用户名: 密码: 验证码:
射流式液动锤增设蓄能装置的数值分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Numerical and Experimental Study of Liquid Jet Hammer with Energy-saving Mechanism
  • 作者:彭枧明
  • 论文级别:博士
  • 学科专业名称:地质工程
  • 学位年度:2004
  • 导师:殷琨
  • 学科代码:081803
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-10-30
摘要

    构建合理的数学模型,开发模拟仿真软件,对射流式液动锤
    进行数值分析,可以大大缩短优良性能产品的研制开发周期,降
    低试制成本和风险,是射流式液动锤理论研究的重要方面。前人
    已 有 数 学 模 型 预 测 的 射 流 式 液 动 锤 前 后 腔 压 力 变 化 曲 线 无 论 在
    形状还是在数值上与实测曲线有较大的差距,对驱使活塞冲锤运
    动的作用力——前后腔液体压力的数学描述不尽合理,忽略了射
    流式液动锤的心脏和灵魂——射流元件的存在。依据前人已有模
    型和软件预言,随着活塞冲锤质量的增加,冲击功和冲击频率
    增加,而多次重复试验明确证明,冲击功增加,冲击频率降低。
    另外,前人已有模型没有涉及储能装置。因此,为推进无储能装
    置和有储能装置的射流式液动锤内部动力过程的理论研究,有必
    要进一步深入研究改进射流式液动锤内部动力过程的数学模型。
     射流式液动锤单次冲击功和工作稳定性的显著提高,将大幅
    度地提高冲击破碎岩石的效率,明显改善坚硬岩石钻进效果,促
    进它在油气钻井、地热钻井、大陆和大洋科学钻探、非开挖导向
    钻进、基岩水井钻凿等领域的推广应用。前人为此做了大量卓有
    成效的工作,积累了宝贵的经验,获得了大量珍贵的数据。但是
    射 流 式 液 动 锤 的 活 塞 冲 锤 冲 击 末 速 度 与 气 动 和 油 压 冲 击 器 普 遍
    达到的 8~10m/s 冲击末速度相比还相距甚远,冲击节奏的稳定性
    也有待显著提高。深入分析研究表明,气动和油压冲击器冲击末
    速度之所以可以达到材料许可的冲击速度的极限值,关键在于二
    者都存在储能机制。储能机构的存在是油压冲击器在小流量、高
    泵压条件下得以节奏稳定地输出高冲击功的最关键因素之一。因
    此,有必要借鉴气动和油压冲击器的储能机制,对射流式液动锤
    上增设储能装置进行理论研究和试验研究。
     本文针对上述问题进行了研究,内容包括:(1)无储能装置的
    射流式液动锤内部动力过程新模型。(2)有储能装置(包括前腔单
    独接蓄能器、后腔单独接蓄能器、前后腔均接蓄能器、后端设蓄
    能器缓冲储能和后端设弹簧储能。)的射流式液动锤内部动力过
    程数学模型。(3)基于新构建的系列模型开发数值分析软件。(4)
    运用基于新系列新模型的新仿真软件分析 16 个参数的变化对射
    流式液动锤性能的影响,寻找有利于大幅度提高活塞冲锤冲击末
    速度的结构形式和参数组合。(5)研制开发冲击末速度非接触测定
    系统,提高测试的精度和可靠性;引进新的冲击频率精确测定工
    具。(6)开展射流式液动锤前后腔增设蓄能器的试验研究。
     基 于 新 构 建 的 无 蓄 能 装 置 的 射 流 式 液 动 锤 “ 类 冲 击 式 水 轮
     1
    
    
    机”模型,预言的各参数对射流式液动锤性能影响规律与前人经
    反复确认的试验结果在变化趋势上完全一致。受冲击式水轮机的
    原理及其力学模型启发,作者在国内外首次构建了将射流元件包
    含在内的射流式液动锤模型,推导得到了物理含义清晰的射流式
    液动锤前后腔液体压力的明确数学表达式,依据大量计算数据描
    绘 的 前 后 腔 液 体 压 力 随 时 间 变 化 的 曲 线 与 实 测 曲 线 在 形 状 上 很
    相似,清楚地反映了行程终了时水击压力及每个活塞冲锤运动周
    期内前后腔压力的变化过程。依据数值分析结果描绘的前后腔压
    力变化曲线各点的数值与实测数据有一定差距,原因在于:一是
    测试系统有误差;更重要的是随机干扰因素(如活塞冲锤加工装
    置精度不高导致活塞冲锤受到附加的摩擦力。)实际上普遍存在,
    但难以描述和预测,模型中为简化起见未加考虑。
     基于无储能装置的射流式液动锤“类冲击式水轮机”模型,
    结合理想气体绝热过程方程等,扩展建立了有储能装置的系列数
    学模型,可以用来分析预测前后腔液体压力、蓄能器内气体体积
    和压力随时间的变化过程。
     在 Visual Basic 6.0 开发平台上开发的仿真分析软件包含了作
    者建立的系列数学模型,功能较强、界面简单清晰、交互性好。
    该 数 值 分 析 软 件 可 以 计 算 分 析 给 定 参 数 条 件 下 的 无 储 能 装 置 和
    有储能装置射流式液动锤的性能参数,每隔 10 个时间步长自动
    将过程数据输出到 Excel 文件,以绘出前后腔压力、活塞冲锤运
    动的加速度、速度和位移、蓄能器容积和压力等随时间变化曲线;
    计算分析 15 个参数对射流式夜动锤性能影响的规律。
     数值分析结果表明,前后腔连接蓄能器对活塞冲锤冲击末速
    度和单次冲击功、冲击频率等影响很小;弹簧缓冲储能对活塞冲
    锤冲击末速度和单次冲击功、冲击频率等影响也很小;后端设蓄
    能器缓冲储能对单次冲击功、冲击频率等影响显著。后端缓冲蓄
    能器的充气压力、初始容积的变化并不引起射流式液动锤性能的
    显著变化,但与无储能装置时相比,活塞冲击末速度可提高 46%~
    62%,频率可提高 10%~ 15%。活塞杆缓冲段直径和缓冲行程的变
    化可以引起冲击功和冲击频率的很显著变化。在其它条件一定的
    情况下,活塞杆缓冲段直径从Φ42mm 减小到Φ10mm,冲击末速度
    从 4.23m/s 增加到 8.22m/s,与无储能装置时相比,冲击末速度
    和 冲 击 ?
Elaborately designed mathematical model of liquid jet
    hammer and simulation software upon the model are important
    to the optimization of its performance. In the model developed
    by other researchers the fluidic amplifier— the core component
    of the hammer was ignored, which resulted in great difference
    between the simulated P— T curves and the observed. The old
    model predicts that the increase of mass of the piston-block
    unit will result in the increase of impact energy and blow
    frequency, while the results of repeated experiments show that
    impact energy increases and blow frequency decreases.
    Besides, the impact of the energy-saving mechanism isn’t
    considered in the old model.
     In this work new mathematical models were elaborately
    built and discussed in detail. These models include the model
    without energy-saving mechanism and models with
    energy-saving mechanism. Based upon the new models, a
    new simulation software was developed. With the help of the
    software the impacts of 15 parameters on the performance of
    liquid jet hammer were numerically analyzed.
     The new model of the liquid jet hammer without
    energy-saving mechanism was similar to that of an impulse
    water turbine. In the new model, the fluidic amplifier is
    considered, and the pressures of liquid in the fore and rear
    working chamber were expressed clearly in mathematical
    forms. The figures of P— T curves predicted by the model are
    basically similar to the observed. The magnitudes of pressure
    pulses produced at the end of each stroke can be predicted
    relatively precisely according to the new model and simulation
    software. The predicted impacts of parameters upon the
    performance of the liquid jet hammer are consistent with the
     4
    
    
    results of previous repeated experiments. But there exist
    errors caused by some random factors such as additional
    friction forces between the piston-block unit and the outer tube.
    Such factors are not taken into account because of their
    complexity but their impacts are usually great.
     On the basis of the model of liquid jet hammer without
    energy-saving mechanism, models of liquid jet hammer with
    energy-saving mechanism were set up. According to the
    models, the performance of liquid jet hammer with
    energy-saving mechanism, the pressures of the liquid in the
    fore and rear chamber and the volumes and pressures of the
    accumulators can be predicted.
     The results of numerical analysis show that: (1) the
    impacts of accumulators connected to the fore and rear
    chamber on impact energy and blow frequency are very little.
    (2) the impacts of energy-saving mechanism of spring on the
    performance of liquid jet hammer are also little. (3) the impacts
    of energy-saving mechanism of buffering accumulator fixed at
    the rear end of the inner cylinder are great.
     According to the results of numerical analysis, the
    performance of liquid jet hammer is not sensible to change of
    initial volume and charge pressure of the buffering accumulator,
    but the impact velocity of the piston-block unit and blow
    frequency will increase by 46% ~ 62% and 10% ~ 15%
    respectively when buffering accumulator is connected. Change
    of the diameter of the buffering section of the piston could
    cause great changes of impact velocity and blow frequency.
    Under a definite condition, when the diameter of the buffering
    section of the piston varies from Φ 42mm to Φ 10mm, the
    impact velocity will increase from 4.23m/s to 8.22m/s.
    Compared with the liquid jet hammer without energy-saving
    mechanism, impact velocities and impact energy increase by
    77% ~ 244% and 213% ~ 1083% respectively, and blow
    frequency increase by 28.4% ~ 46.6%. Under definite
    conditions change of the buffering stroke (defined as the
    distance between the rear end and the inlet of the buffering
     5
    
    
    cavity in the inner cylinder when the piston-block unit at the
    lowest positio
引文
[1]刘振铎等.刘广志文集[M].北京:地质出版社,2003
    [2]徐小荷等.冲击凿岩的理论基础与电算方法[M].沈阳:东北工学院出版社,1986
    [3]徐小荷等.冲击式凿岩及其工具[M].北京:冶金工业出版社,1959
    [4]耿瑞伦,陈星庆等.多工艺空气钻探[M].北京:地质出版社,1998
    [5]C.L William.Air and Gas Drilling Manual[M].Huston:Galf Publishing Co., 1984
    [6]蒋荣庆等.冲击回转多工艺钻进方法的新发展.长春地质学院建院 40 周年科学研究
    论文集(勘察技术与方法 I)[C].长春:吉林科学技术出版社,1992
    [7] 殷琨,蒋荣庆.潜孔锤反循环钻进技术及其应用[J].探矿工程[岩土钻掘工
    程],1996(5):13-15
    [8]殷琨,蒋荣庆.发展中的冲击回转钻进技术[J].探矿工程[岩土钻掘工程],1997
    (5):53-55
    [9]蒋荣庆,殷琨.气动贯通式潜孔锤反循环连续取心(样)钻具系统研制及使用效果[J].
    地质与勘探.1996(3):55-60
    [10]蒋荣庆,殷琨.FGC—15 型大直径单头潜孔锤钻具系统研制[J].探矿工程[岩土钻掘
    工程],1995(5):17-19
    [11]蒋荣庆,殷琨.潜孔锤多工艺钻进在水文水井及工程中的应用[J].水文地质工程地
    质.1998(6):51-54
    [12]蒋荣庆等. 潜孔锤钻进在复杂地层中应用[J]. 地质与勘探,1999,35(6)
    [13]王人杰,蒋荣庆等.液动冲击回转钻进技术.北京:地质出版社,1988
    [14]王人杰,苏长寿.我国液动冲击回转钻探的回顾与展望[J].探矿工程[岩土钻掘工
    程]增刊,1999(z1)
    [15] http://www.netl.doe.gov/scng/projects/adv-drill/ad41999.html
    [16]National Research Council.Dilling and Exacavation Technologies for the
    Future[M].WASHITON,D.C.: NATIONAL ACADEMY PRESS,1994
    [17]Crude Oil and Natural Gas Wells Drilled, http://www.eia.doe.gov/
    [18]http://web.mit.edu/energylab/nadet/Drilling RD&D Program.htm
    [19]The Office of Natural Gas and Petroleum Technology Strategic Plan— Oil
    and Gas R & D Programs ,US Department of Energy ,February 1999
    [20] Gordon A. Tibbitts et al.World's First Benchmarking of Drilling Mud Hammer
    Performance at Depth Conditions, Proceedings of the Drilling Conference, 2002,
    p 581-588 ,http://www.terratek.com/publications/IADC-SPE74540-request.html
    [21] Karen Bybee.Mud Hammer Drilling Performance [J].Journal of Petroleum
    Technology,2002(12)
    [22]David S. Pixton . development and testing of a downhole mud actuated
    hammer—Phase II Final Report, May 1999
    http://www.novadiamond.com/mudhamme.html
    [23]David S. Pixton.a new-generation mud hammer drilling tool- annual report[C].
    Proceedings of the Natural Gas Conference Emerging Technologies for the Natural
    Gas Industry, 1997
     第 105 页 共 109 页
    
    
    博士学位论文: 射流式液动锤增设蓄能装置的数值分析与实验研究
    [24]Karasawa, Hirokazu et al.Proposal for New Type of Downhole Percussion
    Drills for Hard Rock Drilling[C].Transactions - Geothermal Resources Council,
    2002, 197-200
    [25]Pixton, David S. Rotary-percussive drilling engine[C] . Houston:
    Proceedings of the 1998 ASME Energy Sources Technology Conference,1998
    [26]Gaddy, Dean E. Russian drilling technologies - 1: Pioneering work, economic
    factors provide insights into Russian drilling technology [J].Oil and Gas
    Journal, 1998, 96(27), 67-69
    [27]Gaddy, Dean E. Russia shares technical know-how with U.S. [J].Oil and Gas
    Journal, 1999, 97(10), 51-56
    [28]Pettigrew, Thomas L. et al. Drilling casing into fractured hard rock formations
    in deep water using a water powered hammer drill[J].Drilling Technology, 1998, 7
    [29]Tuomas, Goran .Effective use of water in a system for water driven hammer
    drilling[J].Tunnelling and Underground Space Technology, 2004,19(1),69-78
    [30]Placido, Joao Carlos R. et al. A New Type of Hydraulic Hammer Compatible
    with Conventional Drilling Fluids[C].Proceedings - SPE Annual Technical
    Conference and Exhibition,2003,2601-2607
    [31]John Rowley et al.Advanced drilling system for drilling geothermal wells-an
    estimate of cost savings[C].Proceedings of world geothermal congress
    2000,2399-2404
    [32]Pixton, D.S. et al.Development of a New-Generation Mud-Driven Hammer System.
    [J].National Advanced Drilling and Excavation Technologies News,2002,3(1)
    [33]Rowley, J.C., Saito, S., and Long, R. An advanced geothermal drilling system:
    Component Options and Limitations[C]. Proceedings of ASME/ET ALE Drilling
    Technology Symposium, 1995,65,25-32
    [34]Hall, et al. Down-hole mud actuated hammer, United States Patent 5,396,965
    [35]Kennedy. Drilling assembly for percussion drilling of deep wells, United
    States Patent 4,694,911
    [36]Mayer, et al. Hydraulic Percussion tool, United States Patent 4,828,048
    [37]Harris, et al. Mud actuated drilling tool, United States Patent 3,970,152
    [38]Coffman, et al. Percussion drill assembly, United States Patent 5,662,180
    [39]Coffman, et al. Percussion drill assembly, United States Patent 5,957,220
    [40]Coffman, et al. Percussion drill assembly, United States Patent 6,047,778
    [41]Runquist, et al. Steerable fluid hammer, United States Patent 6,659,202
    [42]Dock, et al. Rotary driven drilling hammer, United States Patent 6,761,231
    [43]Pixton, et al. A Rotary-Percussive Drilling Engine[C].Proceedings of the
    1998 ASME Energy Sources Technology Conference, Houston,1998
    [44]Pierce, K. et al. Advanced Drilling Systems Study. Technical Report
    SAND95-0331, Sandia National Laboratories, Albuquerque,1996
    [45]Andrei Kiselev et al. Hydraulic Hammer Drilling Technology: evelopments
     第 106 页 共 109 页
    
    
    博士学位论文: 射流式液动锤增设蓄能装置的数值分析与实验研究
    and Capabilities[J].Journal of energy resources technology,2000,122
    [46]Gelfgat et al. Complete System For Continuous Coring With Retrievable Tools
    In Deep Water[C]. IADC/SPE Paper 27521,1994
    [47]Finger, J. T. Investigation of Percussion Drills for Geothermal
    Application[J]. Journal of Petroleum Technology,1984,2128–2136.
    [48]Arnis Drudzis, optimization of mud hammer drilling performance – a program
    to benchmark the viability of advanced mud hammer drilling, January 2003
    http://www.netl.doe.gov/scng/projects/adv-drill/ad40918.html
    [49]Fundamental Research on Percussion Drilling: Improved Rock Mechanics
    Analysis, Advanced Simulation Technology, and Full-Scale Laboratory
    Investigations
    [50]Deulsch, U., Marx, C., and Rischmuller, H. (1995). Evaluation of hammer
    drilling potential for KTB in super-deep drilling and deep geophysical sounding.
    Springer-Veerlag, Heidelberg, Germany, pp.310-320.
    [51]http://www-odp.tamu.edu/publications/prelim/179_prel/179hdcs.html
    [52]http://www.sdscorp.com.au/labtest.html
    [53]http://www.osti.gov/dublincore/gpo/servlets/purl/812540-HNOGGp/native/
    812540.pdf
    [54]郑新权等.中国石油钻井技术现状及需求[J].石油钻采工艺,2003,25(2)
    [55]何爱国等.进口大尺寸φ444.5mm 钻头在两口科探井中的应用[J].石油钻采工艺,
    1999,21(5)
    [56]王关清等.深探井和超深探井钻井的难点分析和对策探讨[J].石油钻采工艺,
    1998,20(1)
    [57]唐继平等.塔里木山前复杂地层钻头使用技术[J].石油钻采工艺,2003,25(2)
    [58]王同良等.中国钻井技术经济指标的发展规律研究[J].石油钻采工艺,2001,23(1)
    [59]高德利.油气钻井技术展望[J].石油大学学报(自然科学版),2003,27(2)
    [60]高德利.21 世纪油气钻井技术展望[J].石油化工动态,2000,8(2)
    [61]王同良等.世界石油钻井科技发展水平与展望[J].石油钻采工艺,2000,22(2)
    [62] 苏长寿. 液动潜孔锤的现状及用于石油钻井应注意的几个问题[J].探矿工程[岩
    土钻掘工程], 2002(1)
    [63]苏长寿. 液动潜孔锤技术现状及发展设想[J].探矿工程[岩土钻掘工程], 2003(1)
    [64]谢文卫等. YZX127 型液动潜孔锤的研究及应用[J].探矿工程[岩土钻掘工程]增刊,
    2003(z1)
    [65]任海军. 液动锤在科钻一井先导孔钻井中的应用[J]. 石油钻探技术,2002 ,30
    (5)
    [66]陶兴华.提高深井钻井速度的有效技术方法[J].石油钻采工艺,2001,5
    [67]张云连.冲击旋转钻井工具的发展现状及应用研究[J].石油矿场机械,2001,30(5)
    [68]耿瑞伦等. 液动锤技术及其应用前景[J].探矿工程[岩土钻掘工程] 2001(1)
    [69]张伟.2001 年中国大陆科学钻探工程取得重要进展[J].探矿工程[岩土钻掘工程],
    2002(1)
     第 107 页 共 109 页
    
    
    博士学位论文: 射流式液动锤增设蓄能装置的数值分析与实验研究
    [70]张晓西等.大口径硬岩钻探技术在中国大陆科学钻探工程中的应用[J].探矿工程
    [岩土钻掘工程], 2003(1)
    [71]殷琨,蒋荣庆.科学深钻用射流式液动锤研制报告,2000.4
    [72]菅志军, 殷琨等. 增大液动射流式冲击器单次冲击功的试验研究[J].长春科技大
    学学报,2000,30(3),303-306
    [73]殷琨等.大冲击功液动锤的研究及其应用[J].探矿工程[岩土钻掘工程],1996(4)
    [74]菅志军.石油钻井液动射流式冲击器的研究[D]. 长春科技大学博士学位论
    文,1999
    [75] 菅志军等.液动射流式冲击器性能参数影响规律的研究[J].煤田地质与勘探,
    2002,30(5)
    [76] 菅志军等.DGSC-203 型液动射流冲击器在地热井的试验[J].地质与勘探,
    2002,38(5)
    [77]菅志军等.石油钻井液动射流式冲击器的设计[J].石油矿场机械,2002,31(6)
    [78]谭凡教等.射流式液动锤回转冲击孕镶金刚石钻头钻进的实践与分析[J]. 吉林大
    学学报(地球科学版),2003,33 (4)
    [79] 谭凡教等.地热井射流式冲击器冲击回转钻进的分流试验研究[J].煤矿机械,
    2003 ,12
    [80]http://www.krupp-berco-bautechnik.com/e/100/120/121_121001_samoter.html
    [81]何清华等.液压冲击机构研究·设计[M].长沙:中南工业大学出版社,1995
    [82]朱文华.高频高压隔膜式蓄能器[J].凿岩机械气动工具,1990,2
    [83]何清华.液压冲击机构活塞运动的三段分析法[J].凿岩机械气动工具,1993,4
    [84]田文元等.液压凿岩机冲击机构的能量损失分析[J].矿业研究与开发,2003,23(4)
    [85]杨国平等.液压振动破碎锤缓冲机构的自适应控制的研究[J].中国机械工程,2003,14
    (12)
    [86]田树军等.PCY180 型液压破碎冲击器回油管道压力冲击研究[J].凿岩机械气动工具,
    2002,4
    [87]刘忠等.压力反馈式全液压式独立调频调能液压冲击器研究[J].中国机械工程,
    2002 ,13(23)
    [88]周志鸿等.液压锤蓄能器充气压力的研究[J].凿岩机械气动工具, 2002,1
    [89]杨襄璧等.无级调节控制的液压冲击机械研究[J].中国机械工程,2002 ,13(7)
    [90]杨国平等.新型液压冲击器回油储油腔的设计理论研究[J].中国公路学报,2002 ,15
    (1)
    [91]杨国平等.用 MATLAB 语言对液压破碎锤冲击过程的仿真研究[J].筑路机械与施工
    机械化,2002 ,19 (1)
    [92]曾桂英等.液压冲击机构主设计参数适用范围的实验研究[J].凿岩机械气动工具,
    2001,4
    [93]丁问司等.液压冲击机构冲击性能在线检测方法[J].液压与气动,2001,9
    [94]罗建民等.一种新结构高性能液压碎石器[J].凿岩机械气动工具,2001,2
    [95]张星星等.压力反馈式液压冲击器动态仿真研究[J].工程机械,2000,31(4)
    [96]邹湘伏等.氮爆式液压破碎锤活塞与控制阀运动匹配研究[J].凿岩机械气动工具,
     第 108 页 共 109 页
    
    
    博士学位论文: 射流式液动锤增设蓄能装置的数值分析与实验研究
    2003,3
    [97]丁问司等.高低压蓄能器充气压力对氮爆式冲击器性能影响的仿真研究[J].建筑
    机械, 2002,8
    [98]休斯 WF,布赖顿 FA.流体动力学.北京:科学出版社,麦格劳-希尔教育出版社集
    团,2002
    [99]景思睿.流体力学[M].西安:西安交通大学出版社,2001
    [100]原田正一等.射流工程学[M].北京:科学出版社,1977
    [101]盛敬超.工程流体力学(第二版)[M].北京:机械工业出版社,1988
    [102]潘文全.流体力学基础[M].北京:机械工业出版社,1983
    [103]Frank M.White.Fluid Mechanics(Fifth Edition) [M].北京:清华大学出版
    社,2004
    [104]Frank R.Giordano et al. A First Course in Mathematical Modelling(Third
    Edition) 北京:机械工业出版社,2003
    [105]董志勇等.冲击射流[M].北京:海洋出版社,1997
    [106]王树人等.水击理论与水击计算[M].北京:清华大学出版社,1981
    [107] [日]秋元德三.水击与压力脉动(增订版)[M].北京:电力工业出版社,1981
    [108]高建铭等.水轮机的水力计算[M].北京:电力工业出版社,1982
    [109]Richard L.Burden et al. Numerical Analysis(seventh edition) [M].北京:
    高等教育出版社,2001
    [110]姜同川等.正交试验设计[M].济南:山东科学技术出版社,1985
    [111]任露泉等.试验优化技术[M].北京:机械工业出版社,1987
    [112]刘迎春等.传感器原理、设计与应用[M].长沙国防科技大学出版社,1997
    [113]王伯雄等.测试技术基础[M].北京:清华大学出版社,2003
    [114]范逸之等.Visual Basic 与 RS-232 串行通信控制[M].北京:清华大学出版
    社,2002
    [115]冯昊.Visual Basic 6.0 程序设计与上机指导[M].北京:清华大学出版社,2002
    [116]陈立周等.单片机原理及应用[M].北京:机械工业出版社,2000
    [117]王之煦等.简明机械设计手册[M].北京:机械工业出版社,1997
    [118]路甬祥等.液压气动技术手册[M].北京:机械工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700