用户名: 密码: 验证码:
黄土坡面果粮复合系统果树根系分布与分形特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究区位于黄土高原丘陵沟壑区的山西吉县蔡家川流域,以当地果粮复合系统内隔坡水平沟不同坡度、树龄的苹果、杏树为研究对象,通过对果树周围土壤水分、养分定位观测、果树根系分布特征采用挖根法进行调查,深入讨论了苹果、杏树周围根系分布规律与分形结构。研究结果如下:
     (1)7、8月份观测期降雨仅能补充表层0-20cm土层的土壤水分,因此,果树周围土壤含水量随土壤深度的增加而递减。
     (2)果树周围土壤全氮、有机质含量较低,属极度缺乏水平,亟需人工添加适当氮肥、有机肥,保证植物生长所需养分。果树周围土壤速效钾、速效磷含量一般,且成年果树对土壤速效钾的消耗量大于幼年果树,但没有造成严重缺乏的状况,故只需适当补充钾肥、磷肥,即可保证果树正常生长。
     (3)幼年果树根系含水量高于成年、苹果根系含水量低于杏树。其次,受土壤水分分布影响,隔坡水平沟根系含水量陡坡、缓坡也有差异,即根系含水量峰值多出现于水分条件优越的缓坡坎上或陡坡坎下。
     (4)对于苹果根系分布来说,在黄土区缓坡隔坡水平沟植物篱果粮复合结构类型中,幼年苹果根系在坎下几乎没有分布,在坎上水平分布达到距离林带0.5H处,垂直分布达到60-80cm土层;成年苹果根系水平分布遍及坎上、坎下、田间各处,垂直分布向下延伸到80-100cm土层,说明苹果根系在其发育过程中,在水平与垂直方向都会不断地向田面及纵深方向扩展,对农作物生长影响的范围也逐渐增大,同时也增加对深层水养分的吸收利用。
     (5)对于杏树根系分布来说,其根系分布的水平范围在成年、幼年杏树中差别不大,根系分布密集层为20-40cm、最深层为80-100cm。在受农作物影响相对较小的隔坡水平沟内株间,吸收根的主要分布层在0-20cm,根系上浮现象明显,这样的分布状况不利于杏树利用深层土壤水分与养分。
     (6)成年、幼年果树根系生物量分别集中于20-40cm、40-60cm土层,小麦根系生物量主要分布于0-20cm土层。受农作物根系影响,果树根系有向土层深处发展的趋势,故果树根系生物量分布多呈“倒V”型,即在40-60cm土层出现峰值,随后又逐渐减少。受果树生长年限影响与坡度影响,幼年果树根系生物量远远低于成年,缓坡果树根系生物量小于陡坡。
     (7)从分形角度分析,苹果根系的分形维数要高于杏树,说明苹果根系的吸收根、细根含量高。其次,苹果根系与树高、干周粗的相关性要高于杏树,因此,利用苹果根系与树高、干周粗的相关性模型,可以用任一树高或干周粗数值,借助于分形维数D值,求算出苹果的树高或干周粗所对应的地下部分生物量值,而杏树只能根据任一树高,借助于分形维数D值,计算其树高所对应的地下部分生物量值。第三,苹果干周粗与根系的相关性要大于树高与根系的相关性,这也表明干周粗反映生产力、产量,也是地下水分、养分输送通道。
This paper selects Caijiachuan watershed as the research area which located in loess hilly gully region. There are various agroforestry systems in research area, but this paper chooses fruit-wheat intercropping as study object. According to study roots characters of young and old apple and apricot tree at the level trench on separated slope, it investigates the soil moisture and nutrition and analyses distribution law and fractal structureof root system and the research results are as follows:
     (1) From investigation during July and August, it showed that soil moisture content around apple and apricot descent with the decline of soil depth. The rainfall only can supply the surface layer of soil, because the rainfall was enough but it didn’t last long time.The results also showed that apple trees use water in 60-100cm soil depth, and apricot trees use water in 80-100cm soil depth.
     (2) With analyzing soil nutrients, it showed that the amounts of soil available potassium and phosphorus were at normal level, but the content of total N and organic matter were at low level. So it is important to add nitrogen fertilizer artificially in order to improve soil fertilizer.
     (3) According to analyzing moisture content of root system, the results showed that moisture content of root system were affected by the age of fruit trees, so the moisture content of root system of young tree was higher than that of old tree. Then with the differences among the distribution of soil moisture content, the maximum and minimum moisture content of root system appeared at site B in gentle slope and site A in steep slope. But in different root diameters and soil depth, the moisture content of root system didn’t appear obviously disparity.
     (4) The study results of distribution characters of apple root system showed that young apple trees roots can’t distribute in the lower ridge of contour ditch, but it reached the 0.5H distance from the upper ridge of contour ditch and the 60-80cm soil layer. However, old apple trees roots grew every part of the level trench on separated slope, and existed at the 80-100cm soil layer. It is suggested that apple roots system will extend to each part of the land space, so its effect to crop will be obvious and will use the water and nutrition of deeper soil layer.
     (5) The study results of distribution characters of apple root system suggested that apricot trees roots mostly distributed at 20-40cm soil layer and the deepest layer is 80-100cm soil layer. It was found that absorbing roots mostly occurred at 0-20cm soil layer, but this phenomenon showed that apricot roots could not use the deep soil water and nutrition.
     (6) Based on the results of biomass of root system, the biomass of root system are concentrated in 40-60cm, 60-80cm soil depth. Meanwhile it is higher than that in gentle slope, and biomass of root system of young tree is lighter than that of old tree.
     (7) Studying on root fractal, it showed that fractal dimension of apple root is higher than that of apricot root. This appears that apple tree has much more absorbing root. Also results of fitting on is higher than that of apricot tree, so using the model of fractal model of root system biomass and DBH and Height of apple tree can accurately estimate the biomass of root system and provide theory for fruit-wheat intercropping system.
引文
[1] 阿守珍, 卜耀军, 温仲明, 焦 峰, 杨勤科.黄土丘陵区不同植被类型土壤养分效应研究-以安塞纸房沟流域为例[J]. 西北林学院学报, 2006, 21(6):58-62.
    [2] 白文明, 程维信, 李凌浩.微根窗技术及其在植物根系研究中的应用[J].生态学报,2005,25 (11):3077-3080.
    [3] 泊姆 W 著.薛德培, 谭协麟译.根系研究法[M].北京:科学出版社,1985:28-32,152-154, 177-181
    [4] 蔡崇法, 王峰, 丁树文等.间作及农林复合系统中植物组分间养分竞争机理分析[J].水土保持研究,2000,7 (3):219-221.
    [5] 蔡昆争, 沈宏根:植物与土壤的动态界面-第六届国际根系研究大会介绍[J].生态学报, 2002, 22(1):139-140.
    [6] 陈士银, 黄月琼.马尾松根系分布规律的研究[J].江西农业大学学报,1999,21(5):126-129.
    [7] 樊巍, 高喜荣, 郭良等.灌木状白蜡-农作物间作系统的生物量和养分分配的初步研究[J].林业科学,2000,36 (5):109-113.
    [8] 费世民.农林业系统分类研究综述[J].四川林业科技,1993,14(2):27-32.
    [9] 冯斌, 杨培岭.植物根系的分形及计算机模拟[J].中国农业大学学报,2000,5 (2):96-99.
    [10] 冯斌.基于分形图像处理的计算机模拟分析研究[D].北京:中国农业大学,1996:12-13.
    [11] 冯宗炜.农林业系统结构和功能[M].北京:中国科学技术出版社,1992:45-50
    [12] 高峻, 张劲松, 孟平.分形理论及其在林业科学中的应用[J].世界林业研究,2004,17 (6):11-16.
    [13] 黄枢, 沈国舫.中国造林技术[M].北京:中国林业出版社,1993:50l-505
    [14] 李凌浩, 林鹏, 刑雪荣. 武夷山甜櫧林细根生物量和生长量的研究[J]. 应用生态学报, 1998, 9(4):337-340.
    [15] 李洯.黄土坡面农林复合系统果树根系及生态位特征[D].北京:北京林业大学,2002:14-15
    [16] 李文华,赖世登.中国农林复合经营[M].北京:科学出版社, 1994:23-24
    [17] 廖 成 章 , 余 翔 华 . 分 形 理 论 在 植 物 根 系 结 构 研 究 中 的 应 用 [J]. 江 西 农 业 大 学 学报,2001,23(2):192-196.
    [18] 娄安如.农林复合生态系统简介[J].生物学通报,1995, 3(5): 9-l0.
    [19] 鲁少波, 刘秀萍, 鲁绍伟, 王玉华, 白永福.林木根系形态分布及其影响因素[J].林业调查规划,2006,31( 3):105-108.
    [20] 马克明, 祖元刚. 羊草种群地上部生物量与株高的分形关系[J]. 应用生态学报, 1997, 8(4):417-420.
    [21] 倪红伟, 陈继红, 高玉慧等. 小叶章种群地上生物量与株高的分形特征[J]. 东北林业大学学报, 1998, 26(3):16-19.
    [22] 裘福庚, 方嘉兴.农林复合经营系统及其实践[J].林业科学研究,1996,9(3):318-322.
    [23] 石培礼, 钟章成, 李旭光. 恺柏混交林根系的研究[J]. 生态学报, 1996, 16 (6): 523-531.
    [24] 宋兆民, 盂平. 中国林业的结构与模式[J]. 世界林业研究, 1993, 6(5):77-82.
    [25] 孙多.苏南丘陵天然次生栎林根系分布特征和生物量结构的研究[A].中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1994:517-523
    [26] 王进鑫, 王迪海, 刘广全.刺槐和侧柏人工林有效根系密度分布规律研究[J].西北植物学报, 2004, 24 (12) :2208-2214.
    [27] 王兴样, 张斌, 王明珠, 张桃林等. 低丘红壤复合农林系统光能竞争与生产力-以花生南酸枣间作为例[J]. 生态学杂志, 2002, 21(4):1-5.
    [28] 王义琴,张慧娟,白克智,孙勇如.分形几何在植物根系研究中的应用[J].自然杂志,1998,21(3):143-146.
    [29] 王义琴, 张慧娟, 杨奠安, 白克智, 匡廷云.大气 CO2 浓度倍增对植物幼苗根系生长影响的分形分析[J].科学通报,1998,48(16):1736-1738.
    [30] 肖和艾, 谭云峰.复合农林系统中地下部分相互影响的研究[J].湖南农业科学,1995, (5):25-26.
    [31] 谢春华, 关文彬, 张东升等.长江上游暗针叶林生态系统主要树种的根系结构与土体稳定性研究[J].水土保持学报,2002,16 (2):76-79.
    [32] 谢京棚, 于汝元, 胡涌.农林复合生态系统研究概述[J].北京林业大学学报,1988,10(1): 104-108.
    [33] 杨奠安.生态信息系统[J].生命科学,1992,4(4):4-7.
    [34] 杨玉盛, 陈光水, 林鹏等. 格氏栲天然林与人工林细根生物量、季节动态及净生产力[J]. 生态学报, 2003, 23(9):1719-1729.
    [35] 曾觉民.西南山区的农用林业类型及其评价[J].生态经济,1993,(6):30-38.
    [36] 曾文曲,刘世胭等译.分形几何-数学基础及其应用[M].沈阳:东北工学院出版社,1991:1-35
    [37] 张宇清, 齐实, 孙立达. 两种立地条件梯田埂坎红柳根系特征研究[J]. 北京林业大学学报, 2002, 24(2):44-47.
    [38] 张宇清, 朱清科, 齐实, 张岩.梯田生物埂几种灌木根系的垂直分布特征[J]. 北京林业大学 学报, 2006, 28(2):34-38.
    [39] 张志.蔡家川流域景观格局与植被演替模拟研究[D].北京:北京林业大学,2005:34-36
    [40] 赵垦田. 国外针叶树种根系生态学研究综述[J].世界林业研究, 2000, 13 (5): 7-12.
    [41] 郑世清, 郑科. 延安黄土区植物路植物根系与水保功能评价研究[J]. 水士保持学报, 2003, 17(6):174- 176.
    [42] 朱慧, 洪伟, 吴承祯等. 天然更新檫木林根系生物量研究[J]. 植物资源与环境学报, 2003, 12(3):31-35.
    [43] 朱慧. 南酸枣人工幼林根系特征研究[D].福建:福建农林大学,2004:37-44
    [44] 朱清科, 沈应柏, 朱金兆.黄土区农林复合系统分类体系研究[J].北京林业大学学报,1999, 21(3):36-40.
    [45] A. Peyre, A. Guidal, K.F. Wiersum and F. Bongers. Dynamics of homegarden structure andfunction in Kerala, India[J]. Agroforestry Systems, 2006, 66(1):101-115.
    [46] Hoogerbrugge I.D. and Fresco L.O.. Homegarden Systems: Agricultural Characteristics and challenges[J]. International Institute for Environment and Development, 1993, 12(1):15-17.
    [47] ICRAF. Agroforestry Technologies for Southern Africa: Research and Adoption (Selected papers from a regional conference organized by ICRAF at Warmbaths, South Africa[J]. Agroforestry Systems, 2003, 59(1): 171-172.
    [48] Bates CG. Windbreaks: their influence and value[J]. US Forest Service Bull, 1911, 6(6): 86-100.
    [49] Bohm W. Methods of studying root systems[M]. New York: Springer-Verlag, 1979:89-90.
    [50] C.F. Jordan, Organic farming and agroforestry: Alleycropping for mulch production for organic farms of southeastern United States[J]. Agroforestry Systems, 61: 79-90, 2004.
    [51] Carruthers, S. P. Prospects for European agroforesry[J]. Agroforestry Systems, 1987, 1(1):7-8.
    [52] Cooper PJM, Leakey RRB, Rao MR and Reynolds L. Agroforestry and the mitigation of land degradation in the humid and sub-humid tropics of Africa[J]. Experimental Agriculture, 1996, 32(1): 235-290.
    [53] Dupraz C. and Newman S.M. Temperate Agroforestry: The European Way[J]. Temperate Agroforestry, 1997,7(5):181-230.
    [54] Eshel A. On the fractal dimension of a root system [J]. Plant Cell and Environment, 1998, 21(8): 247-251.
    [55] G.B. Douglas. Interactions between widely spaced young poplars (Populus spp.) and introduced pasture mixtures[J]. Agroforestry Systems, 2006, 66:165-178.
    [56] K. NUBERG, Effect of shelter on temperate crops: a review to define research for Australian conditions[J]. Agroforestry Systems, 41: 3-34, 1998.
    [57] K. Klaa, P. J. Mill and L. D. Incoll. Distribution of small mammals in a silvoarable agroforestry system in Northern England[J]. Agroforestry Systems, 2005, 63(2): 101-110.
    [58] Lena St? hl, Peter H?gberg, Anita Sellstedt and Roland J. Buresh, Measuring nitrogen fixation by Sesbania sesban planted fallows using 15N tracer technique in Kenya[J]. Agroforestry Systems, 65:67-79, 2005.
    [59] Mandelbrot B B.The Fractal Geometry of Nature[M]. New York: Freeman W H, 1983:11-15
    [60] Parikesit, K. Takeuchi. A disappearing agroforest in the Upper Citarum Watershed, WestJava, Indonesia[J]. Agroforestry Systems, 2004, 63: 171-182.
    [61] R. P. Neupane, G. B. Thapa. Impact of agroforestry intervention on farm income under the subsistence farming system of the middle hills, Nepal[J]. Agroforestry Systems, 2001, 53: 31-37.
    [62] Schroth G. Tree root characteristics as criteria for species selection and systems design in agroforestry[J]. Agroforestry systems, 1995, 30:125-143.
    [63] Soemarwoto O. Homegardens: a traditional agroforestry system with a promising future.Agroforestry, a Decade of Development, ICRAF, Nairobi, Kenya, 1987:157-172..
    [64] Stoorvogel JJ, Smaling EMA and Janssen BH. Calculating soil nutrient balances in Africa at different scales. Fertilizer Research, 1993, 35: 227-235.
    [65] Tatsumi J., Yamanchi A., Kono Y. Fractal analysis of plant root systems[J].Ann. Bot., 1989,64(10):499-503.
    [66] V.D. Nair, D.A. Graetz. Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience[J]. Agroforestry Systems, 2004,61(9): 269-279.
    [67] Weaver J W. Investigations on the root habits of plants[J]. America Journal Botany, 1925, 12(11): 502-509.
    [68] Wiersum K.F.. Forest gardens as an intermediate land-use system in the nature-culture continuum: characteristics and future potential, Agroforestry system,2004,61(6): 123-134.
    [69] Wilkinson A.G.. Poplars and willows for soil erosion control in New Zealand. Forestry,1995,45(4): 114-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700