用户名: 密码: 验证码:
三七皂苷影响动脉粥样硬化泡沫细胞形成的物质基础及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化(AS)导致的心脑血管疾病是当今人类死亡的首要原因。虽然AS的概念已提出近百年,但其发病机制尚未完全明了。AS的发生是一个多种因素在多层次上综合作用的过程。血脂水平的升高伴随着促炎因子的表达和免疫反应的激活,单核细胞活化成为巨噬细胞,血管壁脂质过氧化导致大量ox-LDL生成,巨噬细胞通过吞噬ox-LDL及其一系列信号分子的表达导致脂质代谢的障碍,并最终形成泡沫细胞。泡沫细胞的形成是AS早期变化的特征性标志,巨噬泡沫细胞的形成及其作用是动脉粥样硬化斑块损伤形成、发展和崩解的关键。因此,在调脂抗炎的同时,影响巨噬泡沫细胞的形成作为AS治疗的新策略日益受到重视。
     三七皂苷(PNS)是从三七根部提取的有效成分,主要含人参皂苷Rg1、Rb1、三七皂苷R1等。我室既往的研究证实,PNS能通过炎症免疫调节、增加动脉粥样硬化斑块稳定性、抗自由基等机制发挥防治AS的作用。但是药物作用的物质基础及机制的不明确成为制约PNS充分、合理应用的重要因素。因此,立足于PNS的有效性,以现代药理研究方法和新技术为平台,我们以巨噬泡沫细胞形成这一脂质代谢和炎症反应相互交汇的AS早期事件为切入点,研究了PNS单体及其单体配伍对AS过程中泡沫细胞形成的影响,并探讨其可能的作用机制。
     方法
     1.32只雄性日本大白兔,随机分成4组:对照组、AS模型组、PNS低剂量组、PNS高剂量组,分别用下列饲料喂养:(1)基础饲料,(2)高脂饲料,(3)高脂饲料+低剂量PNS(60mg/kg),(4)高脂饲料+高剂量PNS(120mg/kg)。实验周期12w。通过测定血清中TC、TG、LDL、MDA水平、SOD活性、主动脉苏丹Ⅳ染色及主动脉组织切片HE染色确定家兔AS模型的建立、泡沫细胞的形成及PNS的影响。
     2.收集昆明种小鼠腹腔巨噬细胞,培养与纯化后,分为5组:(1)对照组,(2)模型组,(3)PNS低剂量组(20μg·ml~(-1)),(4)PNS中剂量组(40μg·ml~(-1)),(5)PNS高剂量组(80μg·ml~(-1))。各组细胞置5%CO_2、37℃孵箱培养72h。油红O染色进行形态学观察,用酶法测定细胞内TC及FC,Lowry法测定细胞内蛋白质。
     3.正交设计实验:根据预实验结果,选取皂苷单体Rg_1、Rb_1、R_1为考察因素,每个因素各选择10~(-4)、10~(-5)、10~(-6)M三个剂量为考察水平,以胆固醇酯为指标,进行正交实验,分别确定皂苷单体Rg1、Rb1、R1及其配伍对泡沫细胞形成的影响。
     4.收集昆明种小鼠腹腔巨噬细胞,培养与纯化后,分为7组:对照组、模型组、PNS(80μg·ml~(-1))组、单体配伍组(含10~(-5)M R1、10~(-5)M Rg1、10~(-6)M Rb1)、R1(10~(-5)M)组、Rg1(10~(-5)M)组和Rb1(10~(-6)M)组。各组细胞置5%CO_2、37℃孵箱培养72h。RT-PCR方法测定巨噬细胞内ACAT-1 mRNA、Adipophilin mRNA、ABCA1 mRNA、CD36 mRNA和LXRαmRNA表达;用Western blot方法测定巨噬细胞内CD36蛋白表达。
     结果
     1.AS模型兔主动脉内膜下大量泡沫细胞积聚,动脉粥样硬化斑块面积显著增加;高剂量PNS可明显减少泡沫细胞的形成,降低动脉粥样硬化斑块面积(p<0.01)。
     2.AS模型组家兔血清中TC、TG、LDL-C水平均显著高于对照组(p<0.01);与AS模型组相比,高剂量PNS能非常显著降低TC、TG、LDL-C水平(p<0.01),低剂量PNS能显著降低家兔血清中TC水平(p<0.05),TG、LDL-C水平无统计学差异(p>0.05)。
     3.AS模型组动物血清中MDA水平明显升高(p<0.01),SOD活性明显下降(p<0.01);PNS高剂量组血清中MDA水平明显低于AS模型组(p<0.01),而SOD活性显著升高(p<0.01);PNS低剂量组血清中MDA水平低于AS模型组(p<0.05),而SOD活性无明显升高。
     4.体外培养的巨噬细胞,未经处理的细胞形态多呈梭形,油红O染色无着色;与ox-LDL共培养后,油红O染色阳性细胞遍布,且细胞体积明显增大,形态多呈圆形或不规则形;PNS中、高剂量组细胞油红O染色阳性细胞比模型组明显减少,形态渐趋正常,而PNS低剂量组细胞与模型组相比无明显变化。
     5.模型组细胞内TC、FC、CE水平呈显著高于对照组(p<0.01),且CE/TC有显著性差异(p<0.01);与模型组相比,PNS高、中剂量组细胞内TC、FC、CE水平及CE/TC均有显著性降低(p<0.01),PNS低剂量组除TC、CE显著降低外(p<0.01),其它无明显变化;PNS各剂量组间细胞内TC、FC、CE水平及CE/TC均有显著性差异(p<0.01)。
     6.正交实验表明,皂苷单体R1、Rg1、Rb1效应均显著,并且R1×Rb1和Rg1×Rb1的交互作用显著(p<0.01),其最佳单体配伍组合是:Rg1:R1:Rb1=10~(-5):10~(-5):10~(-6)M。
     7.PNS单体配伍能显著降低与ox-LDL共培养巨噬细胞中CE/TC(%)值,与高剂量PNS相比无显著差异。
     8.ox-LDL诱导巨噬细胞CD36 mRNA表达显著增加(p<0.01);PNS组和单体配伍组均能非常显著地降低CD36 mRNA表达(p<0.01),Rg1、R1组可显著降低CD36 mRNA表达(p<0.05),Rb1组无显著性差异(p>0.05);与PNS组相比,单体配伍组、Rg1组、R1组无显著性差异。
     9.ox-LDL诱导巨噬细胞Adipophilin mRNA表达显著增加(p<0.01);与模型组相比,PNS组、单体配伍组、Rg1、Rb1、R1组Adipophilin mRNA的表达与模型组无显著差异。
     10.模型组LXRαmRNA表达显著增加(p<0.05);PNS组和单体配伍组、Rg1、R1组均能非常显著地增加LXRαmRNA表达(p<0.01),Rb1组无显著性差异(p>0.05);与PNS组相比,单体配伍组无显著性差异(p>0.05),Rg1组有显著性差异(p<0.05),R1、Rb1组有非常显著差异(p<0.01)。
     11.模型组ABCA1 mRNA表达较对照组显著增加(p<0.05);与模型组相比,PNS组、单体配伍组均能非常显著地增强ABCA1 mRNA表达(p<0.01),R1组可显著增加ABCA1 mRNA表达(p<0.05),且三组之间无显著差异。
     12.模型组ACAT-1 mRNA表达显著增加(p<0.01);PNS组、单体配伍组和Rb1组均能非常显著地降低ACAT-1 mRNA表达(p<0.01),且三组之间无显著性差异。
     13.模型组CD36蛋白表达明显高于对照组(p<0.01);PNS组与单体配伍组CD36蛋白表达量较模型组有显著性降低(p<0.01),Rg1、R1组CD36蛋白表达量较模型组明显减少(p<0.05);与PNS组相比,单体配伍组、Rg1组和R1组无显著性差异(p>0.05)。
     结论
     1.PNS通过减轻氧化应激、调节血脂水平和抑制巨噬细胞吞噬功能,防治家兔实验性AS和泡沫细胞的形成。
     2.PNS、PNS单体配伍均能抑制ox-LDL诱导的巨噬细胞源性泡沫细胞形成。
     3.PNS与PNS单体配伍下调ox-LDL诱导的CD36 mRNA、ACAT-1 mRNA表达及CD36蛋白表达,上调ABCA1 mRNA、LXRαmRNA的表达;Rg1可下调CD36mRNA及CD36蛋白表达、上调LXRαmRNA表达;Rb1下调ACAT-1 mRNA表达;R1下调CD36 mRNA及CD36蛋白表达、上调ABCA1 mRNA、LXRαmRNA的表达,从而减少巨噬细胞内胆固醇蓄积,促进其外流,从不同环节上影响泡沫细胞的生成。
     4.本实验中,三七皂苷单体Rg1、Rb1、R1最佳配伍是:R1:Rg1:Rb1=10~(-5):10~(-5):10~(-6),单体配伍对泡沫细胞的作用与PNS相当。因此,推测Rg1、Rb1、R1是PNS影响泡沫细胞形成的主要物质基础。
It is well known that cardiovascular diseases resulted from atherosclerosis(AS) is the principal cause of death in the world.Although the concept of AS had been proposed for nearly 100 years,the onset mechanism of AS remains unclear.It has been clear that the development of AS is an integration process with multiple factors at multilevel.Following expressions of pro-inflammatory factors and activation of immune response,lipid level was increased.At the same time,lipid peroxidation aggravated production of ox-LDL,and macrophage swallow ox-LDL.All these resulted in lipid metabolism disorder and foam cell formation ultimately.The occurrence of macrophage-derived foam cell is the key marker of AS at the early stage.Along with the deepening to the mechanism of AS,we pay more attention to inhibiting foam cell formation as a new policy to cure AS.
     Panax Notoginseng saponin(PNS) is regarded as the main active constituents, including Rg1,Rb1,R1,etc.Our research indicated that PNS could prevent and cure AS through immunological regulation,anti-inflammation,anti-free radical,etc.Because less study on material foundation and mechanism had been operated,the applications of PNS were restricted.Based on the effectiveness of PNS on AS prevention and curing,we used the modern pharmacological methods and techniques to explore the effects of PNS and monomer combination on the foam cell formation during AS.
     Methods:
     1.32 New Japanese male rabbits,divided into 4 groups(including control group, AS model group,high-dose PNS group and low-dose PNS group) randomly,were fed with forages as follows respectively:(1) base forage,(2) high-fat forage(containing cholesterol 0.5%),(3) high-fat forage with low-dose PNS(60mg/kg),(4) high-fat forage with high-dose PNS(120mg/kg).The experiment lasted 12 weeks.Rabbit AS models were confirmed by measuring levels of TC,TG,LDL,MDA and SOD activity in rabbit serum,thoracic aortas staining in SudanⅣsolution and tissue section oil red O staining.
     2.Macrophages,collected from mouse peritoneal,were divided into five groups after cultured and purified.(1) control group,(2) model group,(3) low-dose PNS group(20μg·ml~(-1)),(4) medium-dose PNS group(40μg·ml~(-1)),(5) high-dose PNS group(80μg·ml~(-1)).Cells were maintained at 37℃in 5%CO_2-95%air in an incubator for 72 hours.The cellular lipid accumulation was examined by oil red staining.The cellular contents of total cholesterol(TC) and free cholesterol(FC) were detected by enzymatic colorimetry.The cellular protein was measured by Lowry method.
     3.According to cholesteryl ester as the index and Rg1,Rb_1 and R_1 as investigation factors(every factor containing 3 levels:10~(-4)、10~(-5)、10~(-6)M),the effects of Rg1,Rb_1 and R1 on the foam cell formation of and their interaction were obtained by orthogonal design experiment.
     4.Expressions of CD36 mRNA,Adipophilin mRNA,LXRαmRNA,ABCA1 mRNA and ACAT-1 mRNA in macrophage were analyzed by RT-PCR.Expression of CD36 protein in macrophage was determined by western blotting.
     Results:
     1.Amount of foam cells accumulated under aortic tunica intima of rabbits in AS model rabbits,and the atherosclerotic plaque square obviously increased.High-dose PNS could reduce AS plague area and decrease foam cell formation under rabbit aortic tunica intimas(p<0.01)).
     2.The serum concentrations of TC,TG and LDL-C in AS model group were significantly higher than that in normal control group(p<0.01).Compared to AS group, high-dose PNS could reduce the serum concentrations of TC,TG and LDL-C markedly (p<0.01).The level of TC in low-dose PNS group is lower than that in AS group (p<0.05).
     3.In AS model group,the serum concentration of MDA was increased,but the activity of SOD was decreased.High-dose PNS could reduce the serum concentration of MDA and enhance the activity of SOD in rabbits(p<0.01),and low-dose PNS could decreased the level of MDA(p<0.05).
     4.Macrophage in vitro culture was almost fusiform and there was no oil red-staining positive cell.Because of uptaking amount of lipid,oil red-staining positive cells were filled with macrophages and the shapes were round or irregular after co-cultured with ox-LDL.In high-dose and medium PNS groups,obvious reduction of oil red-staining positive cells was observed.Compared to model group,there was no significant difference in low-dose PNS group.
     5.The contents of TC,FC,CE(cholesteryl ester) and CE/TC ratio in model group were greatly higher than that in control group(p<0.01).Compared with model group,the contents of TC,FC,CE and CE/TC ratio were significantly reduced in PNS high and medium dose groups(p<0.01).Meanwhile,there were obvious differences among PNS groups.
     6.Orthogonal experiment indicated that Rg1,Rb1and R1 were key responsive factors,and there were interaction between Rg1×Rb1 and R1×Rb1(p<0.01).The optimized monomer combination was Rg1:R1:Rb1=10~(-5):10~(-5):10~(-6)M。
     7.Compared with model group,PNS and monomer combination could reduce the ratio of CE/CT significantly.There were no obvious differences between PNS group and monomer combination group.
     8.CD36 mRNA expression in macrophages was increased remarkably after treated with ox-LDL(p<0.01).Compared with model group,PNS(p<0.01),single substrates compatibility(p<0.01),Rg1(p<0.05) and R1(p<0.05) could decrease CD36 mRNA expression in macrophages induced by ox-LDL.There were no obvious differences among PNS group,monomer combination group,Rg1 group and R1 group.
     9.Treated with ox-LDL,Adipophilin mRNA expression increased remarkably in macrophages(p<0.01).Compared with model group,PNS,monomer combination,Rg1, Rb1 and R1 didn't affect Adipophilin mRNA expression induced by ox-LDL.
     10.Treated with ox-LDL,LXRαmRNA expression was increased in macrophages (p<0.05).Compared with model group,PNS,monomer combination,Rg1 and R1 could increased LXRαmRNA expression induced by ox-LDL(p<0.01).LXRαmRNA expressions in PNS group and monomer combination group had no significant differences. To some extent,LXRαmRNA expressions in Rg1 group(p<0.05) and R1 group(p<0.05) were lower than that in PNS group.
     11.Treated with ox-LDL,ABCA1 mRNA expression was increased in macrophage (p<0.05).Compared with model group,PNS(p<0.01),monomer combination group (p<0.01) and R1(p<0.05) could enhanced ABCA1 mRNA expression induced by ox-LDL in its degree.Compared with PNS group,there were no difference in monomer combination group and R1group.
     12.Treated with ox-LDL,macrophages ACAT-1 mRNA expression increased remarkably(p<0.01).Compared with model group,PNS,monomer combination group and Rb1 could decreased ACAT-1 mRNA expression induced by ox-LDL(p<0.01),and there was no significant difference among them.
     13.CD36 protein expression in model group macrophages was much higher than that in control group(p<0.01).PNS(p<0.01),monomer combination group(p<0.01), Rg1(p<0.05) and R1(p<0.05) remarkably reduced CD36 protein expression induced by ox-LDL,and there was no significant difference among them.
     Conclusions
     1.PNS could cure AS and prevent formation of foam cell through the pathway of relieving oxidative stress,modulating blood lipid and inhibiting phagocytose function of macrophage.
     2.PNS and monomer combination could inhibit macrophage-derived foam cell formation induced by ox-LDL.
     3.PNS and monomer combination could down-regulate the expressions of CD36 mRNA,ACAT-1 mRNA and CD36 protein,and up-regulate the expressions of ABCA1 mRNA and LXRαmRNA.Rg1 could down-regulate CD36 mRNA and CD36 protein expressions and up-regulate LXRαmRNA expression.Rb1 could down-regulate ACAT-1 mRNA expression.R1 could down-regulate CD36 mRNA and protein expressions and up-regulate ABCA1 mRNA and LXRαmRNA expressions.So, cholesterol ingestion into macrophage was decreased and the excretion was increased. Above all,PNS,monomer combination and monomer had effects on the foam cell formation at multi -targets.
     4.The optimized monomer combination ratio is Rg1:R1:Rb1=10~(-5):10~(-5):10~(-6) in this experiment.The effect of monomer combination on foam cell formation is the same as that of PNS.So,we can preliminary predict that Rg1,Rb1 and R1 may be the indispensable material foundation for PNS preventing and curing AS.
引文
1.Breslow JL.Cardiovascular disease burden increases,NIH funding decreases[J].Nat Med,1997,3(6):600-601.
    2.Braunwald E.Shattuck Lecture-cardiovascular medicines at the turn of the millennium:triumphs,concerns,and opportunities[J].N Engl J Med,1997,337(19):1360-1369.
    3.Schaffner T,Taylor K,Bartucci E,et al.Arterial foam cells with distinctive immunomorphages[J].Am J Pathol,1980,100:57-80.
    4.Gerrity RG.The role of the monocytes into foam cells in fatty lesions[J].Am J Pathol,1981,103:181-200.
    5.Ross R.Atherosclerosis--an inflammatory disease[J].N Engl J Med,1999,340(2):115-126.
    6.Glass CK,Witztum JL.Atherosclerosis:the road ahead[J].Cell,2001,104(4):503-516.
    7.RP Choudhury,JM Lee,DR Greaves.Mechanisms of disease:macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis[J].Nat Clin Pract Cardiovasc Med,2005,2(6):309-15.
    8.Newman DJ,Cragg GM,Shader KM.the influence of natural products upon drug discovery[J].Nat Prod Rep,2000,17:215-234.
    9.王倩,汪海.具有抗动脉粥样硬化作用的天然药物及其单体化合物[J].世界科学技术--中药现代化,2002,4(5):52-58.
    10.Lau AJ,Woo SO,Koh HL.An analysis of saponins in raw and steamed Panax notoginseng using high-performance liquid chromatography with diode array detection[J].J Chromatogr A,2003,1011(1-2):77-87.
    11.Du Q,Jerz G,Waibel R,Winterhalter P.Isolation of dammarane saponins from Panax notoginseng by high-speed counter-current chromatography[J].J Chromatogr A,2003,1008(2):173-180.
    12.甘烦远,郑光植.三七化学成分研究概况[J].中国药学杂志,1992,27(3):38-143.
    13.周晓慧,周晓霞,杨鹤梅.三七皂苷防治动脉粥样硬化的研究进展[J].承德医学院学报,2003,4:350-352.
    14.王家良.临床流行病学[M].北京:人民卫生出版社,2000:21.
    15.王春芹,蔡中琴,张兆敏.络泰粉针及血塞通注射液的临床应用研究[J].上海中医药杂志,2002,10:48-49.
    16.李贵才,刘占军,徐德锌等.家兔动脉粥样硬化模型稳定性的观察[J].中国比较医学杂志,2004,14(5):294-297.
    17.Haarbo J,Svendsen OL,Christiansen C.Progestogens do not affect the aortic accumulation of cholesterol in ovariectomized cholesterol-fed rabbits[J].Circ Res,1992,70:1198-1202.
    18.徐叔云,卞如镰,陈修主编.药理实验方法学[M].北京:人民卫生出版社,2002:1201-1206.
    19.杨光华.病理学(第五版)[M].北京:人民卫生出版社,2001:122.
    20.Austin MA.Plasma triglyceride as a risk factor for coronary heart disease[J].Am J Epidemiol,1989,129(2):249.
    21.Austin MA.Plasma triglyceride and coronary heart disease[J].Arteriosclerosis Thrombosis,1991,11(1):2.
    22.陈主初.病理生理学[M].北京:人民卫生出版社,2001:90-91.
    23.Ross.The pathogenesis:a perspective for the 1990s[J].Nature,1993,392:801.
    24.李日焕,钟鸣,杜诗库等.田七花对家兔实验性动脉粥样硬化的预防作用[J].右江民族医学院学报,1988,10(11):14.
    25.贺小琼,熊祥玲,王珊珊等.三七芦荟混合物调节动物血糖血脂作用研究[J].云南中医中药杂志,2004,25(2):40-41.
    26.贺小琼,张丽芬,陈平,李时涛.三七提取物防治大鼠高脂血症作用研究[[J].云南中医中药杂志,2004,25(1):32-33.
    27.吕萍,陈海峰.三七叶苷降脂作用的实验研究[[J].中国生化药物杂志,2004,25(4):235-236.
    28.李韬,曲德英,雷菠等.三七粉对家兔实验性动脉粥样硬化的影响[J].中医研究,2006,19(1):17-19
    29.林曙光,郑熙龙,陈绮云等.三七总皂甙对高脂血清所致的培养主动脉平滑肌细胞增殖的作用[J].中国药理学报,1993,14(4):314.
    30.刘雅,李晓辉.三七皂苷对动脉粥样硬化形成中炎症免疫因子的影响[J].中草药,2005,36(5):728.
    31.袁志兵,李晓辉,李淑慧等.三七皂苷对动脉粥样硬化斑块稳定性的影响[J].中 国天然药物,2006,4(1):62-65.
    32.赵文新,季红赞.血脂异常的药物治疗进展与临床评价[J].中国药房.2005,16(10):785-787.
    33.刘介眉.病理组织染色的理论方法与应用[M].人民卫生出版社,1983:93.
    34.Li QZ,Yang YZ,Yi GH,et al.Establishment of a novel foam cell from human,monocytes U937 cell line[J].Chin J Arterioscler.,1999,7(2):152-154.
    35.Lowry OH,Rosebrough NJ,Farr AL,et al.Protein measurement with the folin phenol reagent[J].J Biol Chem,1951;193:265-75.
    36.刘国庆,蔡海江,陈琪等.激素敏感脂酶基因高度表达对泡沫细胞形成的作用[J].中国动脉硬化杂志,1994,2(1):10-13.
    37.Rinninger F.,Brundert M.,Jackle S.,et al.Selective uptake of low-density lipoprotein-associated cholesteryl esters by human fibroblasts,human HepG2hepatoma cells and J774 macrophages in culture[J].Biochim.Biophys.Acta,1995,1255(2),141-153.
    38.周元芳,谭健苗,张彤等.昆明种小鼠腹膜巨噬细胞源性泡沫细胞模型的建立[J].衡阳医学院学报,1996,24(4):328-330.
    39.杨永宗,谭健苗,杨小毅.动脉粥样硬化敏感小鼠C(57)BL/6J腹膜巨噬细胞源性泡沫细胞模型的建立[J].中国动脉粥样硬化杂志,1995,3(4):279-292.
    40.李全忠,杨永宗,易光辉等.U937泡沫细胞模型的建立[J].中国动脉硬化杂志,1999,7(2):152-154.
    41.D Steinberg,S Parthasarathy,TE Carew,JC Khoo,and JL Witztum.Beyond cholesterol.Modifications of low-density lipoprotein that increase its atherogenicity[J].1989,320(14):915-924.
    42.Alan M.Fogelman,I Shechter,J Seager,et al.Malondialdehyde Alteration of Low Density Lipoproteins Leads to Cholesteryl Ester Accumulation in Human Monocyte-Macrophages[J].Proc Natl Acad Sci,1980,77(4):2214-2218.
    43.Lucas AD,Greaves DR.Atherosclerosis:role of chemokines and macrophages[J].Expert Rev Mol Med.2001,5:1-18.
    44.鲍建才,刘刚,丛登立等.三七的化学成分研究进展[J].中药材,2006,28(2):246-253.
    45.Masao Hirakata,Ryuichi Tozawa,Yoshimi Imura,et al.Comparison of the effects of pioglitazone and rosiglitazoneon macrophage foam cell formation[J]. Biochemical and Biophysical Research Communications, 2004, 323:782-788.
    46. G. Larigauderie, C. Furman, M. Jaye, et al. Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis[J]. Arterioscler. Thromb. Vasc. Biol., 2004, 24:504-510.
    47. T. Langmann, J. Klucken, M. Reil, et al. Molecular cloning of the human ATP-binding cassette transporter l(hABCl): evidence for sterol-dependent regulation in macrophages [J]. Biochem. Biophys. Res. Commun., 1999, 257:29-33.
    48. MS. Brown, YK. Ho, JL. Goldstein. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters[J]. J. Biol. Chem., 1980, 255:9344-9352.
    49. I. Ishii, M. Oka, N. Katto, et al. Beta-VLDL-induced cholesterol ester deposition in macrophages may be regulated by neutral cholesterol esterase activity[J]. Arterioscler. Thromb., 1992, 12:1139-1145.
    50. Liu PS, Ying YS, Zhao YM, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic [J]. J Biol Chem, 2004, 279(5):3787-3792.
    51. Kumi TS, Shintaro O, Toshiaki H, et al. The surface of lipid droplets is a phospholipids monolayer with a unique fatty acid composition [J]. J Biol Chem, 2002, 277(46): 44507-44512.
    52. Jiang HP, Serrero G. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein[J]. Proc Natl Acad Sci USA, 1992, 89(17):7856-7860.
    53. Heid HW, Moll R, Schwetlick I, et al. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases[J]. Cell Tissue Res, 1998, 294 (2): 309-321.
    54. Buechler C, RitterM, Duong CQ, et al. Adipophilin is a sensitive marker for lipid loading in human blood monocytes[J]. Biochim Biophys Acta, 2001, 1532 : 97-104.
    55. Wang XK, Reape TJ, Li X, et al. Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions[J]. FEBS Lett, 1999, 462(1-2): 145-150.
    56. Shiffman D, Mikita T, Tai JTN, et al. Large scale gene expression analysis of cholesterol loaded macrophage [J]. J Biol Chem, 2000,275 (48): 37324-37332 .
    57. Yuan ZH, Yang YZ, Yin WD, et al. Induced expression of adipophilin with high cholesterol diet in rabbit atherosclerotic lesions and reduced lipid accumulation with adipophilin antisense in mouse macrophages [J]. Prog Biochem Biophys, 2003, 30(4): 549-554.
    58. Larigauderie G, Furman C, Jaye M, et al. Adipophilin enhances lipid accumulation and prevents lipid efflux from macrophages: potential role in atherogenesis[J]. Arterioscler Thromb Vasc B iol, 2004, 24(3):504-510.
    59. Repa J, Mangelsdorf D. The liver X receptor gene team: potential new players in atherosclerosis[J]. Nature Med, 2002, 8:1243-1248.
    60. Lu TT, Repa JJ , Mangelsdorf DJ, et al. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism[J]. J. Biol Chem., 2001, 276(41): 37735-38.
    61. Apfel R, Benbrook D, Lernhardt E, et al. A novel orphan receptor specific for a subset of thyroid hormone responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily[J]. Mol Cell Biol, 1994,14:7025-7035.
    62. Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway[J]. Genes Dev, 1995, 9:1033-1045.
    63. Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice[J]. Proc Natl Acad Sci USA, 2002, 99:7604-7609.
    64. Terasakaa N, Hiroshimaa A, Koieyamaa T, et al. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice[J]. FEBS Letters, 2003, 536:6-11.
    65. Rothblat GH, Llera-Moya M, Atger V, et al. Cell cholesterol efflux: integration of old and new observations provides new insights[J]. J Lipid Res, 1999, 40:781-796.
    66. Acton S, Rigotti A, Katherine T, et al. Identification of scavengerreceptor SR-BI as a high density lipoprotein receptor[J]. Science, 1996, 271:518-520.
    67. Ji Y, Jian B, Wang N, et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux[J]. J Biol Chem, 1997, 272:20982-20985.
    68. Gu X, Kozarsky K, and Krieger M. Scavenger receptor class B, type I-mediated [3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor[J].J Biol Chem,2000,275:29993-30001.
    69.Wang N,Silver DL,Costet P,et al.Specific binding of ApoA-I,enhanced cholesterol efflux,and altered plasma membrane morphology in cells expressing ABC1[J].J Biol Chem,2000,275:33053-33058.
    70.Ruan XZ,Moorhead JF,Fernando R,et al.PPAR agonists protect mesangial cells from interleukin 1β-induced intracellular lipid accumulation by activating the ABCA1cholesterol efflux pathway[J].J Am Soc Nephrol,2003,14:593-600.
    71.Tangirala RK,Bischoff ED,Joseph SB,et al.Identification of macrophage liver X receptors as inhibitors of atherosclerosis[J].Proc Natl Acad Sci,2002,99:11896-11901.
    72.Dean M,Hamon Y,Chimini G,et al.The human ATP binding cassette(ABC)transporter superfamily[J].J Lipid Res,2001,42:1007-17.
    73.John F.Oram.HDL apolipoproteins and ABCA1 partners in the removal of excess cellular cholesterol[J].Arterioscler Thromb Vasc Biol,2003,23:720-727.
    74.唐朝克,杨永宗.ABCA1在动脉粥样硬化发生与发展中的作用[J].生命的化学,2003,23(2):138-140.
    75.Joyce CW,Amar M J,Lambert G,et al.The ATP-binding cassette transporter A1(ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 mice and apoE-knockout mice[J].Proc Natl Acad Sci USA,2002,99:407-12.
    76.Chang TY,Chang CC,Lin S,et al.Roles of mammalian acyl-CoA:cholesterol acyltransferase-1 and 2[J].Curr Opin Lipidol,2001,12(3):289-296.
    77.Buhman KF,Accad M,Farese RV.Mammalian acyl-CoA:cholesterol acyltranferases[J].Biochim Biophy Acta.,2000,15:142-154.
    78.Kruth HS,Huang W,Ishii I,et al.Macrophage foam cell formation with native low density lipoprotein[J].J Biol Chem,2002,277:34573-34580.
    79.Batetta B,Mulas M F,Petmzzo P,et al.Opposite pattern of MDR1 and caveolin-1gene expression in human atherosclerotic lesions and proliferating human smooth muscle cells[J].Cell Mol Life Sci,2001,58(8):1113-1120.
    80.Petruzzo P,Cappai A,Brotzu G.et al.Lipid metabolism and molecular changes in normal and atherosclerotic vessels[J].Eur J Vase Surg,2001,22(1):31-36.
    81. Wang H, Germain SJ, Benfield PP, et al. Gene expression of acylcoenzymeA: cholesterol acyltransferase is upregulated in human monocytes during differentiation and foam cell formation[J]. Arterioscler Thromb Vasc Biol, 1996, 16: 806-814.
    82. Miyazaki A, Sakashita N, et al. Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages[J]. Arterioscler Thromb Vasc Biol, 1998,18:1568-1574.
    83. Miyazaki A, Sakai M, Sakamoto Y, et al. Acyl-coenzyme A xholesterol acyltransferase inhibitors for controlling hypercholesterolemia and atherosclerosis[J]. Curr Opin Investig Drugs, 2003,4(9):1095-1099.
    84. Podrez EA, Febbraio M, Sheibani N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species[J]. J Clin Invest, 2000,105:1095-1108.
    85. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism [J]. J Clin Invest, 2001,108:785-791.
    86. Endemann, G, Stanton, L, Madden, K, et al. CD36 is a receptor for oxidized low density lipoprotein[J]. J Biol Chem, 1993, 268:11,811-11,816.
    87. Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A- I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages [J]. J Biol Chem, 277: 49,982-49,988.
    88. Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36 deficient subjects [J]. J Clin Invest, 1995, 96:1859-1865.
    89. Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism[J]. J Biol Chem, 1999, 274: 19055-19062.
    90. Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerosis lesion development in mice[J]. J Clin Invest, 2000, 105:1049-1056.
    91. Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2004,24: 2333-2338.
    92. Kashiwagi H, Tomiyama Y, Kosugi Y, et al. Identification of the molecular defects in a subject with type I CD36 deficiency[J]. Blood, 1994, 83(12): 3545-3552.
    93. Nicholson A., Pearce S.F.A., Silverstein R. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site[J]. Arterioscler Thromb Vasc Biol, 1995,15:269-275.
    1.Greenwalt DE,Lipsky RH,Ockenhouse CF,et al.Membrane glycoprotein CD36:A review of its roles in adherence,signal transduction,and transfusion medicine[J].Blood,1992,80:1105-1115.
    2.Endmann G,Stanton LW.CD36 is a receptor for oxidized low density lipoprotein[J].J Biol Chem,1993,268:11811-11816.
    3.Opuendo P,Hundt,Lawler J,et al.CD36 directly mediates cytoadherence of plasmodium falciparum parasitized erythrocytes[J].Cell,1989,58:95-101.
    4.Yamada Y,Doi T,Hamakubo T,et al.Scavenger receptor family proteins:roles for atherosclerosis,host defence and disorders of the central nervous system[J].Cell Mol Life Sci,1998,54:628-640.
    5.Febbraio M,Hajjar DP,Silverstein RL.CD36:a class B scavenger receptor involved in angiogenesis,atherosclerosis,inflammation,and lipid metabolism[J].J Clin Invest,2001,108:785-791.
    6.杨向东,李红霞,王抒等.CD36介导氧化型低密度脂蛋白诱导U937细胞泡沫化和凋亡[J].中国动脉硬化杂志,2000,8:315-318.
    7.Huh HY,Pearce SF,Yesner LM,et al.Regulated expression of CD36 during monocyte to macrophage differentiation:Potential role of CD36 in foam cell formation [J].Blood,1996,87:2020-2028.
    8.Nozaki S,Kashiwagi H,Yamashita S,et al.Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36 deficient subjects[J].J Clin Invest,1995,96:1859-1865.
    9.Febbraio M,Abumrad NA,Hajjar DP,et al.A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism[J].J Biol Chem,1999,274:19055-19062.
    10.Vidya V,Kunjathoor,Maria Febbraio,et al.Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J].J Biol Chem,2002,277,51:49982-49988.
    11.Moore KJ.Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice [J]. J Clin Invest, 2005,115:2192-2201.
    12. Nicholson A, Pearce SFA, Silverstein R. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site [J]. Arterioscler Thromb, 1995, 15: 269-275.
    13. Boullier A, Gillotte KL, Horkko S, et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein [J]. J Biol Chem, 2000,275,9163-9169.
    14. Leung LLK, Li WX, McGegor JI, et al. CD36 peptides enhance or inhibit CD36 thrombospondin binding [J]. J Biol Chem, 1992,267:18244-18250
    15. Podrez EA, Ecbbraio M, Sbeibam N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species [J]. J Clin Inves, 2000, 105:1095-1108.
    16. Ozer NK, Negis Y, Aytan N, et al. Vitamin E inhibits CD36 scavenger receptor expression in hypercholesterolemic rabbits [J]. Atherosclerosis, 2006,184(1): 15-20.
    17. Fuhrman B, Koren L, Volkova N, et al. Atorvastatin therapy in hypercholesterolomic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes [J]. Atherosclerosis, 2002,164: 179-185.
    18. Han J, Zhou X, Yokoyama T, et al. Pitavastatin downregulates expression of the macrophage type B scavenger receptor, CD36 [J]. Circulation, 2004, 17: 790-796.
    19. Han J, Hajjar DP, Tauras JM, et al. Transforming growth factor-β_1 ( TGF-β_1 ) and TGFβ_2 decrease expression of CD36, the type B scavenger, through mitogen activated protein kinase phosphorylation of peroxisome proliferator activated receptor-gamma [J]. J Biol Chem, 2000, 275:1241-1246.
    20. Han J, Hajjar DP, Zhou X, et al. Regulation of peroxisome proliferators-activated receptor-gamma-mediated gene expression. A new mechanism of action for high density lipoprotein [J]. J Biol Chem, 277, 2002: 23582-23586.
    21. Moore KJ, Rose ED, Fitzgerald ML, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake [J]. Nat Med, 2001, 7:41-47.
    22. Calvo D, Gomez- Coronado D, Suarez Y, et al. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL and VLDL [J]. J Lipid Res, 1998, 39: 777-787.
    23. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A_2 in atherosclerosis: biology, epidemiology, and possible therapeutic target [J]. Arterioscler Thromb Vasc Biol, 2005, 25:923-931.
    24. Kruth HS. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein [J]. J Biol Chem, 2005, 280: 2352-2360.
    25. Witztum JL. You are right too [J]. J Clin Invest, 2005,115: 2072-2075.
    1.姬媛嫒,刘俊田,王志东.中药防治动脉粥样硬化研究现状述评[J].中国实验方剂学杂志,2006,12(4):58.
    2.Steinbeig D,Lewis A.Canner Meiwrial Lecture:oxidative modification LDL and athreogenesis[J].Circulation,1997,95:1062.
    3.肖凤英,陆付耳,徐丽君.马齿苋不同部位改善2型糖尿病大鼠脂代谢紊乱的机制探讨[J].中国临床康复,2004,8(24):5042.
    4.贺圣文,赵仁宏,陈景武等.马齿苋对家兔实验性动脉粥样硬化形成的作用[J].潍坊医学院学报,2003,25(3):161.
    5.金红,牛晓红,宋剑南等.大豆提取物对实验性高脂血症家兔脂类代谢的调节作用[J].中国中医基础医学杂志,2004,10(9):41.
    6.杨俊卿,周岐新,李远宗.姜黄提取物对实验性动物高脂血症的防治作用研究[J].中国药房,2004,15(10):598.
    7.马亚兵,高海青,由倍安等.葡萄籽原花青素对动脉粥样硬化兔血脂的调节作用[J].中国药理学通,2004,20(3):325.
    8.冯磊,张春飞.茶叶多糖对实验性高脂血症大鼠脂质代谢的影响[J].浙江中医杂志,2003,5:221.
    9.刘萍,张静生.冠心康对高脂血症大鼠肝低密度脂蛋白受体基因表达的影响[J].中医杂志,2003,44(10):777.
    10.钟毅,朱秉匡.益寿调脂片治疗高脂血症及动脉粥样硬化的实验研究[J].中国中西医结合杂志,2003,18(10):616.
    11.汪德清,丁保国,Tomas G Neil等.黄芪总黄酮对动脉粥样硬化早期形成的影响[J].中国药理学通报,2003,19(6):637.
    12.廖名龙,郁杰,周敏.葛根素临床应用新进展[J].现代中西医结合杂志,2003,12(7):776.
    13.聂松柳,徐先祥,夏伦祝等.党参总皂苷对实验性高脂血症大鼠血脂和NO含量的影响[J].安徽中医学院学报,2002,21(4):40.
    14.李兰芳,张建新,兰漫野等.通脉活血灵胶囊对实验性高脂血症家兔血脂及动脉粥样硬化的影响[J].中草药,2004,31(6):440.
    15.谭华炳,车舟,刘肖峰等.鄂西北野生绞股蓝组方预防高脂血症的实验研究[J]. 浙江中西医结合杂志,2002,12(8):486.
    16.Libby P,Tanaka H.The molecula bases of restenosis[J].Prog cadiovase Dis,1997,40(2):97.
    17.山丽梅,张锦超,赵艳玲等.槟榔碱抗动脉粥样硬化分子机制的研究[J].中国药理学通报,2004,20(2):146.
    18.王强,黄国钧.通脉胶囊抗动脉粥样硬化内皮细胞损伤的试验研究[J].中药药理与临床,2004,20(1):26.
    19.王保华,欧阳静萍.当归抗高脂血清致内皮细胞损伤的保护作用[J].中国病理生理杂志,2000,10(16):856.
    20.Wang lu-ya,Wang Da-quan,Qin yah-wen,et al.Effect of emblic leafflower fruit on total antioxidation and levels of malondialdehyde as well as endothelin in plasma in rabbits with atherosclerosis[J].Zhong Guo Lin Chuang Kang Fu,2005,9(7):253.
    21.张旭静,王素春,范柳等.当归、川芎、红花、人参萃取液对离体培养牛血管内皮细胞一氧化氮合酶的影响[J].解剖学杂志,2004,27(1):36.
    22.郑勇英,杨隽,潘喜华等.银杏叶抗衰老和调节血脂的实验研究[J].上海预防医学杂志,2002,12(2):71.
    23.李淑莲,张永雪,林波等.杏仁对家兔动脉粥样硬化及金属硫蛋白含量的影响[J].河南大学学报(医学科学版),2002,21(4):16.
    24.黄河清,刘培庆,黄民.抵当汤改良方抗家兔实验性动脉粥样硬化效应及机制初探[J].中国药理学通报,2003,19(5):590.
    25.熊涛,吴兴军,王逸平.丹参多酚酸盐抑制低密度脂蛋白氧化修饰[J].中药药理与临床,2004,20(4):7.
    26.庞荣清,潘兴华,吴亚玲,等.三七皂苷对兔血管平滑肌细胞核κappaB和细胞周期的影响[J].中国微循环,2004,8(3):154.
    27.荣清,潘兴华,龙沛然.灯盏花素对兔血管平滑肌细胞增殖的影响[J].中国动脉硬化杂志,2004,12(4):395.
    28.何书英,钱之玉,绪广林.西红花苷对平滑肌细胞增殖的影响及机制研究[J].中国药科大学学报,2004,35(1):65.
    29.甄彦君,朱方,候健明等.玉米苞叶对动脉粥样硬化家兔平滑肌细胞增殖及凋亡的影响[J].中国中医基础医学杂志,2003,9(3):191-193.
    30.刘宇,顾仁樾,周端等.白蒺藜有效组分对兔动脉粥样硬化和主动脉壁血小板源性 生长因子A基因表达影响[J].中国中医基础医学杂志,2001,7(8):574.
    31.吴宗贵.炎症与动脉粥样硬化:挑战远未结束[J].上海医学,2004,27(4):211.
    32.王毅,马志强,黄波,等.粉防己碱对高脂饮食兔血清白细胞介素-1β、肿瘤坏死因子-α及血管壁细胞核因子-κB表达的影响[J].中国临床康复,2004,8(25):5045.
    33.杨五彪,陈群力,马灵筠,等.黄芪多糖对兔动脉粥样硬化内皮素-1、C反应蛋白的影响[J].中华实用中西医杂志,2005,18(14):317.
    34.张军茹.心复宁V号对动脉粥样硬化家兔血小板胞浆游离钙及降钙素基因相关肤的影响[J].陕西中医,2002,23(8):758.
    35.仲伟珍,张健,宋立萍.海洋贝类提取物抗氧化作用及对血小板聚集功能影响[J].青岛大学医学院学报,2004,40(3):251.
    36.胡发明,胡红丁.川芎嗪的实验研究及临床应用[J].中医研究,2004,17(3):57.
    37.司秋菊,王鑫国,白霞.蜈蚣对动脉粥样硬化家兔血液流变学的影响[J].中国老年学杂志,2004,24(9):831.
    38.王艳,郑国澎,赵自明,等.心可舒胶囊对家兔动脉粥样硬化模型血液流变学的影响[J].吉林中医药,2002,22(6):51.
    39.李洁,林杰,李征.复方丹参滴丸对实验性高脂血症流变学影响的研究[J].中医药学刊,2002,20(4):496.
    40.张旭静,范柳,王素春等.脑安胶囊的不同制剂对大鼠血小板聚集的影响[J].医药导报,2003,22(2):77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700