用户名: 密码: 验证码:
生物黑炭抑制稻麦对污染土壤中Cd/Pb吸收的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cd/Pb是对人类健康具有极大威胁的重金属元素,随着土壤-作物-食物的食物链迁移,农田Cd/Pb污染已日益显现为我国环境健康的突出问题。我国南方是稻米的主要产区,该地区土壤重金属污染日益扩张,大多土壤偏酸,稻米重金属吸收和积累存在着重要的食品安全风险。因此,重金属污染稻田稻米安全生产的有效修复措施成为大家研究的热点。修复措施主要包括工程修复、物理化学修复以及植物修复等方面。工程修复具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点;物理化学修复,见效快,但有的改良剂可能会带来二次污染,并且还有活化的风险;植物修复费用低,可清除污染物,但是生物量小,修复时间较长。因此为了实现降低重金属的作物吸收,提高粮食安全,寻找一种改善和提高土壤质量,降低重金属的有效性的经济有效措施和技术显得尤为重要。
     生物黑炭是生物质原料在中低温(350-500℃)热裂解过程产生的一种低密度炭化物质。它具有很高的稳定性、很大的比表面、大量的表面负电荷和高的电子密度,同时,其pH值高,吸附和固定重金属能力强,从而具有修复土壤重金属的潜力。因此通过施用生物黑炭,达到改善土壤环境、缓解并治理土壤污染、同时,提高土壤碳库,减缓气候变化的目的。从探讨生物黑炭对重金属的吸附解吸能力出发,试验分析生物黑炭钝化农田重金属而降低作物吸收的效果,讨论其作用机制,以期为发展生物黑炭产业和农田环境治理技术提供科学依据。主要结果如下:
     1.在室内进行了生物黑炭在Cd浓度序列,时间序列,溶液初始pH值序列,不同粒径大小以及用量的吸附解吸试验。在生物黑炭对不同浓度Cd的等温吸附试验中,生物黑炭对溶液中Cd2+的吸附效率达到98%以上,随着Cd溶液浓度的升高生物黑炭的单位吸附量呈增加的趋势。吸附效率同吸附量成反比,即随着吸附量的增加吸附效率呈下降趋势,但是吸附效率下降的速率远低于吸附量增加速度。生物黑炭对溶液中Cd的吸附仅需10多分钟即达到平衡。生物黑炭对Cd的吸附量随溶液的pH值升高而增加,并且生物黑炭固液比对溶液pH值也有明显影响,吸附达到平衡时,溶液pH值相对于初始值提高了10.4%-73.9%。
     生物黑炭吸附能力随粒径减小而增大,当粒径小于0.84 mm时,单位吸附量增加幅度变小;当粒径小于0.84 mm时,吸附量增加幅度变小;而粒径大于0.84 mm时,单位生物黑炭吸附量会大幅度减少,降幅度达21.8%。随着生物黑炭使用量的增加,单位吸附量逐渐减少,而吸附效率逐渐增大;当生物黑炭用量在8 g L-1,吸附效率可达90%以上。
     生物黑炭吸附Cd的解吸效率在1.83%-5.39%间,用量越大,单位重量的生物黑炭解吸量越小,解吸率越低。这表明Cd与生物黑炭产生了结合固定。通过生物黑炭与污染土壤的竞争吸附试验,表明污染土壤中Cd相对于Pb在生物黑炭的竞争吸附中占据优势,这可能与Pb在土壤中的化学活性较低有关。
     2.采用田间试验验证分析了生物黑炭对污染土壤的Cd/Pb钝化和降低作物吸收的效果。选择苏南某地重污染农田,2009年水稻播种前施用了0,10,20,40 t ha-1的生物黑炭,在2009-2010年水稻和小麦收获时采集作物样品和土壤样品,分析表明,施用生物黑炭显著提高了土壤pH值,与对照相比提高了0.16-0.38单位。
     施用不同量生物黑炭显著降低了水稻季CaCl2浸提态Cd显著降低了32.0%-52.5%(2009),39.8%-43.4%(2010),CaCl2浸提态Pb两年内没有显著变化;DTPA浸提态Cd/Pb与对照相比2009年没有显著差异,但2010年显著降低了21.6%-48.6%和11.9%-20.3%;小麦季土壤中Cd含量也得到显著的降低,与对照相比,CaCl2和DTPA浸提态Cd分别下降了23.4%-40.1%和11.1%-12.0%;但对CaCl2浸提态Pb含量无显著影响,不过生物黑炭显著降低了麦季土壤中DTPA浸提态Pb含量(15.0%-18.8%)。
     施用生物黑炭对水稻和小麦的产量没有显著影响,保持稳产,但显著降低了稻麦籽粒中Cd含量,水稻糙米Cd含量与对照相比降低了16.8-45.0%(2009年)和39.9%-61.9%(2010年),而小麦籽粒中Cd含量与对照相比降低了24.8%-44.2%(2010年);对Pb含量几乎没有影响。同时,水稻和小麦各组织中Cd的含量随生物黑炭施用量的增加也有着不同程度的降低。对比单位农田面积籽粒吸收Cd的数量可以看出,每公顷稻米的Cd吸收量与对照相比减少了45.8%-64.5%(2009年)和39.8%-64.5%(2010年),而小麦则减少了32.1%-42.3%(2010年)。从以上的试验结果来看,本试验效果与要优于相邻试验田施用钙镁磷肥和氢氧化钙的效果。
     施用生物黑炭处理下,作物组织Cd富集系数降低了39.8%-66.1%(水稻)和29.0%-49.6%(小麦),Cd地上部转移系数降低了15.9%-38.5%(水稻)和5.9%-36.6%(小麦);说明生物黑炭处理下抑制作物根系对Cd的吸收以及Cd的向上转运,是降低籽粒Cd积累的重要途径。
     上述研究证明,生物黑炭钝化土壤Cd活性的作用显著,并且此效果至少可持续两年,但对Pb无显著影响。
     3.选择中度污染重金属稻田,研究生物黑炭用于农产品安全生产的可行性。
     于2010年选取重金属中度污染稻田,设置了0,10,20,40 t ha-1四个用量梯度,探讨污染稻田生物黑炭修复和稻米安全生产可行性。中度污染土壤的pH为5.36,土壤CaCl2和DTPA浸提态Cd达0.55 mg kg-1和2.72 mg kg-1,水稻糙米Cd含量达到0.72mg kg-1。施用不同用量生物黑炭显著提高土壤pH值(0.65-1.08个单位)。同时,CaCl2浸提态Cd显著降低了(48.0%-70.9%),土壤有效态Pb也降低了17.0%-34.0%,而DTPA浸提态Cd和Pb没有显著变化。生物黑炭的施用对水稻产量无显著影响,但糙米中Cd含量下降了18.8%-43.3%,Pb含量下降了13.7%-38.1%。施用生物黑炭之后水稻不同组织的Cd/Pb含量也有着不同程度的降低。糙米Cd含量降低到0.41 mg kg-1,基本达到CCFAC (Codex Committee on Food Additives and Contaminants)规定的农产品安全限值标准0.4 mg kg-1。同时,在成熟期水稻Cd富集系数降低了66.2%-78.3%之间;而拔节期和灌浆期降低了41.0%-76.8%之间;同时还观察到Pb的富集系数在各个时期显著降低,幅度在17.4%-64.1%之间。成熟期,灌浆期和拔节期Cd转移系数变化趋势基本一致,生物黑炭处理下降低了23.9%-47.3%之间,不过Pb的转移系数没有显著变化。
     4.污染土壤施用生物黑炭后,土壤有效态Cd/Pb与pH呈显著相关关系,由此可见,生物黑炭的施用引起的土壤pH的升高是导致土壤Cd/Pb有效性降低的重要影响因素。同时,连续两年的土壤有效态Cd/Pb和籽粒Cd/Pb含量结果比较显示,随着生物黑炭施用年限的延长,黑炭对土壤重金属的固持作用增强,进一步降低土壤Cd的有效性,明显抑制了水稻籽粒中Cd的富集。
     综上所述,无论在重度污染还是中度污染农田,生物黑炭的施用均能显著降低土壤中重金属的有效性,减少农作物对重金属的吸收;试验结果表明生物黑炭的改良修复效应至少可以持续两年。生物黑炭钝化土壤重金属、降低作物重金属吸收量的机制在于,其巨大的比表面可以大量、快速地吸附和固持土壤中重金属,并由于其较强的碱性,降低重金属的化学移动性而达到钝化重金属的效果,从而抑制了土壤-作物系统的迁移和籽粒积累,大大降低了稻麦籽粒中Cd/Pb的含量,提高了重金属食物安全性。
Cd and Pb are two of heavy metals that is a great threat to human health with migrating in the soil-plant-food chain, and farmland Cd and Pb pollution has become the outstanding problem of environmental health. In South China, the rice production areas of heavy metal contaminated become serious with most of the acid soil, which is posing potential public health risk for human and food safety. So, it becomes hot research that heavy metal pollution effective repair measures in paddy rice for safe production. Restoration measures include engineering repair, of physical chemistry repair, phytoremediation and so on. Though the effects engineering repair were complete, stable, etc., the defects of it were complex process, high cost and decreased soil fertility etc.; Physical chemistry repair were quickly and could produce food with repair processing, but some amendments maybe bring secondary pollution, and exist risk of activation; Phytoremediation were low cost, clean remove contaminants, but the biomass of plant was small and needed a long repair time. So it was necessary to find a cost-effective methods and technologies, in order to reduce the heavy metal uptake by plants and improve food security.
     Biochar produced by that the biomass (Such as:wood, crop residues, nut shell, coconut shell, bark, wastepaper etc.) is heated to moderate temperatures, between about 350 and 500℃(giving the process the name "low-temperature pyrolysis"), under complete or partial exclusion of oxygen. It is one of the low density low-temperature pyrolysis material and a new soil amendment. There are such characteristics:high stability, corrosion resistance, and greater ability retain fertilizer compared with other forms of organic fertilizer. What is more, the biochar could increase the soil pH to hold the soil nutrition elements and heavy metals because of the large surface area and surface negative electric charge. So the biochar could be used to mitigate climate change, improve the soil environment, relieve the environmental pollution and have the potential for pollution control. In order to explore the biochar adsorption characters and stabilization mechanism to the heavy metals, we design lab experiments and field experiments to analyze adsorption and desorption capacity of the biochar and the effect immobility the heavy metals to reduce the crop uptake. We hope that it can provide a scientific basis for biochar industry and farmland pollution environmental control technology. The main results just as follows:
     1. The lab experiments include the biochar adsorption and desorption under Cd concentration sequence, time sequence, initial pH sequence, different partial sizes and dosage. The biochar adsorption efficiency reached over 98% in Cd solution, and adsorption amount unit increased with the Cd concentration increase in the biochar adsorption isotherm under different Cd concentration. It is inverse proportion that the biochar adsorption efficiency and adsorption amount, namely the adsorption amount increased and the adsorption efficiency decreased, but adsorption amount increased rate faster than adsorption efficiency decreased rate. The biochar adsorption rate was fast and reached equilibrium in 10 min. The biochar removal efficiency increased with pH increasing for Cd, and great effect on the Cd solution after adsorption reached equilibrium and the solution pH increased by 10.4%-73.9% compared to initial pH.
     The smaller partial size, the larger adsorption ability of the biochar. When the partial size was smaller than 0.84 mm, the increase rate decreased of the adsorption amount. When the biochar partial size was larger than 0.84 mm, the biochar adsorption amount unit decreased by 21.8% sharply. The adsorption amount unit decreased and adsorption rate increased with biochar amount increasing. When the biochar concentration was at 8 g L-1, adsorption rate reached over 90%.
     The biochar desorption rate was between 1.83% and 5.39%, with the biochar amount increasing, desorption amount unit and desorption rate decreasing. It was indicated that the Cd is very strong to combined biochar, not easy to desorption. So it was more likely the specific adsorption of the biochar. The biochar adsorbed much more Cd than Pb in contaminated soil with the biochar application.
     2. A field experiment was set to test the effect of biochar on passivating soil Cd/Pb and reducing crop Cd/Pb uptake. The amounts of 0,10,20,40 tone biochar per hectare were supplied in the seriously polluted paddy soil before rice planting in 2009. The results of analyzing the soil and plant samples in 2009 and 2010 were that, biochar application improved the soil pH by 0.16-0.38 units.
     After the biochar application in rice season, the CaCl2 extraction soil available Cd were decreased by 32.5%-52.5% (2009) and 21.6%-48.6%(2010), but no significant difference of soil available Pb in two years. The DTPA extraction soil available Cd and Pb were decreased by 21.6%-48.6% and 11.9%-20.3% only in 2010. Compared to control treatment, the available Cd/Pb contents in wheat season soil were decreased by 23.4%-40.1% (CaCl2 extraction Cd), 11.1%-12.0%(DTPA extraction Cd) and 15.0%-18.8% (DTPA extraction Pb) under biochar applications.
     Although there was no significant effect of biochar on crop yield, rice and wheat grain Cd contents was significantly decreased by 16.8-45.0% (rice grain in 2009),39.9%-61.9% (rice grain in 2010) and 24.8%-44.2% (wheat grain in 2010), and the grain Pb contents were not changed. Meanwhile, different rice/wheat tissues Cd contents were significantly decreased under biochar application. Compared the Cd uptake in grain per hectare among different treatments, Cd grain uptake per hectare were significantly decreased by 45.8%-64.5% (rice grain in 2009),39.8%-64.5% (rice grain in 2010) and 32.1%-42.3% (wheat grain in 2010) under biochar application. And the effects of biochar are better than calcium-magnesia phosphate fertilizer experiment in the aside field.
     Under biochar application, Cd accumulation coefficients were significantly decreased by 39.8%-66.1% (rice) and 29.0%-49.6%(wheat), and Cd transfer coefficients were also significantly decreased by 15.9%-38.5% (rice) and 5.9%-36.6% (wheat). It indicated that inhibiting the Cd absorption from root and transfer to grain were both key ways to reduce the grain Cd contents with biochar application.
     The study above showed that the passivating of biochar on available Cd in contaminated soil was significant, and the effect of biochar on soil pH and soil available Cd can last at least two years.
     3. The experiment was carried out on moderately polluted cropland to study the feasibility of biochar application on the safe food production of agriculture.
     The four biochar supply grads (0,10,20,40 t ha-1) were set to probe the feasibility of biochar application on the safe food production of agriculture. In moderately polluted field, the pH was 5.36, and the DTPA and CaCl2 extraction Cd were 0.55 mg kg-1 and 2.72 mg kg-1, respectively; the brown rice Cd content was up to 0.72 mg kg-1. After the application of biochar, the soil pH were increased by 0.65-1.08 units, and the CaCl2 extraction Cd/Pb were both decreased by 48.0%-70.9% and 17.0%-34.0%, respectively; but there were no significant difference in DTPA extraction Cd/Pb among the treatments. The rice yield was not significantly changed with biochar application, but the brown rice Cd/Pb contents were decreased by 18.8%-43.3% and 13.7%-38.1%, respectively. Moreover, the plant tissues Cd/Pb contents of rice were also significantly decreased. The rice grain Cd content was decreased to 0.41 mg kg-1, which was close to the limit value of CCFAC (Codex Committee on Food Additives and Contaminants). Meanwhile, both of Cd and Pb accumulation coefficients were reduced in different periods; The Cd accumulation coefficients was significantly 66.2%-78.3% in Ripen stage, and 41.0%-76.8% in Filling stage and Jointing stage; The Pb accumulation coefficients was between 17.4% and 64.1% in whole growth stage. The Cd transfer coefficients between 23.9% and 47.3% in whole growth stage with biochar application.
     The results of field experiments on seriously polluted and moderately polluted croplands showed that, the application of biochar reduced the contents of soil available Cd significantly, and the available Pb contents were also reduced in moderately polluted cropland duo to its low pH. The effects of biochar on yield were not significantly, however, the Cd contents in grain and plant tissue in two experimental fields and the Pb contents in the crops in moderately polluted field were all reduced under biochar application. Through analyzing the accumulation coefficient and transfer coefficient, it was drawn that the biochar can inhibit the transfer of heavy metals from root to grain. Moreover, the Cd/Pb contents of crop grain planted on moderately polluted field did not exceed the limit value of CCFAC.
     4. There was significant correlation between the soil available Cd/Pb concentrations and pH values with the application of biochar in contaminated soils, which indicated that the increasing of soil pH may be the most important factor on heavy metals availability. Furthermore, long effort of biochar on the immobilization of the heavy metals in contaminated soils was found from the results of available Cd/Pb and Cd/Pb content grain in two consecutive years, and the Cd/Pb uptake and transfer process was then decreased.
     To sum up, both in the seriously and moderately polluted cropland, the application of biochar can significantly reduce the availability of heavy metals in the soil and the absorption in crops; moreover, the two years experimental results showed that the effect of biochar stabilized Cd/Pb at least last two years. The mechanisms of stabilization soil heavy metal and crop uptake reduction with biochar application were that the biochar has huge surface area which is benefit for absorbing and immobilizing numerous heavy metals in soil rapidly, and also its strong alkaline can increase soil pH to reduce the chemical mobility of heavy metals. Thereby, the biochar effects inhibited the migration of heavy metals in soil-plant system and reduced rice grain Cd/Pb uptake greatly, so as to improve the food security.
引文
Aboulroos, S.A., Helal, M.I.D., Kamel, M.M. Remediation of Pb and Cd polluted soils using in situ immobilization and phytoextraction techniques. Soil and Sediment Contamination,1996,15, 199-215.
    Adams, M.L., Zhao, F.J., McGrath, S. P., et al. Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties[J]. J. Environ. Qual.,2004,33:532-541.
    Aksu, Z. Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature [J]. Separation and Purification Technology,2001,21(3):285-294.
    Alkorta, I, Hernandez-Allica J, Becerril, J.M, et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals [J]. Reviews in Environmental Science and Bio/Technology,2004,3:55-70.
    Alloway, B.J., Jackson, S.P.,1991. Behaviour of trace metals in sludge-amended soils[J]. Science of the Total Environment,100,151-176.
    Arief, V.O., Trilestari, K., Sunarso, J., Indraswati, N., Ismadji, S. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents:Characterization, biosorption parameters and mechanism studies [J]. Clean-Soil, Air, Water,2008,36:937-962
    Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, Y, Horie, T.,. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research,2009111,81-84.
    Backman, P.A., Sikora, R.A. Endophytes: An emerging tool for biological control [J]. Biological Control, 2008,46:1-3.
    Baronti, S., Albert,i G., Genesio, L. The Italian Biochar Initiative (ITABI):Effects on soil fertility and on crops production 2nd International Biochar Conference-IBI September 8,2010 Newcastle-Gateshead, UK.
    Baronti, S., Alberti, G, Delle Vedove, G, Di Gennaro, F., Fellet, G, Genesio, L., Miglietta, F., Peressotti, A., Vaccari, F.P. The biochar option to improve plant yields: first results from some field and pot experiments in Italy[J]. Italian Journal of Agronomy,2010 5,3-11.
    Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution,2011,159(2):474-480.
    Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution,2010,158,2282-2287.
    Bird, M.I., Wurster, C.M., de Paula Silva, P.H., Bass, A.M., de Nys, R. Algal biochar-production and properties. Bioresource Technology,2011,102,1886-1891.
    Blaylock, M.J., Salt, D.E., Dushenkov, S., et al. Enhanced accumulation of Pb in Indian mustard by soil applied-chelating agents[J]. Environmental Science & Technology,1997,31(3):860-865.
    Bolan, N.S., Adriano, D.C., Mani, P.A., Duraisamy, A. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition[J]. Plant and Soil,2003,251,187-198.
    Bozica, D., Stankovic, V., Gorgievski, M., Bogdanovic, G., Kovacevic, R.. Adsorption of heavy metal ions by sawdust of deciduous trees[J]. Journal of Hazardous Materials,2009,171,684-692.
    Brown, S., Chaney, R.L., Hallfrish, J.G., et al. In situ soil treatments t o reduce the phyto-and bioavailability of lead, zinc and cadmium[J]. Journal of Environmental Quality,2004,33:522-531.
    Castaldi, P., Melis, P., Silvetti, M., Deiana, P., Garau, G. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil[J]. Geoderma,2009,151(3-4): 241-248.
    Chan, K.Y, Vanzwieten, L., Meszaros, I., et al. Agronomic Values of Greenwaste Biochar as a Soil Amendment [J]. Australian Journal of Soil Research,2007,45(8):629-634.
    Chan, K.Y., Zwieten, V.L., Meszaros, I., Downie, A., Joseph, S. Using poultry litter biochars as soil amendments [J]. Australian Journal of Soil Research,2008,46: 437-444.
    Chaney, R.L, Malik, M., Li, Y.M., Brown, S.L., Angle, J.S., Baker, A.J.M. Phytoremediation of soil metals [J]. Current Opinions in Biotechnology,1997,8:279-284.
    Chaney, R.L., Angle, J. S., Mclntosh, M.S., et al. Using Hyperaccumulator Plants to Phytoextract Soil Ni and Cd[J]. Naturforschung Journal of Biosciences,2005,60c:190-198
    Chaney, R.L., Reeves, P. G, Ryan, J.A., et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine,2004,17: 549-553
    Chanway, C.P., Shishido, M., NairnJ, et al. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria[J]. Forest Ecology and Management,2000,133:81-88.
    Chen, S.B., Zhu, Y.G., Ma, Y.B. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J]. Journal of Hazardous Materials,2006,134,74-79.
    Christoph, S, Bruno G, Wenceslau, GT., et al. Nitrogen Retention and Plant Uptake on a Highly Weathered Central Amazonian Ferralsol Amended With Compost and Charcoal [J]. Journal of Plant Nutrition and Soil Science,2008,171(6):893-899.
    Chung, Y., Sheng, G.Y., Chiou, C.T., et al. Compositions and Sorptive Properties of Crop Residue- Derived Chars [J]. Environmental Science & Technology,2004,38(17):4649-4655.
    Clarke, J. M., McCaig, T. N., DePauw, R. M., Knox, R.E., Clarke, F.R., Fernandez, M.R., and Ames, N.P. Strong field durum wheat [J]. Canadian Journal of Plant Science,2005,85:651-655.
    Claudia, C., Laura, D.S., Beat, F., et al. Distribution of cadmium in leaves of Thlaspi caerulescens[J]. Journal of Experimental Botany,2005,56(412):765-775.
    Codex Alimentarius Commission Report of the 37th Session of the Codex Committee on Food Additives and Contaminants,2005. The Netherlands.http://europa.eu.int/comm./food/fs/ifsi/eupositions/ ccfac/ccfac.-2005-22-10-en.pdf
    Deacon, J.R., Driver, N.E. Distribution of Trace Elements in Streambed Sediment Associated with Mining Activities in the Upper Colorado River Basin, Colorado, USA,1995-96[J]. Archives of Environmental Contamination and Toxicology,1999,37(1):7-18.
    Demirbas, A. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products [J]. Energy Conversion and Management,2001,42,1229-1238.
    Demirbas, A. Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis,2004,72,243-248.
    Denevan, W.M., Woods W.I. Discovery and Awareness of Anthropogenic Amazonian Dark Earths (Terra Preta)[EB/OL]. (2009-08-18) [2010-02-10]. http://www.biorefinery.
    Donmez, G.C., Aksu, Z., Ozturk, A., Kutsal, T. A comparative study on heavy metal biosorption characteristics of some algae [J]. Process Biochem,1999,34(9):885-892.
    Doty, S.L. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist, 2008,179:318-333.
    Dudka, S., Miller, W.P. Accumulation of potentially toxic elements in plants and their transfer to human food chain[J]. Journal of Environmental Science and Health. Part. B,1999,34(4):681-708
    Epelde, L., Hernandez-Allica, Becerril, J.M., et al. Effects of chelates on plants and soil microbial community: Comparison of EDTA and EDDS for lead phytoextraction[J]. Science of the Total Environment,2008,401,21-28.
    Fayiga, A.O., Ma, L.Q., Cao, X., Rathinasabapathi, B. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L[J]. Environmental Pollution,2004, 132,289-296.
    Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J., Serarols, J. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste [J]. Separation and Purification Technology, 2006,50,132-140.
    Garcia-Sanchez, A., Alvarez-Ayuso, E., Rodriguez-Martin, F. Sorption of As (V) by some oxyhydroxides and clay minerals:Application t o its immobilization in two polluted mining soils. Clay Minerals, 2002,37:187-194.
    Garrido, F., Illera, V., Garcia-Gonzalez, M.T. Effect of the addition of gypsum-and lime-rich industrial by-products on Cd, Cu and Pb availability and leach ability in metal-spiked acid soils[J]. Applied Geochemistry,2005,20,397-408.
    Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield[J]. Agronomy Journal, 2010,102,623-633.
    Glaser, B., Balashov, E., Haumaier, L., et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region [J]. Organic Geochemistry,2000,31:669-678.
    Glaser, B. Eigenschaften und Stabilitat des Humuskorpers der Indianerschwarzerden Amazoniens. Bayreuther Bodenkundliche Berichte, vol 68. Institute of Soil Science and Soil Geography, University of Bayreuth, Bayreuth,1999.
    Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G, Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry,2000,31,669-678.
    Glaser, B., Haumaier, L., Guggenberger, G., Zech, W. The Terra Preta phenomenon-a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften,2001,88,37-41.
    Glaser, B., Lehmann, J., Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biological Fertilizer Soils,2002,35,219-230.
    Glass, D.J. US and International Markets for Phytoremediation. Report. D. Glass Associates Inc., Needham, Massachusetts, USA,1999
    Goldberg, E.D. Black carbon in the environment:Properties and distribution [M]. New York, John Wiley,1985.
    Gomez-Eyles, J. L., Sizmur, T., Collins, C.D., Hodson, M.E. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution,2011,159(2):616-622.
    Grant, C.A., Clarke, J.M., Duguid, S., Chaney, R.L. Selection and breeding of plant cultivars to minimize cadmium accumulation[J]. Science of The Total Environment,2008,390:301-310.
    Guo, G.L., Zhou, Q.X., Ma, L.Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated s oils: A review[J]. Environmental Monitoring and Assessment,2006,116:513-528
    Gupta, A.K., Mishra, R.K., Sinha, S., Lee, B.K. Growth, metal accumulation and yield performance of Brassica campestris L. (cv. Pusa Jaikisan) grown on soil amended with tannery sludge/fly ash mixture[J]. Ecological Engineering,2010,36(8):981-991.
    Harder, B. Smoldered-Earth Policy: Created by Ancient Amazonian Natives, Fertile, Dark Soils Retain Abundant Carbon [J]. Science News,2006,169(3):133.
    Harish, S., Kavino, M., Kumar, N., et al. Induction o f defense-related proteins by mixtures of plant growth promoting endophyticbacteria against Banana bunchy top virus[J]. Biological Control,2009, 51:16-25.
    Harris, N. S., Taylor, GJ. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J]. Journal of Experimental Botany,2001, 52(360):1473-1481.
    Harris, N.S., Taylor, G. J. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J]. BMC Plant Biology,2004,4:1-12.
    Hart, J.J., Welch, R.M., Norvell, W.A., Sullivan, L.A., Kochian, L.V. Characterization of Cadmium Binding, Uptake, and Translocation in Intact Seedlings of Bread and Durum Wheat Cultivars. Plant Physiology,1998,116,1413-1420.
    Hartley, W., Dickinson, N.M., Riby, N., Lepp, N.W. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus[J]. Environmental Pollution,2009, 157,2654-2662.
    Home, A.J. Phytoremediation by constructed wetlands. Phytoremediation of Contaminated Soil and Water In Terry Balueloseds. NewYork: Lew is Publisher,2000.
    Houba, V.J.G, Novozamsky, I., Lemond, Th.M., van der Lee, J.J. Applicability of 0.01 M CaC12 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes[J]. Communications in Soil Science and Plant Analysis,1990,2281-2290.
    Huang, J.W., Blaylock, M.J., Kapulnik, Y., et al. Phytoremediation of uranium-contaminated soils:Role of organic acids in triggering uranium hyperaccumulation in plants[J]. Environmental Science & Technology,1998,32 (13):2004-2008.
    Ikeda, M., Zhang, Z.W., Moon, C.S., et al. Background exposure of genenral Population to cadmium and lead in Tainan City, Taiwan[J]. Archives of Environmental Contamination and Toxicology,1996,30: 121-126
    Joner, E.J., Briones, R., Leyval, C. Metal-binding capacity of arbuscular mycorrhizal mycelium[J]. Plant and Soil,2002,226:227-234.
    Kabata-Pendias, A. Trace elements in soils and plant: 3rd editions [M]. Boca Raton Florida: USA CRC, 2001:315.
    Kashem, M.A., Singh, B.R. Metal availability in contaminated soils:Ⅱ. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition [J]. Nutrient Cycling in Agroecosystem,2001,61(3):257-266.
    Kashem, M.A., Singh, B.R. Metal availability in contaminated soils:Ⅱ. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition [J]. Nutrient Cycling in Agroecosystem,2001,61(3):257-266.
    Katyal, S., Thambimuthu, K., Valix, M. Carbonisation of bagasse in a fixed bed reactor:Influence of process variables on char yield and characteristics [J]. Renewable Energy,2003,28:713-725.
    Kauffman, J.B., Cummings, D.L., Ward, D.E., et al. Fire in the Brazilian A mazon.1. Biomass, nutrient pools, and losses in slashed primary forests [J]. Oecologia,1995,104:397-408.
    Khan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., Hayes, W.J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation[J]. Chemosphere,2000,41,197-207.
    Kimetu, J., Lehmann, J.,Ngoze, S.,Mugendi,D., Kinyangi, J., Riha, S.,Verchot, L., Recha, J., Pell,A. Reversibility of soil productiv-ity decline with organic matter of differing quality along a degradation gradient, Ecosystems,2008,11,726-739.
    Kishimoto, S., Sugiura, G. Charcoal as a soil conditioner[J]. Int Achieve Future,1985,5:12-23.
    Kitagishi, K., Yamane, I. Heavy Metal Pollution in Soils of Japan. Tokyo:Japan Scientific Societies Press,1981.
    Koide RT, Dickie I A. Effects of mycorrhizal fungi on plant populations [J]. Plant and Soil,2002,244: 307-317.
    Komarek M, TlustosP, Szakova J, et al. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils [J]. Chemosphere,2007,67:640-651.
    Kramer, U., Chardonnens, A.N.,2001. The use of transgenic plants in the bioremediation of soils contaminated with trace elements [J]. Applied Microbiology Biotechnology,2008,55:661-672.
    Kumar, P.B.A.N. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology,1995,29:239-245
    Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review [J]. Waste Management,2008,28:215-225
    Kumpiene, J., Ore, S., Renella, G, Mench, M., Lagerkvist, A., Maurice, C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil [J]. Environmental Pollution,2006, 144,62-69.
    Kurz, H., Schulz, R., Romheld, V. Phytoremediation of Thallium and Cadmium from Contaminated Soils:Possibilities and Limitations, Council for Promotion of Utilization of Organic Materials, Tokyo, Japan,1997,120-132.
    Lagreid, M., Bockman, O.C., Kaarstad, O. Agriculture, Fertilizers and Environment[M]. Norsk Hydro ASA Porsgrunn, Norway CABI publishing,1999,122-157,174-180.
    Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil [J]. Geoderma,2010,158,436-442.
    Lee, S.H., Kim, E.Y., Park, H., Yun, J., Kimc, J.G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products [J]. Geoderma,2011,161(1-2):1-7.
    Lehmann, J., Gaunt, J., Rondon, M. Biochar sequestration in terrestrial ecosystems-A review [J]. Mitigation and Adaptation Strategies for Global Change,2006,11:403-427.
    Lehmann, J. A Handful of Carbon [J]. Nature,2007,447(7141):143-144.
    Lehmann, J. and Rondon, M. Biochar soil management on highly weathered soils in the humid tropics. In Uphoff N (ed.), Biological Approaches to Sustainable Soil Systems, CRC Press, Boca Raton, FL, 2006,517-530.
    Lehmann, J. Bio-energy in the black. Frontiers in Ecology and the Environment,2007,5,381-387.
    Lehmann, J. A handful of carbon [J]. Nature,2007a,447,143-144.
    Lehmann, J. Bio-energy in the black [J]. Frontiers in Ecology and the Environment,2007b,5,381-387.
    Lehmann, J., Joseph, S.M. Biochar for Environmental Management: Science and Technology, Earthscan, London UK [J]. Forest Policy and Economics,2009,11,535-536.
    Lehmann, J., Silva, JP da Jr, Rondon, M., Silva, CM da, Greenwood, J., Nehls, T., Steiner, C., Glaser, B. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon? In:Soil Science: Confronting New Realities in the 21st Century.7th World Congress of Soil Science, Bangkok,2002.
    Lewandowski, I., Schmidt, U., Londo, M., Faaij, A. The economic value of the phytoremediation function-Assessed by the example of cadmium remediation by willow (Salix ssp) [J]. Agricultural Systems,2006,89(1):68-89.
    Leyval, C, Joner, E.J., del Val, C., et al. Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schuep pH, Barea J M and Haselwandter K (eds) Mycorrhizal technology in agriculture [M]. Birkh User Verlag, Basel, Switzer land,2002,175-186.
    Li, X.L., Christie, P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil [J]. Chemosphere,2001,42:201-207
    Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J.O., Thies, J., Luizao, F. J., Petersen, J., Neves, E.G. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal,2006,70:1719-1730.
    Liu, D., Islam, E., Li, T.Q., et al. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance[J]. Journal of Hazardous Materials,2008,153:114-122.
    Liu, Y, Lin, C., Wu, Y. Characterization of red mud derived from a combined Bayer Process and bauxite calcinations method[J]. Journal of Hazardous Materials,2007,146:255-261.
    Lombi, E., Zhao, F.J., Zhang, GY, Sun, B., Fitz, W., Zhang, H., McGrath, S.P. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental Pollution,2002,118, 435-443.
    Lou, L., Wu, B., Wang, L., Luo, L., Xu, X., Hou, J., Xun, B., Hu, B., Chen, Y. Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar[J]. Bioresource Technology,2011,102(5):4036-4041.
    Lstan, D. Enhanced heavy metal phytoextraction [C]//Mackova M, Dowling D, Macek T. Phytoremediation Rhizoremediation. The Netherlands:Springer,2006,103-132.
    Luo, L., Zhang, S.Z, Shan, X.Q., et al. Arsenate sorption on two Chinese red soils evaluated using macroscopic measurements and EXAFS spectroscopy[J]. Environmental Toxicology and Chemistry, 2006,25:3118-3124.
    Major, J.E., Mosseler, A., Barsi, D.C., Corriveau-Dupuis, B., Campbell, M. Impact of three silvicultural treatments on growth, light-energy processing, and related needle-level adaptive traits of Pinus strobus from two regions[J]. Forest Ecology and Management,2009,257,168-181.
    Malandrino, M., Abollino, O., Buoso, S., Giacomino, A., Gioia, C.L., Mentasti, E. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite[J]. Chemosphere,2011,82(2):169-178.
    Malkoc, E., Nuhoglu, Y. Fixed bed studies for the sorption of chromium (Ⅵ) onto tea factory waste[J]. Chemical Engineering Science,2006,61:4363-4372.
    Marris, E. Putting the Carbon Back: Black Is the New Green [J]. Nature,2006,442(7103):624-626.
    Mastretta, C., Taghavi, S., vander Lelie, D., et al. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation,2009,11:251-267.
    Meers, E., Ruttens, A., Hopgood, M., Lesage, E., Tack, F.M.G Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phyto-extraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere,2005,61:561-572.
    Moon, C. S., Zhang. Z.W, Watanabe T. Non-occupational exposure of Malay women in Kuala Lumpur, Malaysia, to cadmium and lead[J]. Biomarkers,1999,1:81-85
    Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon,2004,42,83-94.
    Morgan, J.A.W., Bending, G.D., White, P.J. Biological costs and benefits to plant-microbe interactions in the rhizosphere [J]. Journal of Experimental Botany,2005,56:1729-1739.
    Mulligan, C.N., Yong, R.N., Gibbs, B.F. An evaluation of technologies for the heavy metal remediation of dredged sediments. Journal of Hazardous Materials,2001,85,145-163.
    Nell, S., Harris, T, Gregory, J. Taylor Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J].Journal of Experimental Botany, 2001,52:1473-1481.
    Neugschwandtner, R.W., TlustosP, Komarek, M., et al. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes:Laboratory versus field scale measures of efficiency [J]. Geoderma,2008,114:446-454
    Newman, L.A., Reynolds, C.M. Bacteria and phytoremediation:new uses for endophytic bacteria in plants [J]. Trends Biotechnol,2005,23:6-8.
    Norvell, W.A., Wu, J., Hopkins, D.G, et al. Association of cadmium in durum wheat grain with soil chloride and chelate-exrractable soil cadmium[J]. Soil Science Society of America Journal,2000, 64:2162-2168.
    Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science,2009,174, 105-112.
    Ok, Y.S., Yang, J.E., Zhang Y.S., Kim, S.J., Chung, D.Y. Heavy metal adsorption by a formulated zeolite-Portland cement mixture[J]. Journal of Hazardous Materials,2007,147,91-96.
    Penalosa, J.M., Carpena, R.O., Vazquez, S., et al. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyretic sludge [J]. Science of the Total Environment,2007,378:199-204.
    Pilon, M., Owen, J.D., Garifullina, G.F., et al. Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine Lyase[J]. Plant Physiology,2003,131: 1250-1257.
    Pilon-Smits, E. Phytoremediation[J]. Annual Reviews in Plant Biology,2005,56:15-39
    Preston, C.M., Schmidt, M.W.I. Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties [J]. Biogeosciences Discussions,2006,3,211-271.
    Puente, M.E., Li, C.Y., Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings[J]. Environmental and Experimental Botany,2009,66:402-408.
    Pulford, L.D., Watson, C. Phytoremediation of heavy metal-contaminated land by trees-a review[J]. Environment International,2003,29:529-540.
    Rautaray, S. K., B. C. Ghosh, Mittra, B.N. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils[J]. Bioresource Technology,2003,90(3):275-283.
    Rebecca, R. Rethinking Biochar [J]. Environmental Science & Technology,2007,41(17):5932-5933.
    Reeves, P. G. and Channey, R.L. Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodemum and other organs of rats fed rice-based diets[J]. Environmental Research, 2004,96:311-322
    Reeves, P.G., Chaney, R.L. Bioavailability as an issue in risk assessment and management of food cadmium:A review[J]. Science of the Total Environment,2008,398,13-19.
    Rennerr, R. Rethinking Biochar [J]. Environmental Science & Technology,2007,41(17):5932-5933
    Riehl, A., Elsass, F., Duplay, J., Huber, F., et al. Trautmann, M. Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash[J]. Geoderma,2010,155(1-2):67-74.
    Romkens, P., Bouwman, L., Japenga, J., et al. Potentials and drawbacks of chelate-enhanced phytoremediation of soils [J]. Environmental Pollution,2002,116:109-121.
    Rondon, M. A., Molina, D., Hurtado, M., et al. Enhancing the Productivity of Crops and Grasses While Reducing Greenhouse Gas Emissions Through Biochar Amendments to Unfertile Tropical Soils, in 18th World Congress of Soil Science,9-15 July,2006, Philadelphia, PA, USA[C]. [s.1.]:[s.n.], 2006.
    Santona, L., Castaldi, P., Melis, P. Evaluation of the interaction mechanisms between red muds and heavy metals[J]. Journal of Hazardous Materials,2006,136(2):324-329.
    Sari, A., Mendil, D., Tuzena, M., Soylak, M. Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass:Equilibrium, kinetic and thermodynamic studies[J]. Journal of Hazardous Materials,2009,162,874-879.
    Sari, A., Tuzen, M., Ulozlu, O.D., Soylak, M. Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass[J]. Biochemical Engineering Journal,2007,37,151-158.
    Schulten, H.R., Leinweber, P. New in sights into organic-mineral particles composition, properties and models of molecular structure [J]. Biology and Fertility of Soils,2000,30:399-432.
    Sharma, R.P., Kjellstrom, T., Mckenzie, J.M. Cadmium in blood and urine among smokers and non-smokers with high cadmium intake via food [J]. Toxicology,1983,29:163-171
    Shi, J., Li, Z., Gong, W., Pan, G. Uptake and partitioning of Cd and Zn by Two Non-hybrid rice cultivar s in different growth stages: effect of cultivar s, soil type and Cd spike[J]. Asian Journal of Ecotoxicology,2007,2,32-40.
    Shimbo, S., Zhang, Z.W., Watanabe, T., et al. Cadmium and lead contents in rice and other cereal products in Japan in 1998-2000[J]. The Science of the Total Environment,2001,281(1-3):165-175
    Singh, S., Yenkie, M.K.N. Competitive adsorption of some hazardous organic pollutants from their binary and ternary solutions onto granular activated carbon columns[J]. Water, Air, & Soil Pollution, 2004,156:275-286
    Smith, S.E., Read, D.J. Mycorrhizal symbiosis[M]. London:Academic Press,1997.
    Sohi, S., Lopez-Capel, E., Krull, E., Bol, R. Biochar's Roles in Soil and Climate Change: A Review to Guide Future Research[R]. CSIRO Land and Water Science Report 05/09,2009:64.
    Steiner, C., Teixeira, W.G., Lehmann, J., Nehls,T., Macedo, J.L.V., Blum, W.E.H., Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil,2007,291,275-290.
    Strawn, D.G, Sparks, D.L. Effects of soil organic matter on the kinetics and mechanisms of Pb (Ⅱ) sorption and desorption in soil [J]. Soil Science Society of America Journal,2000 (64):144-156.
    Sturz, A.V., Christieb, B.R., Nowak, J. Bacterial endophytes:potential role in developing sustainable systems of crop production [J]. Plant Sciences,2000,19:1-30.
    Thies, J.E., Rillig, M.C. Characteristics of biochar:biological properties. In:Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management[J]. Earthscan,2009, U.S.A.
    Till, K.G. Essential and toxic heavy metals in soils and their ecological relevance, Trance [J]. XIII Congress of the International Society of Soil Science,1986,1:29-44.
    Triplett, E.W. Diazotrophic endophytes: Progress and prospects for nitrogen fixation in monocots[J]. Plant and Soil,1996,186:29-38.
    Tsukaha, T., Ezaki, T., Moriguchi, J., et al. Rice as the most influential source of cadmium intake among general Japanese population[J]. The Science of the Total Environment,2003,305(1-3):41-51
    Uluozlu, O.D., Sari, A., Tuzen, M., Soylak, M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass[J]. Bioresource Technology,2008,99,2972-2980.
    Vaccari, F.P., Baronti, S., Lugatoa, E., Genesio, L., Fomasier, F., Miglietta, F. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy,2011,34(4): 231-238.
    Van Erp, P.J., Houba, V.G.J., van Beusichem, M.L. One hundredth molar calcium chloride extraction procedure. Part 1:a review of soil chemical, analytical and plant nutritional aspects[J]. Communications in Soil Science and Plant Analysis,1998,29,1603-1623.
    Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A.,2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil,327, (1-2),235-246.
    Verougstraete, V, Lison, D., Hotz, P. A systematic review of cytogenetic studies conducted in human populations exposed to cadmium compounds[J]. Mutation Research,2002,511(1):15-43.
    Villaesusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes[J]. Water Research,2004,38:992-1002.
    Waychunas, G.A., Kim, C.S., Banfield, J.F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005,7:409-433.
    Wei, H.L., Zhang, L.Q. Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24 [J]. Antonievan Leeuwenhoek,2006,89:267-280.
    Wenzel, W.W, Unterbrunner, R., Sommer, P., et al. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments[J]. Plant and Soil,2003,249: 83-96.
    Weyens, N., vander Lelie, D., Taghavi, S., et al. Phytoremediation:Plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology,2009,20:248-254.
    Wikipedia, the Free Encyclopedia. Biochar [EB/OL]. (2009-08-04)[2010-02-10]. http://en. Wikipedia. org/wiki/Biochar.
    Willey, R.W. Intercropping-Its importance and research needs[J]. Part I:competition and yield advantage. Field Crops Abstract,1979,32(1):1-10.
    World Health Organization. Evaluation of certain food additives and of the contaminants mercury, lead and cadmium [G]//FAO Nutrition Meetings Report Series No.51. WHO Technical Report Series 505. Rome: Food and Agriculture Organization of the United Nations,1972:33.
    Wu, J., Hsu, F.C., Cunningham, S.D. Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints [J]. Environmental Science & Technology,1999,33(11):1898-1904.
    Wu, L.H., Luo, Y.M., Xing, X.R., et al. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk[J]. Agriculture Ecosystems & Environment,2004,102:307-318.
    Wu, F., Zhang, G., Dominy, P., Wu, H., Bachir, D.M.L. Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes[J]. Chemosphere,2007,70:83-92.
    Wu, F., Lin, D., Su, D. The Effect of Planting Oilseed Rape and Compost Application on Heavy Metal Forms in Soil and Cd and Pb Uptake in Rice[J]. Agricultural Sciences in China,2011,10(2): 267-274.
    Yan, X., Ohara, T., Akimotoa, H. Bottom-up estimate of biomass burning in mainland China[J]. Atmospheric Environment,2006,40(27):5262-5273.
    Yang, J., Wang, Q., Luo, Q., Wang, Q., Wu, T. Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger[J]. Biochemical Engineering Journal,2009,46, 294-299.
    Yeung, A.T., Hsu, C. Electrokinetic remediation of cadmium-contaminated clay [J]. Journal of Environmental Engineering,2005,131,298-304.
    Yin, L., Chan, K., Xu, Z. Biochar: nutrient properties and their enhancement. In:Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management. Earthscan, U.S.A.,2009.
    Yuan, J.H., Xu, R.K., Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresource Technology,2011,102,3488-3497.
    Zhang, Z.W., Moon, C.S., Watanabe, T., et al., Background exposure of urban Populations to lead and cadmium: comparision between China and Japan[J]. International Archieves of occupational and Environmental Health,1997,69:273-281
    Zhang, Z.W., Shimo, S., Watanabe, T., et al. Non-occupational lead and cadmium exposure of adult women in Bangkok, Thailand[J]. The Science and the Total Environment,1999,226:65-74
    Zhang, Z.W., Subida, R.D, Agetano, M.G, et al. Nonoccupational exposure of adult women in Manila, the Philippines, to lead and cadmium[J]. The Science and the Total Environment,1998,215: 157-165
    Zhang, G.P., Motohiro, F., Sekimoto, H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat [J]. J. Plant. Nutri.,2000,23(9):1337-1350
    Zhao, X.L., Qing, C.L., Wei, S.Q, et al. Heavy metal runoff in relation to soil characteristics [J]. Pedosphere,2001,11(2):137-142.
    Zhao, X.L., Saigusa, M. Effect of porous hydrated calcium silicate on sorption and desorption of cadmium by soils[J]. Soil Science & Plant Nutrition,2004,50,315-319.
    Zhou, Q.X., Song, Y.F. Remediation of Contaminated Soils: Principles and Methods [M]. Science Press, China, Beijing,2004.
    Zhou, D.M., Wang Y.J., Wang H.W., Wang S.Q., Cheng J.M. Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II)[J]. Journal of Hazardous Materials,2010,174(1-3):34-39.
    Zhou, Q.X., Song, Y.F. Remediation of Contaminated Soils: Principles and Methods, Science Press, China, Beijing,2004.
    Zhu, Y.G, Chen, S.B., Yang, J.C. Effects of s oil amendments on lead up take by two vegetable crop s from a Iead2contaminated soil from Anhui, China[J]. Environmental International,2004,30:351-356.
    Zimmerman, A.R., Gao, B., Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,42(6): 1169-1179.
    曹仁林.关于我国农业环境和农产品污染问题的思考.香山会议第162次学术讨论会筹备组(编).经济快速发展地区环境质量演变及持续发展[R].北京香山,2000.44-46.
    陈怀满,郑春荣等.土壤一植物系统中的重金属污染.北京:科学出版社,1996:71-125.
    成颜君,甄燕红,潘根兴,李恋卿.南京部分市售稻谷和杂粮的Cd Zn Se含量及其健康意义[J].微量元素与健康研究,2008,25(4):36-53.
    崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.
    邓莉萍,苏营营,苏华,王新亭,朱校斌.大型海藻吸附水体中重金属离子的机理及影响因素[J].海洋科学,2008,32(8):51-64.
    邓莉萍.藻体对水环境中N、P及重金属Cu2+、Pb2+、Cd2+、Cr6+的吸附特征研究[D].中国科学院研究生院(海洋研究所),2008,51-88.
    邓益群,方晖,彭凤仙.高比表面积活性炭(HSAAC)对水中镉(Ⅱ)吸附性能的研究[J].环境科学与管理,2007,32(2):48-50.
    奠争,王春霞,陈琴等.重金属Cu, Pb, Zn, Cr, Cd在水稻植株中的富集和分布[J].环境化学,2002,21(2):110-116
    冯德福.镉污染与防治[J].沈阳化工,2000,29(1):44-45,62.
    高粱.土壤污染及其防治措施[J].农业环境保护,1992,11(6):272-273
    龚伟群,潘根兴.中国水稻生产中Cd吸收及其健康风险的有关问题[J].科技导报,2006,24(5):43-48.
    龚子同.中国土壤系统分类.科学出版社,北京,1999,109-192.
    郭平.长春市土壤重金属污染机理与防治对策研究[D].吉林,吉林大学,2005,1-5.
    国家环境保护总局.中东部地区生态环境现状调查报告[R].环境保护,2003,26(8):3-8.
    郭观林.东北黑土重金属污染发生机理及健康动力学研究[D].中国科学院研究生院(沈阳应用生态研究所),2006:96-105.
    郭鹏,郭平,康春莉,陈薇薇.城市土壤吸附重金属动力学特征及其与土壤理化性质的关系[J].环境保护科学,2008,34(6):23-26.
    何强,井文涌,王翊亭.环境学导论[M].北京:清华大学出扳杜,1994.
    胡坤,喻华,冯文强,秦鱼生,蓝兰,廖鸣兰,王昌全,涂仕华.不同水分管理方式下3种中微量元素肥料对水稻生长和吸收镉的影响[J].西南农业学报,2010,23(3):772-776.
    胡亚虎,魏树和,周启星,詹杰,马丽辉,牛荣成,李云萌,王姗姗.螯合剂在重金属污染土壤植物修复中的应用研究进展[J].农业环境科学学报,2010,(11):2055-2063.
    胡钟胜,章钢娅,王广志,招启柏,刘秀丽,曹显机,曹志洪.改良剂对烟草吸收土壤中镉铅影响的研究[J].土壤学报,2006,43(2):233-239.
    黄道友,龚高堂.湖南省主要类型水稻土镉污染改良利用研究[J].农业现代化研究,2000,21(6):364-370.
    黄永源,周秀达,柯世超等.多种金属污染环境对健康的影响[J].环境与健康杂志,1987,4(2):14-16.
    蒋定安,汤旭东.宜兴市农田保护区重金属铅污染状况研究[J].土壤,2002,(3):156-159.
    金亮,李恋卿,潘根兴等.苏北地区土壤-水稻系统重金属分布及其食物安全风险评价[J].生态与农村环境学报,2007,23(1):33-39
    李冰,王吕全,代天飞,等.水稻子实对不同形态重金属的累积差异及其影响因素分析[J].植物营养与肥料学报,2007,13(4):602-610.
    李继强,陈锡永,唐意佳等.环境镉污染及其对人群健康影响的研究[J].中国公共卫生,2001,17(3):196-198.
    李恋卿,潘根兴,张平究等.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计[J].环境科学,2002,23(3):119-123
    李庆逵,蒋柏藩,鲁如坤.中国磷矿的农业利用[M].南京:江苏科学技术出版社,1992,76-95.
    李瑞美,方玲,王果等.重金属污染土壤的有-中性化修复技术试验[J].福建农业学报,2004,19(1):50-53.
    李瑞美,王果,方玲.石灰与有机物料配施对作物镉铅吸收的控制效果研究[J].农业环境科学学报,2003,22(3):293-296.
    李颖.水体中重金属、腐殖酸和粘土颗粒物之间的相互作用研究[D].山东大学,2010:50-85.
    李玉奇,王涛,奥岩松.活性炭和风化煤对设施黄瓜生长、产量和品质的影响[J].安徽农业科学,2010,38(6):2851-2853.
    李正文,张艳玲,潘根兴等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学,2003,24(3):112-115
    李正文.镉处理下不同水稻品种对两种土壤中铅、镉的吸收及其生育期动态[D].博士学位论文,南京农业大学,2003:99-103.
    林治庆,黄会一.木本植物对汞耐性的研究[J].生态学报,1989,9(4):315-319.
    刘洪莲,李恋卿,潘根兴.苏南某些水稻土中CuPbHgAs的剖面分布及其影响因素[J].农业环境科学学报,2006,25(5):1221-1227.
    刘昭兵,纪雄辉,彭华,石丽红,李洪顺.水分管理模式对水稻吸收累积镉的影响及其作用机理[J].应用生态学报,2010,3(4):56-60.
    鲁如坤,时正元,熊礼明.我国磷矿磷肥中镉的含量及其对生态环境影响的评价[J].土壤学报,1992,29(2):150-157.
    鲁如坤.土壤农业化学分析方法[M].北京:科学出版社,2000,205-226.
    鲁如坤等.土壤-植物营养学原理与施肥[M].北京:化学工业山版社,1998,423-443.
    骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    聂俊华,刘秀梅,王庆仁.Pb超富集植物对营养元素N、P、K的响应[J].生态环境,2004,13(4):262-265.
    潘根兴,Chang, A.C., Page A.L.土壤-作物系统污染物迁移分配及其食物安全评价模型及其应用[J].应用生态学报,2002,13(7):854-858.
    潘根兴,张阿凤,邹建文,李恋卿,张旭辉,郑金伟.农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J].生态与农村环境学报,2010,26(4):394-400.
    潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,2008,4(5):282-289.
    庞金华.上海粮食中元素的含量及土壤的安全值[J].长江流域资源与环境,1997,6(2):149-154
    任利民,陈代庚,陈德友,等.成都盆地浅层土壤中Cd来源初探[J].地质通报,2005,24(8):744-749.
    施殉若,杨惠娣.PVC异型材用热稳定剂[J].塑料助剂,2009,4:51.54
    孙波,孙华,张桃林.红壤重金属复合污染修复的生态环境效应与评价指标.环境科学,2004,25(2):104-110.
    孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    唐莲,刘振中,蒋任飞等.重金属污染植物修复法[J].环境保护科学,2003,29(6):33-36.
    唐书源,李传义,张鹏程等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74-75.
    万敏,周卫,林葆.镉积累不同类型的小麦细胞镉的亚细胞和分子分布[J].中国农业科学,2003,36(6):671-675.
    王海慧,郇恒福,罗瑛,刘壮,高玲,黎春花,刘国道.土壤重金属污染及植物修复技术[J].中国农学通报,2009(11):210-214.
    王凯荣.衡阳市铅锌冶炼厂废气飘尘污染及其对农田土壤和水稻污染的危害[J].1991,12(增刊1):51-54.
    王立群,罗磊,马义兵,韦东普,华珞.重金属污染土壤原位钝化修复研究进展[J].应用生态学报,2009,(5):1214-1222.
    于林,周启星.农艺措施强化重金属污染土壤的植物修复[J].中国生态农业学报,2008,(3):772-777.
    王素芬,周凌云,苏东海.糠醛渣对亚甲基蓝的吸附性能和机理[J].湖北农业科学,2010,49(10):2422-2424.
    王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究[J].农业环境保护,1998,17(5):193-196.
    于永强,肖立中,李诗殷,李伯威,蔡信德.镉对水稻的毒害效应及其调控措施研究进展[J].中国 农学通报,2010,26(3):99-104.
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197-1203.
    韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    魏秀国,何江华,陈俊坚等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    吴华杰,李隆,张福锁.水稻/小麦间作中种间相互作用对镉吸收的影响[J].中国农业科技导报,2003,5(5):43-46.
    吴鹏鸣.环境监测原理与应用[M].北京:化学工业出版社,1991,22-52.
    吴新民,潘根兴.影响城市土壤重金属污染因子的关联度分析[J].土壤学报,2003,40(6):922-928.
    吴燕玉,陈涛,张学询.沈阳张士灌区镉污染生态的研究[J].生态学报,1989,(1):21-26.
    肖思思,李恋卿,潘根兴等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草吸收Cd的影响[J].环境科学,2006,27(2):351-355
    谢建治,刘树庆,王立敏等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-4.
    邢燕菊,韩金龙,徐立华,阴卫军,丁一,王同燕,许方佐,马驰.禾本科专一性根系分泌物-麦根酸类物质研究进展[J].山东农业科学,2010,10:62-65.
    徐应明,李军幸.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.
    许宇飞.沈阳市主要农产品污染调查及防治途径的研究[J].农业环境保护,1996,15(1):32-35.
    阎晓明,何金柱.重金属污染土壤的微生物修复机理及研究进展[J].安徽农业科学,2002,30(6):877-879.
    杨春刚,廖西元,章秀福等.不同基因型水稻籽粒对镉积累的差异[J].中国水稻科学,2006,20(6):660-662.
    杨玉敏,张庆玉,张冀,田丽,雷建容,喻华,杨武云.小麦基因型间籽粒镉积累及低积累资源筛选[J].中国农学通报,2010,26(17):342-346.
    叶锦韶,尹华,彭辉等.生物吸附剂的制备及其对铬的吸附性能[J].环境化学,2002,21(2):144-148.
    于明革,陈英旭.茶废弃物对溶液中重金属的生物吸附研究进展[J].应用生态学报,2010,21(2):505-513.
    俞海,黄季鲲,Scott R.,Loren B..中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,2003,22(3):380-388.
    袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476.
    曾千春,周开达,朱祯,罗琼.中国水稻杂种优势利用现状[J].中国水稻科学,2000,(4):243-246.
    张阿凤,潘根兴,李恋卿.生物黑炭及其增汇减排与改良土壤意义[J].农业环境科学学报,2009,28(12):2459-2463
    张亨.热稳定剂研究进展[J].合成材料老化与应用,2001,4:35-47.
    张丽娜,宗良纲.水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J].2006,6(5):49-52.
    张良运,李恋卿,潘根兴,崔立强,胡忠良.磷、锌肥处理对降低污染稻田水稻籽粒Cd含量的影响[J].生态环境学报,2009,(3):909-913.
    张书海,沈跃文.污灌区重金属污染对土壤的危害[J].环境监测管理与技术,2000,12(2):22-24.
    张增强,张一平,朱兆华.镉在土壤中吸持的动力学特征研究[J].环境科学学报,2000,20(3):370-375.
    张志红,杨文敏.汽油车排出颗粒物的化学组分分析[J].中国公共卫生,2001,17(7):623-624.
    招启柏,朱卫星,胡钟胜,王宏武,刘艳杰,王广志,曹志洪.改良剂对土壤重金属(Cd、Pb)的固定以及对烤烟生长影响[J].中国烟草学报,2009,15(4):26-32.
    甄燕红,成颜君,潘根兴,李恋卿.中国部分市售大米中Cc、Zn、 Se的含量及其食物安全评价[J].安全与环境学报,2008,8(1):119-122.
    郑喜坤,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,(1):79-84.
    中国环境年鉴编辑委员会.中国环境年鉴[M].中国环境年鉴社出版,1998.
    中国科学院地学部.东南沿海经济快速发展地区环境污染及其治理对策[J].地球科学进展,2003,(4):493-496.
    仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
    周东美,郝秀珍,薛艳等.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.
    周风帆,王新光,丁树荣等.利用水葫芦从废水中去除Co、 Zn、Cs等放射性核素的研究[J].中国环境科学,1989,9(1):26-30.
    周启星,宋玉芳等.污染土壤修复原理与方法[M].北京:科学出版社,2004,123-124.
    周锡爵.张士灌区镉污染及其解决和利用途径[J].农业环境保护,1987,6(2):17-19.
    周尊隆,吴文玲,李阳,孙红文.3种多环芳烃在木炭上的吸附/解吸行为[J].农业环境科学学报,2008,27(2):813-819.
    朱雪竹,倪雪,高彦征.植物内生细菌在植物修复重金属污染土壤中的应用[J].生态学杂志,2010, (10):2035-2041.
    祖艳群,李元,陈海燕等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.
    祖艳群,李元.土壤重金属污染的植物修复技术[J].云南环境科学,2003,22(增刊):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700