用户名: 密码: 验证码:
高速列车运行能耗测算方法及其影响因素量化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球资源日益匮乏和环境污染日趋严重,能源问题越来越受到重视。近年来我国高速铁路发展为世界所瞩目,良好的节能环保性能是保证铁路运输系统可持续发展以及取得较好社会效益与经济效益的前提。虽然铁路具有能耗低、污染小和运量大等优势,但随着列车运行速度的提高、运量的增加、运行距离的延长,对节能和环保方面提出了新的挑战。
     高速铁路是个庞大复杂的系统工程,列车运行过程中的影响因素众多,使得高速条件下列车的牵引计算以及节能优化更加复杂。本文在借鉴国内外已有研究成果的基础上,以“不同交通方式能耗与排放因子及其可比性研究”项目(G-0811-10565)和“轨道交通技术规范及其发展规划评估”项目(G-0911-11631)为依托,研究高速铁路的能耗测算方法,定量分析能耗影响因素对高速铁路能耗的影响,分析高速铁路节能优化策略,主要研究内容及结论如下:
     (1)系统分析了铁路能耗的构成以及影响铁路能耗的因素。从能源消耗主体的角度划分,铁路能耗主要包括列车运行能耗以及辅助能耗两部分。列车运行能耗是铁路能耗的主要组成部分,约占铁路总能耗的80%以上。列车运行能耗的影响因素主要有机车牵引特性、机车车辆特性、线路特性、速度特性、编组特性、停站方案、满载率、操纵特性等。
     (2)研究了测算高速列车运行能耗的3种方法:能耗曲线测算方法、牵引功耗测算方法以及经验公式法并利用能耗曲线法,选取典型线路,测算了我国高速铁路的能耗水平。结果表明:在当前的列车时刻表下,京津城际铁路CRH3型动车组的平均单耗水平为1059.64kWh/万人公里,武广高速铁路CRH3型动车组的平均单耗测算值为1002.73kWh/万人公里,石太客运专线CRH5型动车组的平均单耗水平为518.86kWh/万人公里。在借鉴国外相关研究的基础上,对经验公式模型进行改进,并结合能耗曲线方法对改进的模型进行了标定。将高速铁路与其他交通方式能耗进行了对比,结果表明,高速铁路能耗高于普通铁路和水运,低于营业性公路和航空。若以普通铁路单位换算周转量的能耗水平为1,那么水运能耗水平为1.57,营业性公路为13.24,航空为97.78,高速铁路为5.79(目标速度350km/h)和2.91(目标速度250km/h)。
     (3)利用“高速铁路列车运行计算系统”提供的功能结合理论分析定量研究了基础设施以及运营组织因素对列车运行能耗的影响。仿真案例表明,在其他条件相同的情况下,CRH3型动车组运行能耗大于CRH5型动车组。高速列车不同目标速度下,运行能耗与坡度呈线性增长关系。列车运行能耗随着曲线半径的增大而减少,但是效果不明显。在曲线半径大于5000m时,对列车运行能耗几乎无影响。列车技术速度平均每提高10km/h,单耗将增加约5%-9%。停站方案影响着列车运行能耗,在当前的列车时刻表下,对于京津城际铁路,多停站一次将增加单耗6.3%;对于武广高速铁路不同班次的列车,最小平均站间距下的单耗比最大平均站间距下的单耗高3.2%;对于石太客运专线,直达方案比中间站停一站的方案单耗低7.7%。随着满载率的增大,列车运行总能耗增加较小,列车单耗降低幅度较大,满载率平均每提高10%,单耗将降低16%-19%。
     (4)从运营组织的角度研究了高速铁路节能策略。提出了综合考虑节能和运行时分的列车速度目标值选取方法。该方法将列车速度变化带来的运行时分节省和运行能耗增加作为目标,选取合适的权重系数进行求解。算例结果表明,不同权重系数组合下的速度目标值不同。更注重运行时分的节省,速度目标值取300km/h较为合理;对运行能耗和运行时分同样看重,速度目标值取250km/h较为合理;更注重运行能耗的节省,速度目标值取225km/h较为合理。建立了高速铁路区间运行时分的优化模型,该模型通过调整各站间区间的列车运行恢复时间以达到减少列车运行能耗的目的。算例表明,经模型优化后,在列车运行时间相同的条件下,列车运行能耗减少了1.7%。
With the global resources shortage and serious environmental pollution, the energy issues more and more attention. Recent years, the development of high-speed railway in China attracted the attention of the world. Good environmental performance can ensure the sustainable development of the railway transport system and achieving better social and economic benefits. Although the railway has advantages of low energy consumption and large volume, but with the increase of speed, traffic and running distance, some new challenges are put forward.
     High-speed railway system is a large and complex systems engineering. Many impact factors of train operation process makes train traction calculation and energy-saving optimization complicated. Based on the well known rearch achievements, this paper relies on projects of "different modes of transportation energy consumption and emission factors of comparable research" and "technical regulations of rail transport modes and appraisal of their development planning". The research on energy consumption measuring method and quantification analysis on the engery factors of high-speed railway system were done. The main contents and results are as following:
     (1) A systematic analysis of the composition of the railway and energy consumption of the factors that affect the railway was done. Train energy consumption includes two parts:train operation energy consumption and auxiliary energy consumption. Traction energy consumption is a major component of the railway energy consumption, accounts for about 80% of the total energy consumption of railway. The main impact factors of train traction energy consumption include locomotive tractive characteristics, rolling stock characteristics, line characteristics, speed characteristics, marshalling characteristics, stop scheme, load factor, handling characteristics and other factors.
     (2) The research on calculation methods of high-speed train energy consumption was done. There are 3 kinds of methods:energy curve method, traction power consumption method and experience formula method. By using energy curve method, the energy consumption level of high-speed railway of some typical lines was calculated, and the results show that:In the current timetable, the Beijing-Tianjin inter-city railway, which using CRH3 type EMU, average energy consumption is 1059.64kWh/mpkm, the Wuhan-Guangzhou high-speed railway, which using CRH3 type EMU, average energy consumption is 1002.73kWh/mpkm, the Shijiazhuang-Taiyuan PDL,which using CRH5 type EMU, average energy consumption is 518.86kWh/mpkm. Meanwhile, on the basis research from abroad, the empirical formula was improved and calibrated. Energy consumption between High-speed railways and other modes of transportation were done, and the results show that High-speed railways cost more energy than railway and water transport but less than the commercial road and air. Suppose the railway energy consumption of level 1, so water for 1.57, and commercial road for 13.24, aviation for 97.78, high-speed railway for 5.79 (Vmax=350km/h) and 2.91 (Vmax=250km/h).
     (3) Quantification analysis on the engery factors of high-speed railway system was done by using "high-speed railway train running computing systems". Simulation case indicates that:CRH3 type EMU cost more energy than CRH5 type EMU under the same condition; the traction consumption increases linearly with the slope and increases as the curve radius is reduced, but the effect is not obvious, especially, when the curve radius is greater than 5000m; when the train technologies speed improve 10km/h, energy consumption will increase about 5% to 9% on average; stop scheme affect train operation energy consumption, high-speed train can reduce energy consumption by 3.2% to 7.72% under different stop schemes; when the load factor increased by 10%, energy consumption will decrease 16% to 19% on average.
     (4) The energy-saving method of high-speed railway was studied from the perspective of operation organization. A selection method of target speed value was put forward. This method sets the running time saving and the energy consumption increasement as a target, and the appropriate weight coefficients were selected to sole the model. The simulation results show that target speed changes with different combinations of weight coefficients.300km/h is more reasonable as the target speed value when running time is more important,250km/h is more reasonable as the target speed value when running time is as important as energy consumption,225km/h is more reasonable as the target speed value when energy consumption is more important.An optimization model of high-speed railway interval running time was established, which will reduce energy consumption of train operation by adjusting the interval between each train station recovery time. Examples show that the train operation energy consumption decreas 1.7% after optimization.
引文
[1]铁道部统计中心.2010年铁道统计公报[J].中国铁路,2010,4:14-20.
    [2]铁道部统计中心.2009年铁路简明统计资料[M].北京:中国铁道出版社,2009.
    [3]http://www.gov.cn/jrzg/2011-01/04/content_1778082.htm
    [4]Milroy I P. Aspects of automatic train control [D]. Loughborough University,1980.
    [5]Benjamin B R, Milroy I P, and Pudney P J. Energy-efficient operation of long haul trains [C]. Proceedings of the fourth international heavy haul railway conference,1989,369-372.
    [6]Kraay D, Harker P T, and Chen B. Optimal pacing of trains in freight railroads:Model formulation and solution [J]. Operations Research,1991,39(1):82-99.
    [7]程家兴.火车控制问题的最优运行方案的推广[J].安徽大学学报(自然版),1999,(01).
    [8]EC. MEET. Methodology for calculating transport emissions and energy consumption [R]. Luxemburg:European commission,1999.
    [9]Department of Energy Engineering Technical University of Denmark. Estimating Emissions from Railway Traffic [R]. Denmark,1997.
    [10]Lukaszewicz P. Energy consumption and running time for trains[D]. Royal Institute of Technology,2001.
    [11]IFEU, SGKV. Comparative analysis of energy consumption and CO2 emissions of road transport and combined transport road/rail [R]. Institute for Energy and Environmental research (IFEU) and Association for Study of Combined Transport (SGKV),2002.
    [12]薛艳冰,马大炜.列车牵引能耗计算方法[J].中国铁道科学,2007,5:84-87.
    [13]柏赟,毛保华,周方明等.基于功耗分析的货物列车节能运行控制方法研究[J].交通运输系统工程与信息,2009,9(3):43-51.
    [14]STEP-BY-STEP Introduction to the Railsim[EB/OL]. http://www.railsim.com.
    [15]RAILROAD AND TRANSIT SYSTEMS[EB/OL]. http://www.orthstar.com
    [16]Hirao Y, Bond L. Development of a Universal Train Simulator (UTRAS) and Evaluation of Signaling System [J]. TRRI,1995,336(4):180-185.
    [17]董宝田.电力牵引列车运行的计算机模拟[J].北方交通大学学报,1994,18(4):469-476.
    [18]毛保华,何天键,袁振洲等.通用列车运行仿真软件系统研究[J].铁道学报,2000,22(1):1-6.
    [19]何鸿云,朱金陵.列车牵引计算及操纵示意图计算机软件的开发[J].西南交通大学学报,2000,35(5):513-516.
    [20]铁道科学研究院.牵引计算2.5版用户手册[R],2000.
    [21]丁勇,毛保华,刘海东等.定时约束条件下列车节能操纵的仿真算法研究[J].系统仿真学报,2004,(10):2241-2244.
    [22]丁勇.列车运行计算与操纵优化模拟系统的研究[D].北京:北京交通大学,2005.
    [23]周锋.动车组牵引计算建摸及软件仿真[D].西南交通大学,2007.
    [24]马大炜.高速列车及其速度目标值的探讨[J].中国铁道科学,2003,24(5):1-8.
    [25]肖新立.高速铁路轮轨与磁悬浮方案对比分析[J].交通科技,2004,3:87-91.
    [26]韩长虎,郝建杰,徐强.列车制动耗能一般意义公式及机车优化操纵侧重点问题[J].铁道机车车辆,2004,24(2):47-49.
    [27]伍勇,刘思宁.基于节能和面向旅客服务的列车编组方案研究[J].城市轨道交通研究,2004.6:27-31.
    [28]史茂.铁路运输中机车能耗的浪费[J].上海铁道科技,2004,5:42-43.
    [29]彭其渊.客运专线运输组织[M].北京:科学出版社,2007.
    [30]周新军.高速铁路与能源可持续发展[J].中国能源,2009,31(3):24-27.
    [31]北京交通大学中国综合交通研究中心.不同交通方式能耗与排放因子及其可比性研究[R](中国可持续能源项目报告.项目资助号:G-0811-10565),2009.
    [32]周方明,毛保华.铁路运输节能技术与节能管理研究[J].综合运输,2010,8:29-34.
    [33]崔力心.国外高速铁路节能减排影响因素分析[J].铁道运输与经济,2010,32(4):17-19.
    [34]北京交通大学中国综合交通研究中心.轨道交通技术规范及其发展规划评估[R](中国可持续能源项目报告.项目资助号:G-0911-11631),2010.
    [35]冯佳,许奇,冯旭杰等.基于灰色关联度的轨道交通能耗影响因素分析[J].交通运输系统工程与信息,2011,11(1):142-146.
    [36]中南大学,铁路部统计中心,南昌铁路局.铁路机车跨局运输能源统计及动车组能耗统计分析研究[R](铁道部科技研发计划重点项目,20092004-E).2011
    [37]铁道部档案史志中心.中国铁道年鉴2008[M].北京:中国铁道出版社,2009.
    [38]毛保华.列车运行计算与设计[M].北京:人民交通出版社,2008.
    [39]庞渊.线路节能坡设计方案对地铁能耗的影响[J].线路工程造价管理.2008,23(1):10-13.
    [40]铁路部.列车牵引计算规程[S].中华人民共和国铁道部,1999.
    [41]Anthony R. N. Planning and control systems:a framework for analysis [J]. Boston:Harvard University,1965.
    [42]北京交通大学,上海铁路局.列车节能运行分析与优化系统项目成果汇编[R].2005.
    [43]铁道部统计中心.2008年全国铁路统计资料汇编.铁道部统计中心,2008.
    [44]孔令洋,梁青槐,张岩等.直线电机轮轨交通系统牵引能耗研究[J].铁道学报,2007,26(9):106-112.
    [45]马卫武,李立清,胡蔷等.铁路客运站空调能耗影响因素分析[J].建筑热能通风空调,2009,28(3):20-23.
    [46]穆广友,李晓龙,尹力明等.地铁车站照明系统能耗分析及节能对策[J].城市轨道交通研究,2010,8:35-39.
    [47]中国铁道部科学研究院运输及经济研究所,哈尔滨铁路局减速顶调速系统研究中心.列车技术作业过程仿真及设施配置技术研究报告[R].北京,2007.
    [48]铁道第三勘察设计院集团有限公司,中铁第四勘察设计院集团有限公司,中国铁道科学研究院.TB10020-2009高速铁路设计规范(试行)[M].北京:中国铁道出版社,2009.
    [49]铁道部.新建时速300-350公里客运专线铁路设计暂行规定[M].北京:中国铁道出版社,2008.
    [50]铁道部.铁路工程基本术语标准[R].北京:中国计划出版社,1997.
    [51]韩立岩,汪培庄.应用模糊数学[M].北京:首都经济贸易大学出版社,1998.
    [52]贺仲雄.模糊数学及其应用[M].天津:天津科学出版社,1983.
    [53]Pachl J. Railway operation and control (2nd edition) [M]. USA:VTD Rail Publishing,2009.
    [54]张曙光.京沪高速铁路系统优化研究[M].北京:中国铁道出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700