用户名: 密码: 验证码:
含时薛定谔方程的高阶辛算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术的发展之迅速异乎寻常,将成为二十一世纪的关键技术。纳米技术是电子器件小型化的必然趋势,也是现代理论研究和工程实践的前沿领域。纳米器件本身尺寸极小,传统半导体物理中的建模方法已经失效,采取实验手段直接测量器件的各种性能又比较困难。因此,研究精确和高效的数值方法是现代纳米器件建模和优化的重要课题。纳米器件的建模是一个极其复杂的多物理问题,描述电子传输中的电子与电子相互作用、电子和声子的散射、外界环境的影响(电极、电场、磁场)以及器件的局域化结构均需要采用不同方法。分析大部分纳米器件特性的切入点是确定器件结构电子的能量本征值和能量本征态,本征值和本征态的求解过程本质上也是表征器件格林函数的过程。一旦得到格林函数,器件的电荷密度、电流大小、和伏安曲线便可求出。因此,纳米器件本征值和本征态的快速和精确求解是一项极其重要的课题。
     含时薛定谔(Schrodinger方程)可以用于求解纳米器件的本征值和本征态。FDTD方法——时域有限差分法,以其简单直观的特点,已成为求解含时薛定谔方程最常用的方法之一,它的优点包括形式简单、极易处理非均匀结构、方便得到目标的宽带信息、具有天然的并行性等等,但其缺点是无法克服在长时间仿真中产生的色散误差。
     大量的物理现象可通过时间演变辛变换的哈密尔顿(Hamilton)微分方程描述。辛算法通过使用不同的时间差分方法保持了哈密尔顿系统向空间全局辛结构。大量实验已证明辛算法在哈密尔顿系统数值计算中的优势,该优势在长时间仿真中最为显著。辛算法已经成功用于求解薛定谔方程:对于含时薛定谔方程,一种方法是将其复波函数分成实数部分和虚数部分,另一种方法是将其哈密尔顿系统分成动能算子和势能算子。而对于稳态薛定谔方程,如果使用的是广义坐标(复波函数)和广义速度(复波函数的空间导数),那么,也可以使用辛算法。此外,辛算法亦可用于求解非线性薛定谔方程。
     本文将辛算法和高阶时域有限差分算法结合构造SFDTD方法——高阶辛时域有限差分法,应用到量子力学的薛定谔方程的求解中,发展快速、高效、和精确的数值方案,解决任意结构纳米器件的本征问题。时间方向上,采用高阶辛积分,在长期仿真中保持薛定谔方程的辛结构;空间方向上,采用4阶交错差分,提高数值精度。
     针对“含时薛定谔方程的高阶辛算法研究”这一课题,本文的创新工作主要包括以下几个方面的内容:
     (1)研究了薛定谔方程的辛性质,探讨了薛定谔方程、离散方式、网格、空间拓扑之间的内在联系;
     (2)研究SFDTD方法用于薛定谔方程的数值模拟。采用高阶辛时域有限差分法对含时薛定谔方程进行离散,对空间进行4阶交错差分,时间上引入高阶辛积分,给出了基本的迭代公式;分析算法的稳定性、色散性,研究本征值和本征态的有效提取方法,研究边界问题的处理方法。
     (3)将SFDTD方法用于纳米器件能量本征值和能量本征态的分析与求解,研究算法的数值性态,发展相关的核心技术,对典型结构和复杂结构的纳米器件进行数值模拟。
     (4)纳米材料量子传输模型的优化和设计。在构造麦克斯韦方程和薛定谔方程耦合方程的基础上,研究纳米材料的电学传输特性。比如,碳纳米管中电子传输模型的设计和优化。针对在碳纳米管中电子传输的量子特征,研究一种统一的多物理辛时域有限差分框架,从整体上统一求解薛定谔方程和麦克斯韦方程的耦合方程。
The advances in nanotechnology are unprecedentedly fast and nanotechnology will become one of key technologies in the21st century. Nanotechnology is driven by the miniaturization of electronic devices, and is also a cutting-edge field in theoretical research and engineering applications. The size of nanodevices is extremely small, and therefore the modeling approach adopted in classical semiconductor physics failed. Moreover, taking experimental tools to obtain various properties of nanodevices is difficult. Hence, studying an accurate and efficient numerical method is an important subject for modern nanodevice modeling and optimization. Nanoscale device modeling is a very complex multi-physics problem. Electron-electron interaction in the electron transport, the scattering between electrons and phonons, the influence of the external environment (the electrode, electric field and magnetic field) as well as the localized structure of the device should be described by different methods. Finding the eigenvalue and eigenstate of nanodevices is fundamentally important for capturing nanodevice characteristics, which strongly relates to the nonequilibrium Green's function. With the help of Green's function, charge density, current distribution, and current-voltage characteristics of the device will be obtained. Thus, an accurate and fast solution to eigenstates and eigenfrequencies is an important subject.
     The time-dependent Schrodinger equation can be used to solve the eigenvalue and eigenstate of nanodevices. As the most standard algorithm, the traditional finite-difference time-domain (FDTD) method, which is simple and easy to implement, has been widely applied to solve the time-dependent Schrodinger equation. The main advantages of the FDTD-based techniques are computational simplicity and low operation count. Furthermore, it is very well suited to analyze transient problems and is very good at modeling inhomogeneous geometries. Most important of all, the method can readily be implemented on the massive computers. However, its drawback is unable to overcome the dispersion errors in the long simulation.
     A large quantity of physical phenomena can be modeled by Hamiltonian differential equations whose time evolution is the symplectic transform and flow conserves the symplectic structure. The symplectic schemes include a variety of different temporal discretization strategies designed to preserve the global symplectic structure of the phase space for a Hamiltonian system. They have demonstrated their advantages in numerical computations for the Hamiltonian system, especially for a long-term simulation. The symplectic scheme has been successfully applied to solve Schrodinger equation with three different strategies. For the time-dependent Schrodinger equation, one scheme splits the complex wave function into real and imaginary parts, and another one decomposes the Hamiltonian into the kinetic and potential operators. For the time-independent Schrodinger equation, the symplectic scheme can also be employed if the generalized coordinate (complex wave function) and generalized velocity (spatial derivatives of complex wave function) are introduced. Moreover, the symplectic scheme has been extended to solve the nonlinear Schrodinger equation.
     The high-order symplectic finite difference time domain is applied to the solution of the Schrodinger equation in quantum mechanics, developing rapid, efficient and accurate numerical scheme to solve the eigenvalue problem of arbitrarily structured nanodevices. In the time domain, high-order symplectic integration is adopted to preserve the symplectic structure of the Schrodinger equation in the long-term simulation. In the space domain,4th order staggered differences is taken to improve the numerical accuracy.
     Focusing on the subject of "High-Order Symplectic FDTD Scheme for Solving Time-Dependent Schrodinger Equation", some novel contributions are made as follows
     (1) The symplectiness of Schrodinger equations is discussed and its connections with Schrodinger equations, discretization method, grid, and spatial topology are established.
     (2) The SFDTD scheme is employed in the numerical simulation to Schrodinger equation. Higher order symplectic finite difference time domain method is applied to discretize time-dependent Schrodinger equation. For time domain, the high-order symplectic integration scheme is used, and the staggered fourth-order difference scheme is adopted in spatial domain. At the same time, our work offers:(1) a rigorous numerical stability and dispersion analyses of the high-order SFDTD scheme;(2) the mathematical form and implementation for excitation source and the extraction method for eigenvalues and eigenstates;(3) boundary treatments
     (3) The SFDTD method is introduced to analyze the energy eigenvalues and energy eigenstates of nanodevices. The numerical performance of algorithms is studied and core technologies are developed to simulate typical nanodevices with complex structures.
     (4) Optimization and design of quantum transport model for nanomaterials. Based on the coupled form of Maxwell's equations and the Schrodinger equation, electron transport characteristics of nanomaterials and nanostructures is studied. For example, the design and optimization of the electron transport model in the carbon nanotubes. Regarding the quantum features of electron transport in carbon nanotubes, a unified and multi-physical symplectic framework is established to solve the coupled Schrodinger-Maxwell's equations globally.
引文
[1]Yee K S. Numercial solution of initial boundary value problem involving Maxwell equations in isotropic media [J]. IEEE Transactions on Antennas and Propagation, May 1996, AP-14(3):302-307.
    [2]TAYLOR C, LAM D, SHUMPERT T. Electromagnetic pulse scattering in time-varying inhomogeneous media [J]. Antennas and Propagation, IEEE Transactions on,1969,17(5):585-589.
    [3]TAFLOVE A, BRODWIN M. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations [J]. Microwave Theory and Techniques, IEEE Transactions on,1975, 23(8):623-630.
    [4]MUR G. Absorbing boundary conditions for the finite-difference approximation of the time domain electromagnetic-field equations [J]. Electromagnetic Compatibility, IEEE Transactions on,1981(4):377-382.
    [5]UMASHANKAR K, TAFLOVE A. A novel method to analyze electromagnetic scattering of complex objects [J]. Electromagnetic Compatibility, IEEE Transactions on,1982(4):397-405.
    [6]LUEBBERS R, HUNSBERGER F, KUNZ K. A frequency-dependent finite-difference timedomain formulation for transient propagation in plasma [J]. Antennas and Propagation, IEEE Transactions on,1991,39(1):29-34.
    [7]BERENGER J. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of computational physics,1994,114(2):185-200.
    [8]BERENGER J. Perfectly matched layer for the FDTD solution of wave-structure interactionproblems [J]. Antennas and Propagation, IEEE Transactions on,1996, 44(1):110-117.
    [9]SACKS Z, KINGSLAND D, LEE R, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition [J]. Antennas and Propagation, IEEE Transactions on,1995,43(12):1460-1463.
    [10]GEDNEY S. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J]. Antennas and Propagation, IEEE Transactions on, 1996,44(12):1630-1639.
    [11]CHOI D, HOEFER W. The finite-difference-time-domain method and its application to eigenvalue problems[J]. Microwave Theory and Techniques, IEEE Transactions on,1986,34(12):1464-1470.
    [12]T. Namiki. New FDTD algorithm based on alternating-direction implicit method [J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(10): 2003-2007.
    [13]F. H. Zhen, Z. Z. Chen, and J. Z. Zhang. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method [J]. IEEE Transactions on Microwave Theory and Techniques,2000, 48:1550-1558.
    [14]J. L. Young, D. Gaitonde, and J. S. Shang. Toward the construction of a fourth-order difference scheme for transient EM wave simulation:staggered grid approach [J]. IEEE Transactions on Antennas and Propagation,1997,45(11): 1573-1580.
    [15]J. S. Shang. High-order compact-difference schemes for time-dependent Maxwell equations [J]. Journal of Computational Physics,1999,153(2):312-333.
    [16]T. Hirono, W. Lui, S. Seki, and Y. Yoshikuni. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator [J]. IEEE Transactions on Microwave Theory and Techniques,2001, 49(9):1640-1648.
    [17]A. Yefet and P. G Petropoulos. A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations [J]. Journal of Computational Physics,2001,168(2):286-315.
    [18]S. V. Georgakopoulos, C. R. Birtcher, C. A. Balanis, and R. A. Renaut. Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, Part I:Theory [J]. IEEE Antennas and Propagation Magazine,2002, 44(1):134-142.
    [19]S. V. Georgakopoulos, C. R. Birtcher, C. A. Balanis, and R. A. Renaut. Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, Part 2:Applications [J]. IEEE Antennas and Propagation Magazine, 2002,44(2):92-101.
    [20]Q. H. Liu. PSTD algorithm:A time-domain method requiring only two cells per wavelength [J]. Microwave and Optical Technology Letters,1997,15(3): 158-165.
    [21]M. Krumpholz and L. P. B. Katehi. MRTD:new time-domain schemes based on multiresolution analysis [J]. IEEE Transactions on Microwave Theory and Techniques,1996,44 (4):555-571.
    [22]Antonio Soriano and Enrique A. Navarro. Analysis of the finite difference time domain technique to solve the Schrodinger equation for quantum devices [J], Journal of Applied Physics,2004,95(12):8001-8008.
    [23]D.M.Sullivan and D.S.Citrin, Determining quantum eigenfunctions in three-dimensional nanoscale structures [J], Journal of Applied Physics,2005,97(10): 104305-1-104305-6.
    [24]Michael Strickland and David Yager-Elorriaga, A Parallel Algorithm for Solving the 3d Schrodinger Equation [J], Journal of Applied Physics,2010,229(17): 6015-6026.
    [25]敖献煜.光子晶体的异常色散特性及其应用研究田],博士学位论文,2006.
    [26]周国瑞,冯国英.弯曲纳米光纤的耦合问题研究[J],光子学报,2009,38(7):1767-1770.
    [27]杨柳,肖高标.碳纳米器件光电特性的电磁散射分析[J],信息技术,2008,5:108-114.
    [28]D.M.Sullivan and D. S. Citrin, Determination of the eigenfunctions of arbitrary nanostructures using time domain simulation [J], Journal of Computational and Applied Mathematics,2002,91(5):3219-3226.
    [29]Jethro H.Greene and Allen Taflove, Scattering of Spatial Optical Solitons by Subwavelength Air Holes [J], IEEE Microwave and Wireless Components Letters,2007,17(11):760-762.
    [30]Redding B and Shouyuan Shi, Electromagnetic Analysis of Ring-Cavity-Assisted Amplified Spontaneous Emission in Er:SiO2/a-Si Horizontal Slot Waveguides [J], IEEE Journal of Quantum Electronics,2009,45(7):825-829.
    [31]Shibayama J., Nomura A. and Ando R., A Frequency-Dependent LOD-FDTD Method and Its Application to the Analyses of Plasmonic Waveguide Devices [J], IEEE Journal of Quantum Electronics,2010,46(1):40-49.
    [32]Eng Huat Khoo, Er Ping Li and Ahmed I., Light Energy Extraction From the Minor Surface Arc of an Electrically Pumped Elliptical Microcavity Laser [J], IEEE Journal of Quantum Electronics,2009,46(1):128-136.
    [33]Morifuji M., Nakaya Y. and Mitamura T., Novel Design of Current Driven Photonic Crystal Laser Diode [J], Photonics Technology Letters,2009,21(8): 513-515.
    [34]Kenneth Lopata and Daniel Neuhauser, Multiscale Maxwell-Schrodinger modeling:A split field finite-difference time-domain approach to molecular nanopolaritonics [J], IEEE Journal of Quantum Electronics, The Journal of Chemical Physics,2009,130(10):104707-1-104707-7.
    [35]Zhen Sheng, Daoxin Dai and Sailing He, Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends [J], IEEE Journal of Quantum Electronics,2009,15(5):1406-1412.
    [36]Kenneth Lopata and Daniel Neuhauser, Nonlinear nanopolaritonics:Finite-difference time-domain Maxwell-Schrodinger simulation of molecule-assisted plasmon transfer [J], The Journal of Chemical Physics,2009,131(1):014701 014701-5.
    [37]Lu, C.-Y.;. Chuang, S. L.; Bimberg, D., Metal-Cavity Surface-Emitting Nanolasers [J], IEEE Journal of Quantum Electronics,2013,49(1):114-121.
    [38]Capua, A.; Kami, O.; Eisenstein, G, A Finite Difference Time Domain Model for Quantum Dot Lasers and Amplifiers in the Maxwell-Schrodinger Framework [J], IEEE Journal of Selected Topics in Quantum Electronics,2012, PP(99):1.
    [39]Jing Wu; Mosallaei, H., Engineered Dielectric Pattern Nanoantenna:A Quantum Cascade Laser (QCL) Device Application [C], IEEE Transactions on Antennas and Propagation,2011,59(1):32-39.
    [40]冯康,等.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003:358-359.
    [41]W. S. Zhu, X.S. Zhao, andY.Q. Tang, Numerical methods with a high order of accuracy applied in the quantum system [J], The Journal of Chemical Physics, 1996,104:2275-2286.
    [42]S.K. Gray and D.E. Manolopoulos, Symplectic integrators tailored to the time-dependent Schrodinger equation [J], The Journal of Chemical Physics,1996, 104:7099-7112.
    [43]X. Y. Liu, P.Z. Ding, J.L. Hong, and L.J. Wang, Optimization of explicit symplectic schemes for time-dependent Schrodinger equations [J], Computer Mathematics with Application,2005,50:637-644.
    [44]S. Blanes, F. Casas, and A. Murua, Symplectic splitting operator methods for the time-dependent Schrodinger equation [J], The Journal of Chemical Physics, 2006,124:105-114.
    [45]S.A. Chin and C.R. Chen, Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials [J], The Journal of Chemi-cal Physics,2002,117:1409-1415.
    [46]X.S. Liu, X.Y. Liu, Z.Y. Zhou, P.Z. Ding, and S.F. Pan, Numerical solution of one-dimensional time-independent Schrodinger equation by using symplectic schemes [J], International Journal of Quantum Chemistry,2000,79:343-349.
    [47]T. Monovasilis, Z. Kalogiratou, and T.E. Simos, Computation of the eigenvalues of the Schrodinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods [J], Physics Letter A,2000,372: 569-573.
    [48]A.L. Islas, D.A. Karpeev, and C.M. Schober, Geometric integrators for the non-linear Schrodinger equation [J], Journal Computer Physics,2001,173:116-148.
    [49]T.C. Wang, T. Nie, and L.M. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrodinger system [J], Journal of Computational and Applied Mathematics,2009,231:745-759.
    [50]朱华君,陈亚铭,宋松和,唐贻发,二维非线性Schrodinger方程的辛与多辛格式[J],计算数学,2010,32(3):315-327.
    [51]花巍,刘学深,立方五次方非线性Schrodinger方程的动力学性质研究[J],物理学报,2011,60(11):1 10210-1-6.
    [52]张春丽,冯志波,祁月盈,车继馨,任意偏振激光作用下二维模型H原子的谐波发射[J],物理学报,2011,60(8):083201-1—6.
    [53]Huang Zhi-xiang, Wu Xianliang, Symplectic partitioned Runge-Kutta scheme for Maxwell's equations [J]. Int. J. of Quantum Chem,2006,106:839-842.
    [54]Wei Sha, Zhi-xiang Huang, Xian-liang Wu, Ming-sheng Chen, Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation [J], Journal of Computational Physics,2007,225(1):33-50.
    [55]Wei Sha, Zhixiang Huang, Mingsheng Chen, and Xianliang Wu, Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations [J]. IEEE Transactions on Antennas and Propagation,2008,56(2):493-500.
    [1]K. Feng. Difference-schemes for Hamiltonian-formalism and symplectic-geometry [J]. Journal of Computational Mathematics,1986,4 (3):279-289.
    [2]冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003.
    [3]Vogelaere R De. Method of integration which preserve the contact transformation property of the Hamilton equations [J].Notre Dame. Ind.,1956, (4):98-154.
    [4]Ruth R D. A canonical integration technique [J]. IEEE Trans. Nuclear Science, 1983, (3):2669-2671.
    [5]J. M. Sanzserna. Runge-Kutta schemes for Hamiltonian-systems [J]. Bit Found-ation,1988,28(4):877-883.
    [6]J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems [M]. London, U.K.:Chapman & Hall,1994.
    [7]李世雄.波动方程的高频近似与辛几何[M].北京:科学出版社,2001.
    [8]I. Marshall and S. Wojciechowski. When is a Hamiltonian system separable [J]. Journal of Mathematical Physics,1988,29(6):1338-1346.
    [9]J. Candy and W. Rozmus. A symplectic integration algorithm for separable Hamiltonian functions [J]. Journal of Computational Physics,1991, 92(l):230-256.
    [10]X. H. Liao. Symplectic integrator for general near-integrable Hamiltonian system [J]. Celestial Mechanics & Dynamical Astronomy,1997,66(3):243-253.
    [11]M. Antonowicz and S. Rauchwojciechowski. How to construct finite-dimensional Bi-Hamiltonian systems from Soliton-Equations-Jacobi integrable potentials [J]. Journal of Mathematical Physics,1992,33(6):2115-2125.
    [12]F. Magri, C. Morosi, and O. Ragnisco. Reduction techniques for infinite-dimensional Hamiltonian-systems-some ideas and applications [J]. Communications in Mathematical Physics,1985,99(1):115-140.
    [13]S. B. Kuksin. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs [J]. Communications in Mathematical Physics,1995, 167(3):531-552.
    [14]B. Leimkuhler and S. Reich. Symplectic integration of constrained Hamiltonian-systems [J]. Mathematics of Computation,1994,63(208):589-605.
    [15]W. N. Everitt and L. Markus. Complex symplectic geometry with applications to ordinary differential operators [J]. Transactions of the American Mathematical Society,1999,351(12):4905-4945.
    [16]G. Sun. Construction of high-order symplectic Runge-Kutta methods [J]. Journal of Computational Mathematics,1993, 11(3):250-260.
    [17]L. Jay. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems [J]. SIAM Journal on Numerical Analysis,1996,33(1):368.
    [18]H. Yoshida. Construction of higher order symplectic integrators [J]. Physica D: Nonlinear Phenomena,1990,46(3):262-268.
    [19]M. Suzuki. General theory of higher-order decomposition of exponential operators and symplectic integrators [J]. Physics Letters A,1992,165(5-6): 387-395.
    [20]M. P. Calvo and J. M. Sanzserna. The development of variable-step symplectic integrators with application to the 2-body problem [J]. SIAM Journal on Scientific Computing,1993,14(4):936-952.
    [21]S. A. Chin. Symplectic integrators from composite operator factorizations [J]. Physics Letters A,1997,226(6):344-348.
    [22]S. Reich. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations [J]. Journal of Computational Physics,2000,157(2):473-499.
    [23]T. J. Bridges and S. Reich. Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity [J]. Physics Letters A,2001, 284(4-5):184-193.
    [24]史荣昌.矩阵分析[M].北京:北京理工大学出版社,1996.
    [25]L. H. Kong, R. X. Liu, and X. H. Zheng. A survey on symplectic and multi-symplectic algorithms [J]. Applied Mathematics and Computation,2007, 186(1):670-684.
    [26]F. M. Dopico and C. R. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one [J]. Linear Algebra and Its Applications, 2006,419(2-3):772-778.
    [27]刘凤华,苟长义.复辛群与复线性Hamilton系统基本解的关系[J].天津理工学院学报,1999,15:9-11
    [1]A. Yefet and P. G Petropoulos. A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations [J]. Journal of Computational Physics,2001,168(2):286-315.
    [2]Kenneth W F, The Quantum World:Quantum Physics for Everyone [M],2005, USA:Harvard Univ Press,2005.
    [3]曾谨言.量子力学一卷Ⅰ[M]第3版.北京:科学出版社,2000:32-71.
    [4]N. H. Sweilam, R. F. AL-Bar,Variational iteration method for coupled nonlillear Schrodinger equations [J], Computers and Mathematics with Application,2007, 54(7):993-999.
    [5]T.Lu, W.caj aInd Pingwen Zhang, Conservative local discontinuous Galerkin methods for time dependent Schrodinger equation [J], Journal of Numerical Analysis And modeling,2005,2(1):75-84.
    [6]T.R.Taha, A numerical scheme for the nonlinear Schrodinger equation[J], Comput. Math. Appl.,1991,22(9):77-84.
    [7]T.R.Taha, Inverse scattering transform numerical schemes for nonlinear evolution equations and the method of lines [J], Appl. Numer. Math.,1996,20: 181-187.
    [8]Deflour M, Fortin M, and Payre G, Finite diference solution of a non-linear Schrodinger equation [J], J.Comput. Phys.,1981,44:277-288.
    [9]Thiab R Taha, Mark J. Ablowitz, Analytical and numercal aspects of certain nonlinear evolution equations [J], J.Comput. Phys.,1984,55:203-230.
    [10]Sanz-Serna J M. Methods for the Numercal solution of the nonlinear Schrodinger Equation [J], Math. Comput.,1984,43:21-27.
    [11]Chang Qian Shun, Xu Lin bao, A numercal method for a system of generalized nonlinear Schrodinger equation [J], J. Comput. Math,1986.4 (3):191—199.
    [12]Zhang Fei, Perez-Grare, Numercal simulationof nonlinear:Schrodinger systems: a new conservative sceheme [J], Appl. Math. Comput.,1995,71:165-177.
    [13]张鲁明,非线性Schrodinger方程的高精度守恒差分格式,应用数学学报[J],2005,28(1):178-186.
    [14]W.S. Zhu, X.S. Zhao, Y.Q. Tang, Numerical methods with a high order of accuracy applied in the quantum system [J], J. Chem. Phys.,104 (1996) 2275-2286.
    [15]S.K.Gray, D.E.Manolopoulos, Energetics of Fullerenes with 4-Membered Rings [J], J. Chem. Phys.,1996,104:7099-7112.
    [16]X.Y.Liu, P.Z.Ding, J.L.Hong, L.J.Wang, Optimization of explicit symplectic schemes for time-dependent Schrodinger equation [J], Comput. Math. Appl., 2005,50:637-644.
    [17]S. Blanes, F. Casas, A. Murua, Symplectic splitting operator methods for the time-dependent Schrodinger equation [J], J. Chem. Phys.,2006,124:234105.
    [18]S.A. Chin, C.R. Chen, J. Chem. Phys.,Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials [J],2002,117: 1409-1415.
    [19]X.S. Liu, X.Y. Liu, Z.Y. Zhou, P.Z. Ding, S.F. Pan, Numerical solution of one-dimensional time-independent Schrodinger equation by using symplectic schemes [J], Int. J. Quantum Chem.,2000,79:343-349.
    [20]T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation [J], Phys. Lett. A,2008,372:569-573.
    [21]A.L. Islas, D.A. Karpeev, C.M. Schober, Geometric integrators for the nonlinear Schrodinger equation [J], J. Comput. Phys.,2001,173:116-148.
    [22]T.C. Wang, T. Nie, L.M. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrodinger system [J], J. Comput. Appl. Math.,2009,231: 745-759.
    [23]W.E.I. Sha, Z.X. Huang, X.H. Wu, M.S. Chen, Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation [J], J. Comput. Phys.,2007,225:33-50.
    [24]Sullivan D.M., Electromagnetic simulation using the FDTD method [M], 2000,IEEE Press, New York.
    [25]Taflove A.,Hagness S.C., Computational electrodynamics:the finite-difference time-domain method [M],2005, Third Edition, Artech House, Boston.
    [26]D. Masiello, E. Deumens, and Y. Ohrn, Dynamics of an atomic electron and its electromagnetic field in a cavity [J], Physical Review A,2005,71(032108):1-12.
    [27]Gray S.K., Manolopoulos D.E., Symplectic integrators tailored to the time-dependent Schrodinger equation [J], J. Chem. Phys.,1996,104:7099-7112.
    [28]Yoshida H., Construction of higher-order symplectic integrators [J], Phys. Lett. A, 1990,150:262-268.
    [29]Sha W.E.I., Huang Z.X., Chen M.S., Wu X.L. Survey on symplectic finite-difference time-domain schemes for Maxwell's equations [J], IEEE Trans. Antennas Propag.,,2008,56:493-500
    [1]Datta S., Quantum Transport:Atom to Transistor [M], Cambridge University Press,2005, New York.
    [2]Griffiths D.J., Introduction to Quantum Mechanics [M], Second Edition Addison-Wesley,2004, Boston.
    [3]Joe Y.S., Satanin A.M., Kim C.S., Classical analogy of Fano resonances [J], Phys. Scr.,2006,74:259-266.
    [4]Soriano A., Navarro E.A., Porti J.A., Such V., Analysis of the finite difference time domain technique to solve the Schrodinger equation for quantum devices [J], J. Appl. Phys.,2004,95 8011-8018.
    [5]Sullivan D.M., Citrin D.S., Determining quantum eigenfunctions in three-dimensional nanoscale structures [J], J. Appl. Phys.,2005,97(10):104305-104305-6.
    [6]G. B. Ren and J. M. Rorison,Eigenvalue problem of the Schrodinger equation via the finite-difference time-domain method [J], Physical Review E,2004,69: 036705-1-4.
    [7]Hanquan Wang, Numerical studies on the split-step finite difference method for nonlinear Schrodinger equations [J], Applied Mathematics and Computation, 2005,170:17-35.
    [8]R. Becerril, F.S.Guzmana, A. Rend'on-Romero, and S. Valdez-Alvarado, Solving the time-dependent Schrodinger equation using finite difference methods [J], REVISTA MEXICANADE F'ISICA E, DICIEMBRE 2008,54 (2):120-132.
    [1]李德元,徐国荣,水鸿寿,等.二维非定常流体力学数值方法[M],1998,北京:科学出版社.
    [2]Pomraning G C, The equations of radiation hydrodynamics [M],1973, New York: Pergamon Press.
    [3]Castor J I, Radiation hydrodynamics [M],2004, New York:Cambridge University Press.
    [4]Lewis E E, Miller W F. Computational methods of neutron transport [M],1984, New York:John Wiley & Sons Publisher.
    [5]杜书华,等.输运问题的计算机模拟[M],1989,长沙:湖南科学技术出版社.
    [6]贾阳,刘金超,郭军,左胜强,余金涛.基于COMSOL Multiphysics电力电感器的有限元法仿真分析[J],2012,制造业自动化,34(9):109-110.
    [7]江磊.二维有限元网格的局部调整及优化[J].制造业自动化,2011,33(2):180-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700