, Chaudhry T M, et al. Role of plants, mycorrhizae andphytochelators in heavy metal contaminated land remediation[J]. Chemosphere.2000,41:197-207.
    [80]Guo J K, Tang S R, Ju X H, et al. Effects of inoculation of a plant growthpromoting rhizobacterium Burkholderia sp. D54on plant growth and metaluptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metalcontaminated soil[J]. World. J. Microbiol. Biotechnol.,2011,27(12):2845-2844.
    [81]Lambrecht M, Okon Y, Vande B A, et al. Indole-3-acetic acid: a reciprocalsignalling molecule in bacteria-plant interactions[J]. Trends Microbiol.,2000,8:298-300.
    [82]Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixingbacterium closely associated with grasses: genetic, biochemical and ecologicalaspects[J]. FEMS. Microbiol. Rev.,2000,24:487-506.
    [83]Turnau K, Ryszka P, Wojtczak G. Metal Tolerant Mycorrhizal Plants: A Reviewfrom the Perspective on Industrial Waste in Temperate Region[J]. ArbuscularMycorrhizas: Physiology and Function,2010,4:257-276.
    [84]Glick B R. The enhancement of plant growth by free-livingbacteria[J]. Can. J.Microbiol.,1995,41:109-117.
    [85]Cakmakc R I, Ayd n D F, Sahin A F. Growth promotion of plants by plantgrowthpromoting rhizobacteria under greenhouse and two different field soilconditions[J]. Soil. Biol. Biochem.,2006,38:1482-487.
    [86]Khan M S, Zaidi A, Aamil M. Biocontrol of fungal pathogens by the use ofplant growth promoting rhizobacteria and nitrogen fixing microorganisms[J].Ind. J. Bot. Soc.,2002,81:255-263.
    [87]Ahmad F, Ahmad I, Khan M S. Screening of free–living rhizospheric bacteriafor their multiple plant growth promoting activities[J]. Microbiol. Res.,2008,163:173-181.
    [88]Zaidi A, Khan M S. Stimulatory effect of dual inoculation with phosphatesolubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea[J].Aust. J. Exp. Agric.,2007,47:1014-1022.
    [89]Khan M S, Zaidi A. Synergistic effects of the inoculation with plant growthpromoting rhizobacteria and arbuscular mycorrhizal fungus on theperformanceof wheat[J]. Turk. J. Agric. For.,2007,31:355-362.
    [90]Safronova V I, Stepanok V V, Engqvist G L, et al. Root associated bacteriacontaining1-aminocyclopropane-1-carboxylate deaminase improve growth andnutrient uptake by pea genotypes cultivated in cadmium supplemented soil[J].Biol. Fertil. Soils.,2006,42:267-272.
    [91]Belimov A A, Safroonova V I, Mimura T. Response of spring rape toinoculation with plant growth promoting rhizobacteria containing1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status ofthe plant[J]. Can. J. Microbiol.,2002,48:189-199.
    [92]Zaidi A, Khan M S, Aamil M. Bioassociative effect of rhizosphericmicroorganisms on growth, yield and nutrient uptake of greengram[J]. PlantNutr.,2004,27:599-610.
    [93]Turan M, Esitken A, Sahin F. Plant growth promoting rhizobacteria asalleviators for soil degradation[J]. Bacteria in Agrobiology: StressManagement.2012,41-63.
    [94]Lippmann B, Leinhos V, Bergmann H. Influence of auxin producingrhizobacteria on root morphology and nutrient accumulation of crops.1.Changes in root morphology and nutrient accumulation in maize (Zea mays L.)caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonasand Acinetobacter strains or IAA applied exogenously[J]. Angew. Bot.,1995,69:31-36.
    [95]Wani P A, Khan M S, Zaidi A. Effect of metal tolerant plant growth promotingBradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptakeby greengram plants[J]. Chemosphere,2007,70:36-45.
    [96]Lasat H A. Phytoextraction of toxic metals: a review of biologicalmechanisms[J]. J. Environ. Qual.,2002,31:109-120.
    [97]Tabak H H, Lens P, van Hullebusch E D, et al. Developments in bioremediationof soils and sediments polluted with metals and radionuclides-1. Microbialprocesses and mechanisms affecting bioremediation of metal contaminationand influencing metal toxicity and transport[J]. Rev. Env. Sci. Biotech.,2005,4:115-156.
    [98]Huang S, Chen C, Wu Y, et al. Characterization of depth-related bacterialcommunities and their relationships with the environmental factors in the riversediments[J]. World J. Microbiol. Biotechnol.,2011,27:2655-2664.
    [99]Kao P H, Huang C C, Hseu Z Y. Response of microbial activities to heavymetals in a neutral loamy soil treated with biosolid[J]. Chemosphere,2006,64:63-70.
    [100]Shen H, Christie P, Li X L. Uptake of zinc, cadmium and phosphorus byarbuscular mycorrhizal maize (Zea mays L.) from a low available phosphoruscalcareous soil spiked with zinc and cadmium[J]. Environ. Geochem. Hlth.,2006,28:111-119.
    [101]Gray E J, Smith D L. Intracellular and extracellular PGPR: commonalities anddistinctions in the plant-bacterium signaling processes[J]. Soil. Biol. Biochem.,2005,37:395-412.
    [102]Nies D H. Microbial heavy metal resistance[J]. Appl. Microbiol. Biotechnol.,1999,51:730-750.
    [103]Roane T M, Pepper I L. Microorganisms and metal pollution, in environmentalmicrobiology[M]. In: Maier R.M., Pepper I.L., Gerba C.B (Eds.). London, NW17BY. UK: Academic press,2000:55.
    [104]Kunito T, Oyaizu H, Matsumoto S. Ecology of soil heavy metal-resistantbacteria and perspective of bioremediation of heavy metal-contaminatedsoils[J]. Recent. Res. Develop. Agri.&Biol. Chem.,1998,2:185-206.
    [105]Kamal S, Prasad R, Varma A. Soil Microbial Diversity in Relation to HeavyMetals[J]. Soil Heavy Metals.2010,19:31-63.
    [106]Kumari B, Singh S N. Phytoremediation of metals from fly ash throughbacterial augmentation[J]. Ecotoxicology,2011,20(1):166-176
    [107]Singh N K, Rai U N, Tewari A, et al. Metal Accumulation and GrowthResponse in Vigna radiata L. Inoculated with Chromate Tolerant Rhizobacteriaand Grown on Tannery Sludge Amended Soil[J]. Bull. Environ. Contam.Toxicol.,2010,84(1):118-124.
    [108]Koo S Y, Cho K S. Characterization of Serratia sp. K1RP-49for application tothe rhizoremediation of heavy metals. Survival and sustainability[J]. EnvironEarth Sci.,2011,1:3-13.
    [109]Pilon-Smits E. Phytoremediation[J]. Annu. Rev. Plant. Biol.,2005,56:15-39.
    [110]胡智勇,陆开宏,梁晶晶.根际微生物在污染水体植物修复中的作用[J].环境科学与技术,2010,33(5):75-80.
    [111]Glick B R. Phytoremediation: synergistic use of plants and bacteria to clean upthe environment[J]. Biotechnol.,2001,21:383-393.
    [112]Jiang C Y, Sheng X F, Qian M, et al. Isolation and characterization of a heavymetal-resistant Burkholderia sp. from heavy metal-contaminated paddy fieldsoil and its potential in promoting plant growth and heavy metal accumulationin metalpolluted soil[J]. Chemosphere.2008,72:157-164.
    [113]Jing Y D, He Z L, Yang X E. Role of soil rhizobacteria in phytoremediation ofheavy metal contaminated soils[J]. Journal of Zhejiang University-Science B.2007,8(3):192-207.
    [114]Faisal M, Hasnain S. Growth stimulatory effect of Ochrobactrum intermediumand Bacillus cereus on Vigna radiata plants[J]. Lett. Appl. Microbiol.,2006,43:461-466.
    [115]Faisal M, Hasnain S. Bacterial Cr (VI) reduction concurrently improvessunflower (Helianthus annuus L.) growth[J]. Biotechnol. Lett.,2005,27:943-947.
    [116]Chaudri A M, Allain C M, Barbosa-Jefferson V L, et al. A study of the impactsof Zn and Cu on two rhizobial species in soils of a long term fieldexperiment[J]. Plant Soil.,2000,22:167–179.
    [117]Muller J G, Cerniglia C E, Pritchard P H. Bioremediation of environmentscontaminated by polycyclic aromatic hydrocarbons[M]. In: Bioremediation:Principles and Applications. Cambridge: Cambridge University Press,1996,125-194.
    [118]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure forspeciation of particulate trace metals[J]. Anal. Chem.,1979,51:844–851
    [119]Burt R, Wilson M A, Keck T J, et al, Trace element speciation in selectedsmelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana,USA[J]. Adv. Environ. Res.,2003,8:51-67.
    [120]Hakanson L. An ecological risk index for aquatic pollution control: A sedimentlogical approach[J]. Water Res.,1980,14(8):995-1001.
    [121]Moss A, Bassall M. Effects of disturbance on the biodiversity and abundanceof isopods in temperature grasslands[J]. Eur. J. Soil. Biol.,2006,42:S254-S268.
    [122]Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: open-source,platform-independent, community-supported software for describing andcomparing microbial communities[J]. Appl. Environ. Microbial.,2009,75(23):7537-7541.
    [123]DeSantis T Z, Brodie E L, Moberg J P, et al. High-density universal16S rRNAmicroarray analysis reveals broader diversity than typical clone library whensampling the environment[J]. Microb. Ecol.,2007,53:371-383.
    [124]Chao A. Estimating the population size for capture-recapture data withunequal catchability[J]. Biometrics,1987,43:783-791.
    [125]Rodriguez L, Ruiz E, Alonso-Azcarate J, et al. Heavy metal distribution andchemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. J.Environ. Manag.,2009,90:1106–1116.
    [126]Sarkar S K, Bhattacharya B, Debnath S, et al. Heavy metals in biota fromSundarban wetland ecosystem, India: implications to monitoring andenvironmental assessment[J]. Aquat. Ecosyst. Health.,2002.5(4):467-472.
    [127]Aloupi M, Angelidis O M. The significance of coarse sediments in metalpollution studies in the coastal zone[J]. Water Air Soil Pollut.,2002,13:121-131.
    [128]Castellano M, Ruiz-Filippi G, Gonza′lez W, et al. Selection of variables usingfactorial discriminant analysis for the state identification of an anaerobicUASB–UAF hybrid pilot plant, fed with winery effluents[J]. Water Sci.Technol.,2007,56(2):139-145.
    [129]Zhou J, Ma D S, Pan J Y, et al. Application of multivariate statistical approachto identify heavy metal sources in sediment and waters: a case study inYangzhong[J], China. Environ. Geol.,2008,54(2):373-380.
    [130]Gonzalez Z I, Krachler M, Cheburkin A K, et al. Spatial distribution of naturalenrichments of arsenic, selenium, and uranium in a minerotrophic peatland,Gola diLago, Canton Ticino, Switzerland[J]. Environ. Sci. Technol.,2006,40:6568-6574.
    [131]Bai J, Cui B, Yang Z, et al. Heavy metal contamination of cultivated wetlandsoils along a typical plateau lake from southwest China. Environ[J]. Earth. Sci.,2010,59:1781-1788.
    [132]Iscen F, Emiroglu C, Ilhan, et al. Application of multivariate statisticaltechniques in the assessment of surface water quality in Uluabat Lake,Turkey[J]. Environ. Monit. Assess.,2008,144:269-276.
    [133]Pardo R, Vega M, Debán L, et al. Modelling of chemical fractionation patternsof metals in soils by two-way and three-way principal component analysis[J].Anal. Chim. Acta.,2008,606:26-3l6.
    [134]Boruvka L, Vacek O, Jehlicka J. Principal component analysis as a tool toindicate the origin of potentially toxic elements in soils. Geoderma,2005,128:289-300.
    [135]Wang H O, Zhong G R. Effect of Organic ligands on accumulation of copperin hyperaccumulator and nonaccumulator commelina communis[J]. Biol. Trace.Elem. Res.,2011,143(1):489-499.
    [136]Qiao M, Cai C, Huang Y, et al. Characterization of soil heavy metalcontamination and potential health risk in metropolitan region of northernChina [J]. Environ. Monit. Assess.,2011,172:353-365.
    [137]成杭新,庄广民,赵传冬,等.北京市土壤Hg污染的区域生态地球化学评价.地学前缘.2008,15(5):126-146.
    [138]Cao H, Chen J, Zhang J, et al. Heavy metals in rice and garden vegetables andtheir potential health risks to inhabitants in the vicinity of an industrial zone inJiangsu, China[J]. J. Environ. Sci.,2010,22(11):1792-1799.
    [139]Qishlaqi A, Moore F, Forghani G. Impact of untreated wastewater irrigation onsoils and crops in Shiraz suburban area, SW Iran[J]. Environ. Monit. Assess.,2008,141:257-273.
    [140]Liu J, Duan C Q, Zhang X H, et al. Subcellular distribution of chromium inaccumulating plant Leersia hexandra Swartz[J]. Plant Soil,2009,322:187-195.
    [141]Hellstr m L, Persson B, Brudin L, et al. Cadmium exposure pathways in apopulation living near a battery plant[J]. Sci. Total. Environ.,2007,373:447-455.
    [142]Jernstr m J, Lehto J, Dauvalter V A, et al. Heavy metals in bottom sedimentsof Lake Umbozero in Murmansk Region, Russia. Environ[J]. Monit. Assess.,2010,161:93-105.
    [143]Billon G, Ouddane B, Recourt P, et al. Depth variability and some geochemicalcharacteristics of Fe, Mn, Ca, Mg, Sr, S, P, Cd and Zn in anoxic sedimentsfrom Authie Bay (Northern France)[J]. Estuar. Coast. Shelf. Sci.,2002,55:167-181.
    [144]Singh K P, Mohan D, Singh V K, et al. Studies on distribution andfractionation of heavy metals in Gomti river sediments-a tributary of theGanges[J]. India. J. Hydrol.,2005,312:14-27.
    [145]Kabala C, Singh B R. Fractionation and mobility of copper, lead, and zinc insoil profiles in the vicinity of a copper smelter[J]. J. Environ. Qual.,2001,30:485-492.
    [146]Hu N, Li Z, Huang P, Tao C. Distribution and mobility of metals inagricultural soils near a copper smelter in South China[J]. Environ. Geochem.Health.,2006,28:19-26.
    [147]Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Znin soil using amendments-a review[J]. Waste Manag.,2008,28:215-225.
    [148]Fytianos K, Lourantou A.(Speciation of elements in sediments samplescollected at lakes Volvi and Koronia[J], N. Greece. Environ. Int.,2004,30:11-17.
    [149]Ma L Q, Rao G N. Chemical fractionation of cadmium, copper, nickel and zincin contaminated soils[J]. J. Environ. Qual.,1997,26(1):259–264.
    [150]Li Q S, Wu Z F, Chu B, et al. Heavy metals in coastal wetland sediments of thePearl River Estuary, China[J]. Environmental Pollution.2007,149:158-164.
    [151]Rastmanesh F, Moore F, Keshavarzi B. Speciation and phytoavailability ofheavy metals in contaminated soils in sarcheshmeh area, Kerman Province,Iran[J]. Bull. Environ. Contam. Toxicol.,2010,85(5):515-519.
    [152]Wong M H. Ecological restoration of mine degraded soils, with emphasis onmetal contaminated soils[J]. Chemosphere.2003,50:775-780.
    [153]Kucharski R, Sas-Nowosielska A, Ma kowski E, et al. The use of indigenousplant species and calcium phosphate for the stabilization of highlymetal-polluted sites in southern Poland[J]. Plant Soil,2005,273:291-305.
    [154] Geebelen W, Adriano D C, van der Lelie D, et al. Selected bioavailabilityassays to test the efficacy of amendment-induced immobilization of lead insoils[J]. Plant Soil,2003,249(1):217-228.
    [155]Prasad M N, Freitas M H. Metal hyperaccumulation in plants biodiversityprospecting for phytoremediation technology[J]. Electron. J. Biotech.,2003,6:285-321.
    [156]Maiti S K. Bioreclamation of coal mine overburden dumps-with specialemphasis on micronutrients and heavy metals accumulation in tree species[J].Environ. Monit. Assess.,2007,125:111-122
    [157]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanumnigrum L).科学通报,2004,49(24):2568-2573.
    [158]Jones M M, Tuomisto H, Borcard D, et al. Explaining variation in tropicalplant community composition: influence of environmental and spatial dataquality[J]. Oecologia,2008,155:593-604.
    [159]Suter M, Ramseier D, Guesewell S, et al. Convergence patterns and multiplespecies interactions in a designed plant mixture of five species[J]. Oecologia,2007,151:499–511.
    [160]Liancourt P, Callaway R M, Michalet R,2005. Stress tolerance ndcompetitive-response ability determine the outcome of iotic interactions[J].Ecology,86(6):1611-1618.
    [161]Matthias S, Dieter R, Sabine G, et al. Convergence patterns and multiplespecies interactions in a designed plant mixture of five species[J]. Oecologia,2007,151(3):499-511.
    [162]Gulz P A, Gupta S K, Schulin R. Arsenic accumulation of common plants fromcontaminated soils[J]. Plant Soil,2005,272:337-347.
    [163]García-Salgado S, García-Casillas D, Quijano-Nieto M A, et al. Arsenic andheavy metal uptake and accumulation in native plant species from soilspolluted by mining activities[J]. Water Air Soil Pollut.,2012,223(2):559-572.
    [164]Chatterjee C, Gopal R, Dube B K. Physiological and biochemical responses ofFrench bean to excess cobalt[J]. J. Plant. Nutri.,2006,29:127-136.
    [165] Reeves R D, Baker A J M. Metal-accumulating plants. Phytoremediation oftoxic metals: using plants to clean up the environment[M]. In: Raskin I, EnsleyBD (eds). Wiley, New York,2000:193-230.
    [166]Brunetti G, Soler-Rovira P, Farrag K, et al. Tolerance and accumulation ofheavy metals by wild plant species grown in contaminated soils in Apuliaregion, Southern Italy[J]. Plant Soil.,2009,318:285-298.
    [167]Salt D E, Blaylock M, Kumar N P, et al. Phytoremediation: a novel strategy forthe removal of toxic metals from the environment using plants[J]. Bio.Technol.,1995,13:468-474.
    [168]Gao Y, Miao C, Xia J, et al. Effect of citric acid on phytoextraction andantioxidative defense in Solanum nigrum L. as a hyperaccumulator under Cdand Pb combined pollution[J]. Environ. Earth. Sci.,2012,65(7):1923-1932.
    [169]Wei S H, Zhou Q X, Wang X, et al. A newly-discovered Cd-hyperaccumulatorSolanum nigrum L.[J]. Chin. Sci. Bull.,2005,50:33-39.
    [170]Peng K J, Li X D, Luo C L, et al. Vegetation composition and heavy metaluptake by wild plants at three contaminated sites in Xiangxi area, China[J]. J.Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng.,2006,41(1):65-76.
    [171]Kloke A, Sauerbeck D C, Vetter H. The contamination of plants and soils withheavy-metals and the transport of metals in terrestrial food chains. In: NriaguJO (ed) Changing metal cycles and human health[M]. Dahlem Konferenzen,Berlin,1984:113-141.
    [172]Sharma D C, Sharma C P, Tripathi R D. Phytotoxic lesions of chromium inmaize[J]. Chemosphere,2003,51:63-68.
    [173] Shaw B P, Sahu S K, Mishra R K. Heavy-metal induced oxidative damage interrestrial plants[M]. In: Prasad MNV (ed) Heavy-metal stress in plants: frommolecules to ecosystems,2nd edn. Springer, Berlin.2004:84-126.
    [174]Shu X, Yin L Y, Zhang Q, et al. Effect of Pb toxicity on leaf growth,antioxidant enzyme activities, and photosynthesis in cuttings and seedlings ofJatropha curcas L.[J]. Environ. Sci. Pollut. Res.,2012,19(3):893-902.
    [175]Marques A P, Oliveira R S, Rangel A O, et al. Application of manure andcompost to contaminated soils and its effect on zinc accumulation by Solanumnigrum inoculated with arbuscular mycorrhizal fungi[J]. Environ. Pollut.,2008,151:608-620.
    [176]Chaiyarat R, Suebsima R, Putwattana N, et al. Effects of soil amendments ongrowth and metal uptake by Ocimum gratissimum grown inCd/Zn-Contaminated Soil[J]. Water Air Soil Poll.,2011,214:383-392.
    [177]Zacchini M, Pietrini F, Mugnozza G S, et al. Metal Tolerance, Accumulationand Translocation in Poplar and Willow Clones Treated with Cadmium inHydroponics[J]. Water Air Soil Poll.,2009,197:23-34.
    [178]毛亮,靳治国,高扬,等.微生物对龙葵的生理活性和吸收重金属的影响.农业环境科学学报,2011,30(1):29-36.
    [179]Xu J, Yin H X, Li X.. Protective effects of proline against cadmium toxicity inmicropropagated hyperaccumulator, Solanum nigrum L.[J]. Plant Cell Rep.,2009,28:325-333.
    [180]Güleryüz G, Arslan H, elik C, et al. Heavy metal content of plant speciesalong Nilüfer stream in industrialized Bursa city, Turkey[J]. Water Air SoilPoll.,2008,195:275-284.
    [181]Kim Y, Kim B K, Kim K. Distribution and speciation of heavy metals and theirsources in Kumho River sediment, Korea[J]. Environ. Earth Sci.,2010,60:943-952.
    [182]Wang J, Zhang C B, Ke S S, et al. Different spontaneous plant communities inSanmen Pb/Zn mine tailing and their effects on mine tailing physico-chemicalproperties[J]. Environ Earth Sci.,2011,62:779-786.
    [183]Archer M J G, Caldwell R A. Response of six Australian plant species to heavymetal contamination at an abandoned mine site[J]. Water Air Soil Poll.,2004,157:257-267.
    [184]Leyval C, Berthelin J. Rhizodeposition and net release of soluble organiccompounds by pine and beech seedlings inoculated with rhizobacteria andectomycorrhizal fungi [J]. Biol. Fertil. Soils.1993,15:259-267.
    [185]徐卫红,黄河,王爱华,等.根系分泌物对土壤重金属活化及其机理研究进展[J].生态环境,2006,15(1):184-189.
    [186]Albert K, Dieter R, Matthias S. Competition alters plant species response tonickel and zinc[J]. Plant Soil.,2008,303:241-251.
    [187]Frérot H, Lefèbvre C, Gruber W, et al. Specific interactions between localmetallicolous plants improve the phytostabilization of mine soils[J]. Plant Soil.,2006,282(1-2):53-65.
    [188]Margesin R, P aza G A, Kasenbacher S. Characterization of bacterialcommunities at heavy-metal-contaminated sites[J]. Chemosphere,2011,82:1583-1588.
    [189]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    [190]Whitfield slund M L, Rutter A, Reimer K J, et al. The effects of repeatedplanting, planting density,and specific transfer pathways on PCB uptake byCucurbita pepo grown in field conditions[J]. Science of the Total Environment,2008,405(1-3):14-25.
    [191]Khan M S, Zaidi A, Wani P A, et al. Role of plant growth promotingrhizobacteria in the remediation of metal contaminated soils[J]. Environ. Chem.Lett.,2009,7:1-19.
    [192]Meroth C B, Walter J, Hertel C, et al. Monitoring the bacterial populationdynamics in sourdough fermentation processes by using PCR-denaturinggradient gel electrophoresis[J]. Appl. Environ. Microbiol.,2003,69:475-482.
    [193]Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diversecomposition[J]. Applied and Environmental Microbiology,1996,62:316-322.
    [194]Kuiper I, Lagendijk E L, Bloemberg G V, et al. Rhizoremediation: a beneficialplant-microbe interaction[J]. Mol. Plant Microbe. Interact.,200417:6-15.
    [195]Lee E H, Kim J, Kim J Y, et al. Comparison of microbial communities inpetroleum-contaminated groundwater using genetic and metabolic profiles atKyonggi-Do, South Korea[J]. Environ. Earth. Sci.2010,60:371-382.
    [196]Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not alwaysrepresent single bacterial strains in denaturing gradient gel electrophoresisanalysis[J]. Biotechno. Lett.,2001,23:1205-1208.
    [197] Watanabe T, Kimura M, Asakawa S. Community structure of methanogenicarchaea in paddy field soil under double cropping (rice-wheat)[J]. Soil Biol.Biochem.,2006,38:1264-1274.
    [198]Yan Y, Yang J, Dou Y, et al. Nitrogen fixation island and rhizospherecompetence traits in the genome of root-associated Pseudomonas stutzeriA1501[J]. Proc. Natl. Acad. Sci. USA.,2008,105(21):7564-7569.
    [199]Silby M W, Cerde o-Tárraga A M, Vernikos G S, et al. Genomic and geneticanalyses of diversity and plant interactions of Pseudomonas fluorescens[J].Genome Biol.,2009;10(5): R51.
    [200]Muller D, Médigue C, Koechler S, et al. A tale of two oxidation states:bacterial colonization of arsenic-rich environments[J]. PLoS Genet.2007,3(4):53.
    [201]Kaneko T, Minamisawa K, Isawa T, et al. Complete genomic structure of thecultivated rice endophyte Azospirillum sp. B510[J]. DNA Res.,2010,17(1):37-50.
    [202]Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity inpermanently cold marine sediments[J]. Appl. Environ. Microbiol.,1999,6:3982-3989.
    [203]Bowman J P, McCuaig R D. Biodiversity, community structural shifts, andbiogeography of prokaryotes within Antarctic continental shelf sediment[J].Appl. Environ. Microbiol.,2003,69:2463-2483.
    [204]Colwell R K, Coddington J A. Estimating terrestrial biodiversity throughextrapolation[J]. Phil. Trans. R. Soc. Lond.,1994. B345,101-118.
    [205]Bent S J, Forney L J. The tragedy of the uncommon: understanding limitationsin the analysis of microbial diversity[J]. ISME. J.,2008,2:689-695.
    [206]Jackson C R, Denney W C. Annual and seasonal variation in the phyllospherebacterial community associated with leaves of the Southern Magnolia(Magnolia grandiflora)[J]. Microb Ecol.,2011,61:113-122.
    [207]Herrera A, He′ry M, Stachc J E M, et al. Species richness and phylogeneticdiversity comparisons of soil microbial communities affected by nickel-miningand revegetation efforts in New Caledonia[J]. Eur. J. Soil. Biol.,200743:130-139.
    [208]Bharadwaj D P, Lundquist P O, Persson P, et al. Evidence for specificity ofcultivable bacteria associated with arbuscular mycorrhizal fungal spores[J].FEMS. Microbiol. Ecol.,2008,65(2):310-22.
    [209]Rajkumar M, Freitas H. Influence of metal resistant-plant growth-promotingbacteria on the growth of Ricinus communis in soil contaminated with heavymetals[J]. Chemosphere.2008,71(5):834-42.
    [210]He M, Li X, Guo L, et al. Characterization and genomic analysis of chromateresistant and reducing Bacillus cereus strain SJ1[J]. BMC Microbiol.,2010,10:221.
    [211]Ma M, Wang C, Ding Y, et al. Complete genome sequence of Paenibacilluspolymyxa SC2, a strain of plant growth-promoting Rhizobacterium withbroad-spectrum antimicrobial activity[J]. J. Bacteriol.,2011,193(1):311-312.
    [212]Sheng X F, Xia J J, Jiang C Y, et al. Characterization of heavy metal-resistantendophytic bacteria from rape (Brassica napus) roots and their potential inpromoting the growth and lead accumulation of rape[J]. Environ Pollut.,2008,156(3):1164-1170.
    [213]Ward N L, Challacombe J F, Janssen P H, et al. Three genomes from thephylum Acidobacteria provide insight into the lifestyles of thesemicroorganisms in soils[J]. Appl. Environ.,2009, Microbiol.75(7):2046-2056.
    [214]Ma Y F, Zhang Y, Zhang J Y, et al. The complete genome of Comamonastestosteroni reveals its genetic adaptations to changing environments[J]. Appl.Environ. Microbiol.,2009,75(21):6812-6819.
    [215]Chen Y X, Wang Y P, Lin Q, et al. Effect of copper-tolerant rhizospherebacteria on mobility of copper in soil and copper accumulation by Elsholtziasplenden[J]. Environ Int.,2005,31:861-866.
    [216]Braud A, Jezequel K M, Bazot S, et al. Enhanced phytoextraction of anagricultural Cr and Pb contaminated soil by bioaugmentation with siderophoreproducing bacteria[J]. Chemosphere.2009,74(2):280-286.
    [217]Navarro-Noya Y E, Jan-Roblero J, González-Chávez M C, et al. Bacterialcommunities associated with the rhizosphere of pioneer plants (Bahia xylopodaand Viguiera linearis) growing on heavy metals-contaminated soils[J]. AntonieVan Leeuwenhoek,2010,97(4):335-49.
    [218]Siezen R J, Bayjanov J, Renckens B, et al. Complete genome sequence ofLactococcus lactis subsp. lactis KF147, a plant-associated lactic acidbacterium[J]. J. Bacteriol.,2010,192(10):2649-2650.
    [219]Vodovar N, Vallenet D, Cruveiller S, et al. Complete genome sequence of theentomopathogenic and metabolically versatile soil bacterium Pseudomonasentomophila[J]. Nat. Biotechnol.,2006,24(6):673-679.
    [220]Crossman L C, Gould V C, Dow J M, et al. The complete genome,comparative and functional analysis of Stenotrophomonas maltophilia revealsan organism heavily shielded by drug resistance determinants[J]. Genome Biol.,2008,9(4):74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700