用户名: 密码: 验证码:
非线性微分系统解析解的符号计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数学机械化研究是我国数学家吴文俊先生于上世纪70年代末开始倡导的一个研究领域.国际上在上世纪80年代就积极推进基于符号的计算机处理方法,发展利用计算机进行分析、演算和推理的理论与实践,随之也先后诞生了几个优秀的符号计算软件,如Reduce、MACSYMA、Mathematica和Maple等.特别是Mathematica和Maple已经在数学和工程领域中被广泛使用.我国在该领域的应用研究(尤其是计算软件)起步较晚,目前水平也远远落后于西方发达国家.因而,国家十二五发展规划将计算软件列为重点支持的研究方向.
     科学研究和工程技术中很多问题的研究,最终都可以归结为非线性微分方程的求解问题.因此,非线性微分方程的解法研究始终是数理科学中核心的课题.本文以微分方程为研究对象,在吴文俊数学机械化思想的指引下,主要研究构造非线性微分方程(特别是非线性微分初、边值问题)解析解的机械化算法,进而研发自动推导非线性微分系统特定类型解析解的软件包.本文的创新之处在于首次将双重分解法及二步分解法等嵌入到经典的Adomian分解法中,发展出构造非线性微分初、边值问题解析近似解的新算法,并研制出相应的符号推演软件包.具体工作如下:
     1.解析近似解Adomian分解法是构造非线性微分系统解析近似解的有效方法之
     .该方法因其计算过程简单且能求解强非线性问题,被广泛应用于各种非线性问题的求解中.在经典Adomian分解法的基础上,Adomian及其合作者还提出了改进的Adomian分解法、加速的Adomian分解法、二步分解法、双重分解法等.特别是由Adomian和Rach发展起来的双重分解法,可大大简化求解非线性微分边值问题的计算过程.二步分解法的实质是在经典分解法的基础上增加了尝试构造微分方程精确解的环节.2008年Rach借助于截断算子重新定义了Adomian多项式,其新算法不仅涵盖了已有的Adomian多项式计算算法,而且新算法的计算效率明显提高.本文基于Rach的新算法、二步分解法和Pade近似技术,提出了构造非线性微分初值问题解析近似解的ADM-Pade新算法;并将双重分解法嵌入到求解初值问题的ADM-Pade算法中,进而提出了构造非线性微分边值问题解析近似解的新算法.然后将这两个算法推广到分数阶微分方程情形.在上述三个新算法的基础上,本文还在计算机代数系统Maple平台下研发了软件包ADMP该软件包可自动推导出非线性微分初、边值问题(包括分数阶非线性微分初、边值问题)的解析近似解.该软件包对具有Robin等复杂边界条件的非线性微分系统和具有分数阶初始条件的非线性微分系统同样也有效.
     2.精确解:不变子空间方法是构造非线性微分方程精确解的有效方法之一.本文应用不变子空间方法构造了一个一维反应扩散方程的精确解,并深入分析了其行为特征.在一维方程不变子空间的基础上,由二维反应扩散方程的特征,进一步构造出二维方程的不变子空间,从而获得了二维反应扩散方程的精确解.最后,通过斑图和时空序列图,成功解释了一系列自然现象.不变子空间方法的原理虽然简单,但是其计算过程相当繁复.本文也在Maple平台下完全实现了不变子空间方法,其中包括软件包ISM.它可以自动推导出输入方程的精确解和相应的参数约束条件,现己成功求解了三十多个非线性微分方程.需要注意的是,利用该软件包还可推导出输入方程一系列的特解,其中包括多项式解、有理函数解、三角函数解、指数函数解及不同函数的混合型解,如文中(4.72)表示的complexitions解就是由指数函数与三角函数混合表达的,又如文中(4.25)表示的positons解就是由不同三角函数混合表达的解等等.
In the70's of last century, the Chinese mathematician Wentsun Wu advocated a new field of research-the mathematical mechanization. International scholars actively promot-ed the symbol computation in the1980s, and they also developed the theory and practice of computer-aided analysis, calculations and reasoning. So some excellent computer algebra systems are developed, such as Reduce, MACSYMA, Mathematica and Maple. Especial-ly, Mathematica and Maple have been widely used in mathematics and engineering. It is late that the Chinese scholars start to study on the symbol computation in the field of application research, particularly for the computing software. Furthermore, the applica-tion research of symbol computation is far behind that of the western developed countries. Therefore, computing software is highlighted to be a promising research direction in the support of the National Twelfth Five-Year Development Plan.
     A lot of problems ultimately are attributed to nonlinear differential equations in science and engineering. Therefore, the studies of nonlinear differential equations are always impor-tant scientific topic. With the mathematical mechanization, this dissertation concentrates on the nonlinear differential equations and do much research on various mechanization al-gorithms to construct analytical solutions of nonlinear differential equations (especially the initial value or the boundary value problems in nonlinear differential equations). Further-more, a software package is developed to automatically construct some special types of analytical solutions. The innovation of this dissertation is that the double decomposition method and the two-step decomposition method are embedded into the classic Adomian decomposition mehtod for the first time, then we propose a new algorithm to construct an-alytical approximate solutions of nonlinear differential equations with initial or boundary conditions. Besides, we develop the corresponding software package. Our main works are summarized bellow.
     1. Analytical approximate solutions:The Adomian decomposition method is one of the most effective methods to construct analytical approximate solutions of nonlinear dif-ferential equations. The Adomian decomposition method is widely applied to solve various nonlinear differential equations, because of the simplicity of calculations and the ability of solving strongly nonlinear problems. Based on the classic Adomian decomposition method, Adomian and his colleagues delivered the modified Adomian decomposition method, the two-step decomposition method, and even the double decomposition method which can solve boundary value problems in nonlinear differential equations with less computation. An essence is that the two-step decomposition method attempts at constructing exact so-lutions of differential equations on the basis of the classic Adomian decomposition method. In2008, Rach developed the novel notion to derive the unifying formula for the family of classes of the Adomian polynomials, but also the new definition of Adomian polynomials is more efficient. On the basis of the Rach's new definitions of the Adomian polynomi-als, two-step decomposition method and Pade technique, a new algorithm is proposed to construct analytical approximate solutions of nonlinear differential equations with initial conditions. Then combined with the double decomposition method, a new algorithm is presented to construct analytical approximate solutions of nonlinear differential equations with boundary conditions. Furthermore, we extend these algorithms to construct analyti-cal approximate solutions of fractional differential equations. Finally, we develop a Maple software package ADMP, which automatically construct analytical approximate solutions of nonlinear differential equations (including fractional differential equations) with initial or boundary conditions. ADMP also can solve nonlinear differential equations with Robin boundary conditions or fractional initial conditions.
     2. Exact solutions:The invariant subspaces method is one of the most effective methods to construct exact solutions for nonlinear differential equations. We apply the invariant subspace method to construct exact solutions of the one-dimensional reaction-diffusion equation and analyze its inner behavior. Furthermore, based on the invariant subspaces of the one-dimensional reaction-diffusion equation, we construct exact solutions of two-dimensional reaction-diffusion equation. Finally, natural phenomena are successfully interpreted by pattern and temporal or spatial sequence diagrams. The theory of the invari-ant subspace method is simple, but its calculation is rather complicated. By the invariant subspace method, we develop a Maple software package ISM, which can output automat-ically a series possible exact solutions for system input and the corresponding parameters constraints. Applying it, we have succeeded in solving many nonlinear differential equation-s, especially for constructing exact solutions, including polynomial solutions, trigonometric solutions, exponential-trigonometric solutions, etc. We note that Eq.(4.72) is complexi-tions consisting of trigonometric functions and exponential functions. While Eq.(4.25) is positions consisting of different trigonometric functions.
引文
[1]Y. Guan, B. Zheng, Y. He, X. Liu, Z. Zhuang, C. Cheung, S. Luo, P. Li, L. Zhang, Y. Guan et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science,302(5643):276-278,2003.
    [2]W. Dunham. The Calculus Gallery:Masterpieces from Newton to Lebesgue. Princeton University Press,2004.
    [3]J. E. Sasser. History of ordinary differential equations the first hundred years. In Proceedings of The Midwest Mathematics History Conferences, Miami University, Oxford, Ohio,1992.
    [4]高隆昌,李伟.数学及其认识.西南交通大学出版社,成都,2011.
    [5]C. Lanczos. Linear Differential Operators. Van Nostrand, London and New York, 1961.
    [6]王竹溪,郭敦仁.特殊函数概论.北京大学出版社,北京,2004.
    [7]N. M. Temme. On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys.,19:324,1975.
    [8]G. D. Smith. Numerical Solution of Partial Differential Equations:Finite Difference Methods. Oxford University Press, Oxford,1986.
    [9]J. H. Mathews, K. D. Fink. Numerical Methods Using Matlab (Third Edition). Per-entice Hall, New Jersey,2004.
    [10]O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The Finite Element Method:Its Basis and Fundamentals. Butterworth-Heinemann, British,2005.
    [11]冯康.基于变分原理的差分格式.应用数学与计算数学,2(4):238-262,1965.
    [12]李志斌.非线性数学物理方程的行波解.科学出版社,北京,2007.
    [13]S. Liao. Beyond Perturbation:Introduction to the Homotopy Analysis Method. Chap-man & Hall/CRC, Florida,2003.
    [14]徐桂琼.非线性演化方程的精确解与可积性及其符号计算研究PhD thesis,华东师范大学,2004.
    [15]吴文俊.数学机械化.科学出版社,北京,2003.
    [16]姚若侠.基于符号计算的非线性微分方程精确解及其可积性研究PhD thesis,华东师范大学,2005.
    [17]E. Fan, H. Zhang. Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water. Appl. Math. Mech.,19:713-716,1998.
    [18]C. Rogers, W. Schief. Backlund and Darboux Transformations:Geometry and Modern Applications in Soliton Theory. Cambridge University Press, Cambridge,2002.
    [19]C. Gardner, J. Greene, M. Kruskal, R. Miura. Method for solving the Korteweg-deVries equation. Phys. Rev. Let.,19(19):1095-1097,1967.
    [20]朝鲁.微分方程(组)对称向量的吴-微分特征列算法及其应用.数学物理学报:A辑,19(3):326-332,1999.
    [21]P. Olver. Applications of Lie Groups to Differential Equations. Springer Verlag, New York,2000.
    [22]X. Tang, J. Lin. Conditional similarity reductions of Jimbo-Miwa equation via the classical Lie group approach. Commun. Theor. Phys.,39(1):6-8,2003.
    [23]S. Svirshchevskii. Invariant linear spaces and exact solutions of nonlinear evolution equations. J. Nonlin. Math. Phys.,3:164-169,1996.
    [24]V. Galaktionov, S. Svirshchevskii. Exact Solutions and Invariant Subspaces of Nonlin-ear Partial Differential Equations in Mechanics and Physics. Chapman & Hall/CRC, London,2007.
    [25]C. Qu, C. Zhu. Classification of coupled systems with two-component nonlinear d-iffusion equations by the invariant subspace method. J. Phys. A:Math. Theor.,42: 475201,2009.
    [26]W. Ma. A refined invariant subspace method and applications to evolution equations. Sci. China Math.,55:1769-1778,2012.
    [27]S. Lou, J. Lu. Special solutions from the variable separation approach:The Davey-Stewartson equation. J. Phys. A:Math. Gen.,29(14):4209-4215,1999.
    [28]S. Zhang, S. Lou, C. Qu. Variable separation and exact solutions to generalized nonlinear diffusion equations. Chin. Phys. Lett.,19(12):1741-1744,2002.
    [29]S. Lou, G. Ni. The relations among a special type of solutions in some (D+1)-dimensional nonlinear equations. J. Math. Phys.,30:1614-1620,1989.
    [30]M. Wang, Y. Zhou, Z. Li. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A,216(1):67-75,1996.
    [31]张解放.长水波近似方程的多孤子解.物理学报,47(9):1416-1420,1998.
    [32]范恩贵.齐次平衡法、Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间的联系.物理学报,49(8):1409-1412,2000.
    [33]W. Ma, B. Fuchssteiner. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Nonlin. Mech.,31(3):329-338,1996.
    [34]Y. Chen, Z. Yan, B. Li, H. Zhang. New explicit solitary wave solutions and periodic wave solutions for the generalized coupled Hirota-Satsuma KdV system. Commun. Theor. Phys.,38(3):261-266,2002.
    [35]刘式适,傅遵涛,刘式达,赵强.Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用.物理学报,50(11):2068-2073,2001.
    [36]柳银萍.微分方程解析解及解析近似解的符号计算研究PhD thesis,华东师范大学,2008.
    [37]陈树辉.强非线性振动系统的定量分析方法.科学出版社,北京,2007.
    [38]G. Adomian. Nonlinear stochastic differential equations. J. Math. Anal. Appl.,55(2): 441-452,1976.
    [39]G. Adomian. Solving Frontier Problems of Physics:The Decomposition Method. K-luwer Academic Publishers, Boston and London,1994.
    [40]J. Ramos. Generalized decomposition methods for nonlinear oscillators. Chaos Soli-tons Fract.,41(3):1078-1084,2009.
    [41]G. Adomian, M. Pandolfi, R. Rach. An application of the decomposition method to the matrix Riccati equation in a neutron transport process. J. Math. Anal. Appl., 136(2):557-567,1988.
    [42]K. Haldar. Application of Adomian's approximations to the Navier-Stokes equations in cylindrical coordinates. Appl. Math. Lett.,9(4):109-113,1996.
    [43]G. Adomian. Application of the decomposition method to the Navier-Stokes equa-tions. J. Math. Anal. Appl.,119(1-2):340-360,1986.
    [44]方锦清.逆算符理论方法及其在非线性物理中的应用.物理学进展,13(4):441-560,1993.
    [45]J. Ruan, Z. Lu. A modified algorithm for the Adomian decomposition method with applications to Lotka-Volterra systems. Math. Comput. Model.,46(9-10):1214-1224, 2007.
    [46]S. Liao. The proposed homotopy analysis technique for the solution of nonlinear prob-lems. PhD thesis, Shanghai Jiao Tong University,1992.
    [47]S. Liao, K. F. Cheung. Homotopy analysis of nonlinear progressive waves in deep water. J. Eng. Math.,45(2):105-116,2003.
    [48]S. Liao. A kind of approximate solution technique which does not depend upon small parameters-II. An application in fluid mechanics. Int. J. Nonlin. Mech.,32(5):815-822,1997.
    [49]徐航.同伦分析方法在流体力学和海洋工程中的应用PhD thesis,上海交通大学,2006.
    [50]S. Abbasbandy, E. Shivanian. Predictor homotopy analysis method and its application to some nonlinear problems. Commun. Nonlinear Sci. Numer. Simulat.,16(6):2456-2468,2011.
    [51]Y. Liu, Z. Li. The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation. Chaos Solitons Fract.,39(1):1-8,2009.
    [52]S. Zhu. An exact and explicit solution for the valuation of American put options. Quantitative Finance,6(3):229-242,2006.
    [53]成钧.同伦分析方法在流体力学和海洋工程中的应用线性力学和金融学中的应用.PhD thesis,上海交通大学,2008.
    [54]V. Galaktionov. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. P. Roy. Soc. Edinb. A,125(02):225-246,1995.
    [55]R. M. N. Kamran, P. Olver. Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems. Adv. Math.,156:286-319,2000.
    [56]W. Malfliet. Solitary wave solutions of nonlinear wave equations. Am. J. Phys,60(7): 650-654,1992.
    [57]李志斌,张善卿.非线性波方程准确孤立波解的符号计算.数学物理学报,17(1):81-89.1997.
    [58]B. Duffy, E. Parkes. Travelling solitary wave solutions to a seventh-order generalized KdV equation. Phys. Lett. A,214(5):271-272,1996.
    [59]Z. Li, Y. Liu. RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun.,148(2):256-266,2002.
    [60]E. Fan. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A,277(4):212-218,2000.
    [61]Z. Yan. New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations. Phys. Lett. A,292(1):100-106,2001.
    [62]X. Zheng, Y. Chen, H. Zhang. Generalized extended tanh-function methods and its application to(1+1)-dimensional dispersive long wave equation. Phys. Lett. A,311: 145-157,2003.
    [63]扎其劳.可积系统的多孤立子解及其符号计算研究.PhD thesis,华东师范大学,2009.
    [64]V. Matveev, M. Salle. Darboux Transformation and Solitons. Springer-Verlag, Berlin, 1991.
    [65]Z. Zhou, Z. Li. A unified explicit construction of 2N-soliton solutions for evolution equations determined by 2 x 2 AKNS system. Commun. Theor. Phys.,39:257-260, 2003.
    [66]S. Lou, M. Jia, X. Tang, F. Huang. Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation. Phys. Rev. E, 75(5):056318,2007.
    [67]D. Levi, O. Ragnisco. The inhomogeneous Toda lattice:its hierarchy and Darboux-Backlund transformations. J. Phys. A:Math. Gen.,24(8):1729,1999.
    [68]Q. Liu, M. Manas. Darboux transformation for the Manin-Radul supersymmetric KdV equation. Phys. Lett. B,394(3):337-342,1997.
    [69]Z. Li, M. Wang. Travelling wave solutions to the two-dimensional KdV-Burgers equa-tion. J. Phys. A:Math. Gen.,26(21):6027,1999.
    [70]范恩贵,张鸿庆.非线性孤子方程的齐次平衡法.物理学报,47(003):353-362,1998.
    [71]张解放.变更Boussinesq方程的Kupershmidt方程的多孤子解.应用数学和力学,21(002):171-175,2000.
    [72]闫振亚,张鸿庆.两个非线性发展方程组精确解析解的研究.应用数学和力学,22(8),2001.
    [73]G. Adomian. Nonlinear stochastic dynamical systems in physical problems. J. Math. Anal. Appl.,111(1):105-113,1985.
    [74]G. Adomian, R. Rach. Explicit solutions for differential equations. Appl. Math. Com-put.,23(1):49-59,1987.
    [75]N. Bellomo, R. Monaco. A comparison between Adomian's decomposition methods and perturbation techniques for nonlinear random differential equations. J. Math. Anal. Appl.,110(2):495-502,1985.
    [76]R. Rach. On the Adomian (decomposition) method and comparisons with Picard's method. J. Math. Anal. Appl.,128(2):480-483,1987.
    [77]A. Wazwaz. A comparison between Adomian decomposition method and Taylor series method in the series solutions. Appl. Math. Comput.,97(1):37-44,1998.
    [78]G. Adomian, R. Rach. A new algorithm for matching boundary conditions in decom-position solutions. Appl. Math. Comput.,58:61-68,1993.
    [79]G. Adomian, R. Rach. Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. J. Math. Anal. Appl.,174:118-137,1993.
    [80]A. Wazwaz. The modified decomposition method and Pade approximants for solving the Thomas-Fermi equation. Appl. Math. Comput.,105(1):11-19,1999.
    [81]X. Luo. A two-step Adomian decomposition method. Appl. Math. Comput.,170(1): 570-583,2005.
    [82]B. Zhang, Q. Wu, X. Luo. Experimentation with two-step Adomian decomposition method to solve evolution models. Appl. Math. Comput.,175(2):1495-1502,2006.
    [83]R. Rach. A new definition of the Adomian polynomials. Kybernetes,37(7):910-955, 2008.
    [84]G. Baker, J. Gammel. The Pade approximant. J. Math. Anal. Appl.,2(1):21-30, 1961.
    [85]G. Baker, J. Gammel, J. Wills. An investigation of the applicability of the Pade approximant method. J. Math. Anal. Appl.,2(3):405-418,1961.
    [86]徐献瑜,李嘉楷,徐国良.Pade逼近概论.上海科学技术出版社,上海,1990.
    [87]A. Mahmood, L. Casasus, W. Al-Hayani. The decomposition method for stiff systems of ordinary differential equations. Appl. Math. Comput.,167(2):964-975,2005.
    [88]A. Wazwaz, A. Gorguis. Exact solutions for heat-like and wave-like equations with variable coefficients. Appl. Math. Comput.,149(1):15-29,2004.
    [89]A. Wazwaz. Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. Chaos Solitons Fract.,12(12): 2283-2293,2001.
    [90]G. Adomian. The diffusion-Brusselator equation. Comput. Math. Appl.,29(5):1-3, 1995.
    [91]M. Chowdhury, T. Hassan, S. Mawa. A new application of homotopy perturbation method to the reaction-diffusion Brusselator model. Procedia-Social and Behavioral Sciences,8:648-653,2010.
    [92]F. Geng, M. Cui. A novel method for nonlinear two-point boundary value problems: Combination of ADM and RKM. Appl. Math. Comput.,217(9):4676-4681,2011.
    [93]N. Caglar, H. Caglar. B-spline method for solving linear system of second-order bound-ary value problems. Comput. Math. Appl.,57(5):757-762,2009.
    [94]G. Adomian, R. Rach. Coupled differential equations and coupled boundary condi-tions. J. Math. Anal. Appl.,112(1):129-135,1985.
    [95]Y.-T. Yang, S.-K. Chien, C.-K. Chen. A double decomposition method for solving the periodic base temperature in convective longitudinal fins. Energy Conversion and Management,49(10):2910-2916,2008.
    [96]郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解.科学出版社,北京,2011.
    [97]K. Oldham, J. Spanier. The Fractional Calculus. Academic Press, Florida,1974.
    [98]I. Podlubny. Fractional Differential Equations. Academic Press, Florida,1999.
    [99]G. Jumarie. Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. J. Appl. Math. Computing,24:31-48,2007.
    [100]Y. Lin, Y. Liu, Z. Li. Symbolic computation of analytic approximate solutions for nonlinear differential equations with initial conditions. Comput. Phys. Commun., 183(1):106-117,2012.
    [101]Y. Lin, Y. Liu, Z. Li. Symbolic computation of analytic approximate solutions for nonlinear fractional differential equations. Comput. Phys. Commun.,184(1):130-141,2013.
    [102]G. Wu. Adomian decomposition method for non-smooth initial value problems. Math. Comput. Model.,54(9-10):2104-2108,2011.
    [103]H. Jafari, V. Daftardar-Gejji. Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput.,180(2): 700-706,2006.
    [104]J. T. Edwards, N. J. Ford, A. Simpson. The numerical solution of linear multi-term fractional differential equations:Systems of equations. J. Comput. Appl. Math., 148(2):401-418,2002.
    [105]H. Chu, Y. Zhao, Y. Liu. A MAPLE package of new ADM-Pade approximate solution for nonlinear problems. Appl. Math. Comput.,217:7074-7091,2011.
    [106]N. T. Shawagfeh. Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput.,131(2-3):517-529,2002.
    [107]H. Jafari, V. Daftardar-Gejji. Solving a system of nonlinear fractional differential equations using Adomian decomposition. J. Comput. Appl. Math.,196(2):644-651, 2006.
    [108]W. Chen, Z. Lu. An algorithm for adomian decomposition method. Applied Mathe-matics and Computation,159(1):221-235,2004.
    [109]杨沛.微分方程解析近似解的符号计算研究PhD thesis,华东师范大学,2010.
    [110]C. Chun, R. Sakthivel. Homotopy perturbation technique for solving two-point boundary value problems-comparison with other methods. Comput. Phys. Commun., 181(6):1021-1024,2010.
    [111]V. Daftardar-Gejji, S. Bhalekar. Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput.,202(1):113-120,2008.
    [112]A. Wazwaz. The existence of noise terms for systems of inhomogeneous differential and integral equations. Appl. Math. Comput.,146(1):81-92,2003.
    [113]H. Gu, Z. Li. A modified Adomian method for system of nonlinear differential equa-tions. Appl. Math. Comput.,187(2):748-755,2007.
    [114]A. Ebaid. Exact solutions for a class of nonlinear singular two-point boundary value problems:The decomposition method. Z. Naturforsch. A,65:145-150,2010.
    [115]S. Islam, S. Haq, J. Ali. Numerical solution of special 12th-order boundary value prob-lems using differential transform method. Commun. Nonlinear Sci. Numer. Simulat., 14(4):1132-1138,2009.
    [116]J. Ali, S. Islam, S. Islam, G. Zaman. The solution of multipoint boundary value problems by the optimal homotopy asymptotic method. Comput. Math. Appl.,59(6): 2000-2006,2010.
    [117]S. Saha Ray, R. Bera. Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput.,174(1):329-336,2006.
    [118]G. Adomian, R. Rach. Nonlinear stochastic differential delay equations. J. Math. Anal. Appl.,91(1):94-101,1983.
    [119]Y. Hon. A decomposition method for the Thomas-Fermi equation. Southeast Asian Bull. Math.,3(3):55-58,1996.
    [120]C. Zhu, C. Qu. Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J. Math. Phys.,52:043507,2011.
    [121]J. E. Pearson. Complex patterns in a simple system. Science,261(5118):189-192, 1993.
    [122]M. R. Garvie. Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. B. Math. Biol.,2006.
    [123]W. Wang, Y. Lin, F. Yang, L. Zhang, Y. Tan. Numerical study of pattern formation in an extended Gray-Scott model. Commun. Nonlinear Sci. Numer. Simulat.,16(4): 2016-2026,2011.
    [124]W. Wang, Y. Lin, L. Zhang, F. Rao, Y. Tan. Complex patterns in a predator-prey model with self and cross-diffusion. Commun. Nonlinear Sci. Numer. Simulat.,16(4): 2006-2015,2011.
    [125]叶其孝,李正元,王明新,吴雅萍.反应扩散方程引论(第二版).科学出版社,北京,2011.
    [126]S. Kondo, R. Asai. A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature,376(6543):765-768,1995.
    [127]D. Sanchez, D. Sanchez. Ordinary Differential Equations and Stability Theory:An Introduction. WH Freeman, New York,1968.
    [128]W. Ma. Complexiton solutions to integrable equations. Nonlinear Anal-Theor.,63(5-7):e2461-e2471,2005.
    [129]S. Abbasbandy. Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dyn.,52:35-40,2008.
    [130]W. Ma, T. Huang, Y. Zhang. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scripta,82:065003,2010.
    [131]C. Lin, E. Reissner, H. Tsien. On two-dimensional non-steady motion of a slender body in a compressible fluid. J. Math. Phys,27(3):220-231,1948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700