用户名: 密码: 验证码:
4个四川桤木品系苗木的生理生态机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,由于人类活动造成大气CO2浓度升高,全球气候变暖,水资源紧缺等一系列的环境问题,开展植物生理生态学机理研究在全球生态学、生物多样性保育、退化生态系统的恢复与重建、生态系统的可持续发展等方面发挥着十分重要的作用。探讨四川桤木的生理生态学机理不仅有助于了解桤木的光合能力,植物水分生态特征、植物耗水的主要特征及其对环境因子变化的响应,填补研究的空白,而且可为四川桤木优良品种的早期选育、引种栽培、推广应用提供决策参考。
     四川桤木(Alnus cremastogyne Burkill)属桦木科(Betulaceae)桤木属,为中国特有种,是国产桤木属11个种中最重要的1个种,现已成为长江流域平原水网地区防护林、丘陵山区水土保持林和短周期工业用材林基地建设中的重要造林树种,栽培面积已达267万公顷。对四川桤木不同品系苗木(H1、H12、J5、J10)生理生态机理的研究将有助于揭示不同桤木品系苗木间生理生态机理的差异性及其与早期生长量的关系,特别是当前大气C02浓度升高,全球气候变暖,水资源紧缺等一系列的环境问题背景下,探讨桤木生理生态机理更有助于了解其对环境变化的响应。本研究的主要研究结果如下:
     4个四川桤木品系苗木苗木上、下部叶的Pn都有明显的日变化和季节变化。同一品系苗木在不同的生长季节或不同品系苗木苗木在相同的生长季节,Pn日变化有单峰曲线型和双峰曲线型,即使是同一种曲线型,但出现峰值的时间也不完全相同,Pn的大小也不同。在相同生长季,Pn日变化曲线上的同一时刻,H12、J10品系苗木上部叶的Pn均高于H1、J5品系苗木上部叶的Pn。4个四川桤木品系苗木上、下部叶Pn月均值均呈现为双峰曲线季节性变化规律。H12、J10品系苗木上、下部叶的Pn月均值均分别高于H1、J5的上、下部叶的Pn月均值,即H12、J10品系苗木具有较高的光合能力。4个品系苗木上、下部叶,不同月份间及品系间的Pn差异均达极显著(p<0.0001)。以5%显著水平划级,J10、H12品系苗木为第一级,J5和H1品系苗木为第二级。
     4个四川桤木品系苗木上、下部叶的Tr都有明显的日变化和季节变化。4个品系苗木上、下部叶的Tr日变化趋势基本一致,有单峰与双峰两种类型,而下部叶以单峰型变化曲线为主,属轻蒸腾午休型植物,且其Tr最大值超过5mmol·m-2·s-1,表明桤木属轻蒸腾耗水型植物,对水分要求较高。4个品系苗木上、下部叶的Tr月均值均呈现为双峰型的季节变化规律。H12、J10品系苗木上、下部叶Tr的最高值与月均值均高于H1、J5品系苗木相应上、下部叶Tr的最高值与月均值。4个品系苗木上、下部叶Tr差异极显著(p<0.0001)。月份之间、品系苗木之间Tr差异极显著(p<0.0001),品系之间的平均Tr(mmol·m-2s-1)从高到低的排序为:H12(1.8770)>J10(1.8675)>J5(1.3003)>H1(1.2970)。
     在不同生长季节同一品系苗木或在相同生长季节不同品系苗木的WUE的日变化表现出不完全相同的变化规律。4个品系苗木上、下部叶的WUE月均值呈现出“W”型的季节变化规律。H1、H12、J5、J10品系苗木的WUE月平均值变化范围分别在-1.111~6.01,1.24~4.265,-0.404~5.80,-1.383~5.546之间,按WUE全年最高值的大小排序为:H1>J5>J10>H12。4个品系苗木上、下部位之间,不同品系苗木之间的WUE差异均不显著(p>0.05),而各月份之间的WUE存在极显著的差异性(p=0.0001)。
     在PARO-1500μmol·m-2·s-1之内,4个四川桤木品系苗木上、下部叶Pn随着PAR的增强而升高,当PAR超过1500μmol·m-2·s-1时,Pn基本维持恒定值,PAR再继续增加时,Pn不再增加,甚至下降。4个四川桤木品系苗木的表观量子效率变化范围在0.0303~0.0495mol·mol-1之间。H1、H12、J5、J10品系苗木LCP (μmol·m-2·s-1变化范围分别为7.36~34.69、16.3~37.9、3.16~31.95、11.48~50.61之间,H1、H12、J5、J10品系苗木LSP (μmol·m-2·s-1)变化范围分别为1204.72~1458.45、1374.42~1434.96、1224.95~1424.16、1216.69~1530.61之间,4个四川桤木品系苗木具有较低的LCP和较高的LSP,利用弱光能力强且能有效地利用全日照的强光,能适应多种光照环境。
     4个四川桤木品系苗木上、下部叶的Ci均随着PAR的增强而呈下降趋势,且上、下部叶Ci的变化趋势与最大值相差不大,不同品系苗木Ci对PAR的响应程度略有不同,但差别不是很大。上、下部叶的Cond随着PAR的增强而呈上升趋势,但随着PAR的增强,Cond增幅逐渐变小,不同品系苗木Cond对PAR增强的响应也不同。上、下部叶的Tr随着PAR的增强均呈上升趋势,两者呈明显正相关关系,上部叶Tr与PAR的相关系数R2≥0.6893。J10、H12品系苗木的Tr随着PAR的增强增加幅度、平均值基本上高于J5和H1品系苗木。PAR在0~500μmol·m-2·s-1范围内,上、下部叶的WUE随着PAR的增强而快速增高,当PAR接近或超过500μmol·m-2·s-1时,WUE缓慢增高或达到最大值。当PAR超过1000μmol·m-2·s-1时,WUE普遍都有所下降。
     CO2浓度在0~800μmol·mol-1范围内,4个四川桤木品系苗木上、下部叶的Pn随着CO2浓度升高而增大,当C02浓度达到800~2000μmol·mol-1之间,Pn逐渐趋于稳定,Pn达到最大值。上、下部叶的Tr随着CO2浓度的增高均呈下降趋势,但变化幅度不大。品系间Tr随着C02浓度增高的变化幅度也不同,H1、H12、J10和J5品系苗木分别为0.76、0.55、1.10和0.6mmol·m-2·s-1。在低C02浓度范围内,WUE随着CO2浓度的增加而上升,C02浓度从400μmol·mol-1上升到800μmol·mol-1,4个四川桤木品系苗木的WUE提高了25.92%以上,最高可达209.22%。上、下部叶的Ci随外界C02浓度的升高而增大,且4个四川桤木品系苗木的Ci与外界C02浓度呈线性正相关,品系之间的差异不大(p>0.05)。Cond随着CO2浓度的增加呈下降趋势,不同品系苗木呈现出不同的变化形式:逐渐下降、先升后降、升降交替地逐渐下降等。叶面饱和蒸汽压亏缺(Vp)随C02浓度的升高呈微弱的上升趋势。
     影响桤木上、下部位叶,整株苗木Pn的生理生态因子有所不同,且不同品系间也有所差异。Cond, Ci、PARi、Vpdl是影响上、下部叶及整株苗木Pn的主要生理生态因子,不同部位、不同品系略有不同。且均与Cond, PARi呈正相关。
     影响上、下部位叶,整株苗木叶片Tr的生理生态因子有所不同,且不同品系苗木间也有所差异。其中Cond, Vpdl、Tleaf, PARi对4个品系苗木上部叶的Tr影响最大;Cond, Tair, PARi、Vpdl对下部叶的Tr影响最大;Cond, Tair, RHR对4个品系苗木整株苗木Tr的影响最大,尤其以Cond影响最为显著。
     影响上、下部位叶,整株苗木WUE生理生态因子有所不同,且不同品系间也有所差异。Ci、Tair, CO2R, RHR, Vpdl、Tleaf, Cond是上部叶WUE日变化的主要影响因子,其中,Ci、Cond, Vpdl、CO2R对上部叶WUE影响较大;Ci、PARi、Vpdl、CO2R对下部叶WUE影响较大;Ci、Cond是整株苗木WUE的主要影响因子。Ci对桤木的WUE影响最大,且呈显著负相关。
     4个四川桤木品系苗木叶片叶绿素含量从高到低排序为:J5(43.31%)>H1(42.63%)>H12(42.62%)>J10(38.74%),品系苗木间叶绿素含量存在极显著的差异(p≤0.0001)。叶绿素含量与净光合速率、苗高、生长量呈显著的正相关关系(p≤0.05)。叶面积、苗高、生物量大小排序均为:H12>J10>J5>H1,不同品系苗木间叶面积不存在显著差异,苗高存在显著差异(p≤0.05),干生物量存在极显著差异(p≤0.0001)。当净光合速率与苗高、干生物量到达显著正相关(p≤0.05)时,同一桤木树种不同品系苗木内净光合速率对个体生长量和高度的增长的贡献率分别可达80.56%和48.48%。
At present, it is important to study plant eco-physiological mechanism for global ecology, bio-diversity conservation, restoration and reconstruction of graded eco-system and the sustainable development of eco-system due to a series of environmental problems, such as the CO2 concentration elevation, global climate warming and water resource shortage. Exploring the eco-physiological mechanism of Alnus cremastogyne Burk would not only make for understanding its photosynthetic ability, water ecological characteristic, and its response to changing environmental factors, also provide decision-making reference for early breeding, introduction, cultivation and commerical appliance.
     Alnus cremastogyne Burk, belonging to the genera Alnus in Betulaceae, and being a native species and one of the most important species among the total 11 species in. Alnus in China, has been used as one of the most important forestation tree species for sheltbelt, soil and water conservation forest and short-rotation industrial forest in Yangtze River Valley, whose commercial area has reached 2.67×107hm2. Study on the eco-physiological characteristics of different varieties of A. cremastogyne Burk would help people to understand its eco-physiological mechanism and their relation to growth volume at the early stage, especially under the current background of rising atmospheric CO2, globe climate warming, and the shortage of water resources. Exploring its eco-physiological mechanism would furthermore help us to understand its response to environmental changes. The major results are shown as follows:
     The diurnal and seasonal variation of net photosynthetic rate (Pn) between the upper and lower crown of four varieties of A. cremastogyne Burk showed obvious difference. The diurnal variation of Pn of the same variety showed two different types of curves, namely, the single or double-peak curve at different growing season, and different varieties did so at the same growing season. Even if they showed the same curve type, the peak value of Pn appeared at different time, and their size were different too. At the same growing season, the value of Pn of H12, J10 were higher than that of H1 and J5 at any time in the upper crown during the diurnal courses. While the seasonal variation of the mean monthly Pn values of these four varieties in the upper and lower crown, respectively, revealed a double-peak curve, H12 and J10 were higher than H1 and J5, i.e., H12 and J10 had a stronger photosynthetic ability. Highly significant difference of Pn was observed between the upper and lower crown or different month, or different varieties (p< 0.001), respectively. If ranked on the 5% significance level, J10 and H12 belonged to the first level, and J5 and H1 the second level.
     The remarkable difference of diurnal and seasonal variation of transpiration rate (Tr) of these four varieties were observed between the upper and lower crown. The diurnal variation of Tr was generally identical with a single-peak curve or double-peak one. The leaves at the lower crown mainly showed a single peak curve, belonging to the weak-transpiratory midday-depression plant, and the maximum of Tr exceeded 5 mmol·m-2·s-1. This indicated that A. cremastogyne Burk is a weak-transpiratory and strongly water-consumptive plant, needing adequate water. The mean monthly Tr values of these four varieties all displayed the same seasonal changing tendency with double-peak curves. The maximum and mean monthly values of Tr of H12 and J10 were higher than those of H1 and J5 in the upper and lower crown, respectively. Tr of these four varieties showed a highly significant difference (p<0.0001) at the upper and lower crown, and this was also true of different month or different varieties. The order of Tr mean among different varieties was H12 (1.8770)>J10 (1.8675)>J5 (1.3003)>H1 (1.2970).
     The changing trend of diurnal variation of water use efficiency (WUE) of the same variety was incompletely similar in different growing seasons, and different varieties did so at the same growing season. The seasonal variation of WUE mean monthly of these four varieties presented the form as "W". The WUE mean monthly of H1, H12, J5, J10 varied from-1.111 to 6.0,1.24 to 4.265,-0.404 to 5.80,-1.383 to 5.546, respectively, and the order of WUE maximum was H1 >J5>J10>H12. WUE of these four varieties between different positions or different varieties had no significant difference (p>0.05). And a highly significant difference between different months was observed (p=0.0001).
     When photosynthetically active radiation (PAR) ranged 0~1500μmol·m-2·s-1, Pn of these four varieties increased with the increase of PAR in the upper and lower crown. When PAR exceeded 1500μmol·m-2·s-1, Pn kept rather stable. While PAR continued to increase, Pn varied little, and decreased in certain cases. The apparent quanta efficiency of these four varieties varied from 0.0303 mol·mol'1 to 0.0495 mol·mol-1, and the light compensation point (LCP) of H1, H12, J5 and J10 ranged 7.36~34.69,16.3~37.9,3.16~31.95 and 11.48~50.61μmol·m-2·s-1, respectively, while their corresponding light saturation point (LSP) ranged 1204.72~1458.45,1374.42~1434.96,1224.95~1424.16,1216.69~1530.61μmol·m-2·s-1, respectively. These indicated that these four varieties possessed rather lower LCP and higher LSP, having a higher utilization efficiency on weak light and strong light, capable of adapting to a manifold light environment.
     Ci of these four varieties decreased with the increase of PAR in the upper and lower crown, and the response degree of Ci to PAR of different varieties were slightly different. Cond increased with the increase of PAR, but with the increase of PAR, the amplitude of Cond gradually became weaker, and the response of Cond of different varieties to the increase of PAR were different too. Tr in the upper and lower crown increased with the increase of PAR in the upper and lower crown, and there was a significantly positive correlation between them, with the correlation coefficient being 0.6893 in the upper crown. The increase amplitude, mean values of Tr of J10 and H12 were higher than those of J5 and HI with the increase of PAR. When PAR ranged 0~500μmol·m-2·s'1, WUE in the upper and lower crown rapidly increased with the increase of PAR. While PAR approached or exceeded 500μmol·m-2·s"1, WUE gradually increased, or reached the maximum. When PAR exceeded 1000μmol·m-2·s-1, WUE generally decreased.
     When the concentration of CO2 ranged 0~800μmol·mol-1, Pn of these four varieties increased with the increase of CO2 concentration in the upper and lower crown. When the CO2 concentration reached between 800 and 2000μmol·mol-1, Pn varied little, even reached the maximum. Tr decreased with the increase of CO2 concentration, but its changing amplitude was rather little. And the changing amplitude of Tr with the increase of CO2 concentration among different varieties were different, For H1, H12, J10 and J5, that was 0.76,0.55、1.10 and 0.6mmol·m-2·s-1, respectively. Within low CO2 concentration, WUE increased with the increase of CO2 concentration. When CO2 concentration increased from 400μmol·mol-1 to 800μmol·mol-1, WUE of these four varieties increased by 25.92%, and the maximum more than 209.22%. Ci in upper and lower crown increased with the increase of CO2 concentration, and linear positive correlation between them were observed, and the difference among these varieties varied little (p >0.05). Cond decreased with the increase of CO2 concentration, and showed manifold changing type:gradually decrease, first increase and late decrease, or significantly fluctuate, etc. Vapor pressure deficit at the leaf surface (Vpdl) slightly increase with the increase of CO2 concentration.
     The eco-physilogical factors affecting Pn in upper, lower crown or whole plant were different, and as far as different varieties were concerned, it did so. the major factors affecting Pn in upper crown were Cond, Ci, PARi, Tleaf and Vpdl, while a little difference were observed among different varieties. The major factors affecting the lower crown were Cond, Ci, PARi, Tleaf, Tair, Vpdl and CO2R, and rather great difference were observed among different varieties. The major factors affecting whole plant were Cond, Ci, PARi, Tair and Vpdl, and there were positive correlation among Pn, Cond and PARi.
     The eco-physiological factors affecting Tr in upper, lower crown or whole plant were different, and among different varieties, the mainly affecting factors were different too. The main factors affecting the diurnal variation of Tr were Cond, Tair, Tleaf, Vpdl, PARi, H2OR and RHR, and among these factors, the influence of Cond, Vpdl, Tleaf and PARi were greater than that of others. The influence of Cond, Tair, PARi and Vpdl on Tr in lower crown were rather greater, and Cond, Tair, RHR on the whole plant were the greatest, especially, the influence of Cond was the most remarkable.
     The eco-physiological factors affecting WUE of the upper, lower or whole plant were different, and different varieties did so. The major factors affecting the diurnal variation of WUE in upper crown were Ci, Tair, CO2R, RHR,Vpdl,Tleaf and Cond, and among these factors, the affect of Ci、Cond, Vpdl、CO2R were greater than that of other factors. The major factors affecting WUE in lower crown were Ci, Tair, H2OR, RHR, Vpdl, CO2R, PARi, and among these factors, the affect of Ci、PARi、Vpdl、CO2R were greater than that of others. The major factors affecting WUE of the whole plant were Cond, Ci, Vpdl, CO2R, Tair, Tleaf, RHR, Tair and PARi, and among these factors, the affect of Ci、Cond were greater than that of others. In conclusion, Ci was the most important affecting factor on WUE, and there were significantly negative correlation between Ci and WUE.
     The order of Chi content of these four varieties was J5 (43.31)>H1 (42.63)>H12 (42.62) >J10 (38.74), and Chi content among different varieties had highly significant difference (p≤0.0001). Significant positive correlation were observed between Chi content and Pn, or seedling height, growth volume (p≤0.05). The order of leaf area, seedling height and biomass all was H12>J10>J5>H1, and leaf area among different varieties had significant difference (p≤0.05), seedling height and biomass did so. Pn had a terribly significantly positive coefficient with seedling height and biomass (p≤0.05), The accumulated contribution rate of Pn to individual growth volume reached 80.56%, to individual height 48.48%.
引文
[1]张秀君.温室气体与全球环境变化[J].沈阳教育学院学报,2001,(4):109-111
    [2]杜吴鹏,缪启龙.温室气体对气候环境的影响预测及其不确定性[J].环境科学与技术,2006,29(2):72~74
    [3]岳丽宏,陈宝智,王黎.温室气体的环境影响及控制技术的研究现状[J].环境保护,2001, (12):13-14
    [4]齐玉春,董云社,章申.农业微环境对土壤温室气体排放的影响[J].中国生态农业学报,2000,(1):47-50
    [5]韩国青.温室气体对气候和环境的影响[J].江西广播电视大学学报,1999,(3):58-60
    [6]Genthon C, Barnoia J M, Raynaud D, et al. Vostokice core:climatic response to CO2 and orbital forcing changes over the last climatic cycle [J]. Nature,1987,329:414-418
    [7]Mitchell J F B, Gregrory J M. Climatic consequences of emissions and a comparison of is 95 and 90 [A]. In:Houghton J T, et al, eds. Climate Change:The supplementary report to the IPCC scientific assessment [R]. CambridgeU K:Cam-bridgeUniv.Press, 1992,173-175
    [8]Keeling C D, Whorf T P, Wahlen M, et al. Inter annual extremes in the rate of rise of atmospheric carbon dioxide since 1980 [J]. Nature,1995,375:660-670
    [9]张其德,卢从明,匡廷云.大气CO2浓度升高对光合作用的影响[J].植物通讯,1992,9(4):18-23
    [10]摘译自《Poll,Abs》,世界各国防止温室气体二氧化碳对大气环境污染的目标[J].环境科学研究,1992,(5):9
    [11]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602
    [12]肖兴基,钱谊.温室效应气体浓度变化机制和趋势及其对全球气候的影响[J].农村生态环境,1990,(1):39-42
    [13]肖兴基,钱谊.温室效应对生态环境影响及其防御对策[J].农村生态环境,1990,(2):45-48
    [14]Lange.O.I.ed. Encyclopedia of plant physiology. New Series Volume 12,1982
    [15]姜恕.植物生态学发展战略[M].北京:中国科技出版社,1992,19-23
    [16]Larcher.W著,翟志席等译.植物生态生理学[M].北京:中国农业大学出版社,2000
    [17]Mooney H.A. Today of Plant Physiological Bioscience.1987,37(8):18-20
    [18]Santos I et al. Plant of Zea mays developed under enhanced UV-B radiation. Physiol Plant.1993,83:373-380
    [19]Teramura, A.H. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol Plant,80:5-11
    [20]Nedun Che Zhian,N Induction of hear short-like proteins in vigna sinensis seedings growing under UV-B enhanced radiation. Physiol Plant,1998,85:503-506
    [21]张德明,陈兆平,陈章和,等.高CO2浓度下豆科4种乔木幼苗的生理生化反应[J].植物生态学报,1999,23(3):220-227
    [22]陈永亮,邹春静,张军辉,等.CO2含量升高对水曲柳幼苗净光合与水分利用的影响[J].东北林业大学学报,2001,29(6):29-31
    [23]刘丽娜,赵建刚.CO2浓度升高对植物生理特征的影响[J].生物学教学,2006,8:5-7
    [24]彭晓邦,张硕新.大气CO2浓度升高对植物某些生理过程影响的研究进展[J].西北林学院学报,2006,1:68-71
    [25]马红亮,朱建国,谢祖彬.植物地上部分对大气CO2浓度升高的响应[J].生态环境,2004,3:390~393
    [26]王忠明,杨亚军.高浓度CO2对植物生命活动的影响生态环境[J].2004,3:390-393
    [27]Bowes G. Facing the inevitable:plants and increasing atmospheric CO2 [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.1993,44:309-332
    [28]王为民,王晨,李春俭,等.大气二氧化碳浓度升高对植物生长的影响[J].西北植物学报,2000,4:676~683
    [29]彭晓邦,张硕新.大气CO2浓度升高对植物某些生理过程影响的研究进展[J].西北林学院学报,2006,21(1):68~71
    [30]Wong S C. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants[J]. Oecologia (Berl.).1979,44:68-74
    [31]Mauney J R, Guinn G, Fey K et al. Correlation of photosynthetic carbon dioxide uptake and carbohydrates accumulation in cotton, soybean, sunflower and sorghum [J]. Photosynthetica.1979,13:260-266
    [32]Clough J M, Peet M M and Krameer P J. Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soybean cultivar [J]. Plant Physiol.1981,67:1007-1010
    [33]Peet M M. Acclimation to high CO2 in monoecious cucumber. I Vegetative and reproductive growth [J]. Plant Physiol.1985,80:59-62
    [34]王春乙,高素华.模拟大气中C02浓度对大豆影响的试验[J].生态学报,1995,,15(2):148~153
    [35]张其得,温晓刚.盐胁迫下C02加倍对春小麦一些光合功能的影响[J].植物生态学报,2000,24(3):308-311
    [36]曾小平,彭少麟,赵平,等.在高C02浓度下四种亚热带幼树光合作用对水分胁迫的响应[J].生态学报,2001(5):738~746
    [37]Drake B and Lealey P W. Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO2 [J]. Plant Cell Environ.1991,14(8):853-860
    [38]蒋高明,韩兴国,林光辉.大气C02浓度升高对植物的直接影响—国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报,1997,21(6):489~502
    [39]Cure J D, Acock B. Crop responses to carbon dioxide doubling:A literature survey [J]. Agric. For. Meteorol,1986,38:127-145
    [40]牛书丽,蒋高明.豆科固氮植物对C02加富的生理响应[J].植物生态学报,2003,6:844-850
    [41]欧志英,彭长连.高浓度二氧化碳对植物影响的研究进展[J].热带亚热带植物学报,2003,11(2):190-196
    [42]蒋跃林,张庆国,杨书运,等.28种园林植物对大气C02浓度增加的生理生态反应[J].植物资源与环境学报,2006,2:1-6
    [43]蒋高明,林光辉,BrunoD M.美国生物圈二号内生长在高CO2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化[J].植物学报,1997,39(6):546-553
    [44]郑凤英,彭少麟.植物生理生态指标对大气C02浓度倍增响应的整合分析[J].植物学报,2001,11:1101-1109
    [45]蒋高明,韩兴国.大气C02浓度升高对植物的直接影响[J].植物生态学报:1997,21(6):489-502
    [46]Curtis P S, Wang X. Ameta-analysis of elevated CO2 effects on woody plant mass, form, and physiology [J]. Oecologia,1998,113:299-313
    [47]Wand S J E, Midgley G F, Jones M H, et al. Responses of wild C4 and C4 grasses (Poaceae) species to elevated atmospheric CO2 concentration:ameta-analytic test of current theories and perceptions [J]. Global Change Bio.1999,5:723-741
    [48]J.I.L.Morison,范宗理.植物生长和C02历史[J].世界科学,1988,5:39~35
    [49]Valle RM,etal. Transpiration rate and water use efficiency of soybean leaves adapted to different CO2 environments [J]. CropSci.,1985,25:477-482.
    [50]Rey A, Jarvis P G. Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees [J].TreePhysiol.,1998,18:441-450
    [51]T joelker M Qetal. Seedlings of fivebore altreespecie differinac climation of net photosyn thesis to elevated CO2 an temperature [J].TreePhysiol.,1998,18:715-726
    [52]RoberntzP,StockforsJ. Effect sofe levated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees [J]. Tree Physiol.,1998,18:233-241.
    [53]彭少麟.热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003
    [54]Sage R F, Sharkey T D, Seemann J R. Acclimation of photosynthesis to elevated CO2 in five C3 species [J]. Plant Physiol,1989,89:590-596
    [55]Acock B. Effects of carbon dioxide on photosynthesis, plant growth and other processes [A]. In:Kimball B, eds. Impact of carbon dioxide, traces gases and climatic change on global agriculture [C]. Madison:American Society for Agronomy,1990,45-60
    [56]Sage R F. Acclimation of photosynthesis to increasing atmospheric carbon dioxid [J]. Ann Rev Plant Physiology and Plant Molecular Boil,1994,44:309-332
    [57]韩文军,廖飞勇,何平.大气二氧化碳浓度倍增对闽楠光合性状的影响[J].中南林学院学报,2003,23(2):62-65
    [58]Gen-Yun Chen, Zhen-Hua Yong, Yi Liao, et al. Photosynthetic Acclimation in Rice Leaves to Free air CO2 Enrichment Related to Both Ribulose-1,5-bisphosphate Carboxylation Limitation and Ribulose-1,5-bisphosphate Regeneration Limitation[J]. Plant and Cell Physiology,2005,46(7):1036-1044
    [59]Yelle S, Beeson J R C, Trudel M J, et al. Acclimation of two tomato species to high atmospheric CO2[J]. Plant Physiol.,1989,90:1465-1472
    [60]张军辉.红松幼苗对C02浓度升高的生理生化反应[J].应用生态学报,2001,12(1):27-30
    [61]彭少麟,曾小平,赵平,等.大气C02浓度升高对香蕉光合作用及光合碳循环过程中叶氮分配影响[J].应用生态学报,2001,12(3):429-434
    [62]王春乙,潘亚茹,白月明,等.C02倍增对中国主要作物影响的试验研究[J].气象学报,1997,55(1):86~94
    [63]林伟宏.植物光合作用对大气C02浓度升高的反应[J].生态学报,1998,18(5):529-538
    [64]Gunderson C A and Wullschleger C A. Photosynthetic acclimation in trees to rising atmospheric CO2:A broader perspective. [J]. Photosynthesis Res.1994,39:369-388
    [65]余峥,胡庭兴,王开运,等.植物光合作用对大气C02和温度升高的响应及其适应机制的研究进展[J].四川林业科技,2006,2:30-35
    [66]赵天宏,王美玉,张巍巍,等.大气C02浓度升高对植物光合作用的影响[J].生态环境,2006,5:1096-1100
    [67]Ziska L H, etal. Growth and photosynthetic response of nine tropical species with long-termex Posure to elevated carbon dioxide [J]. Oecologia,1991 (86):383-389
    [68]韦妙彩.提高CO2浓度对两种亚热带树苗光合作用的影响[J].植物学报,1996,38(2):123~130
    [69]吴立勋,徐世凤.杉木檫树混交林光合生产力研究[A].中国南方混交林研究(C).北 京:中国林业出版社,1993,182-188
    [70]吴立勋,徐世凤.杉木檫树光合特性研究[A].中国南方混交林研究(C).北京:中国林业出版社,1993,189~196
    [71]张小泉,徐德应.18年杉木不同部位和叶龄针叶光响应研究[J].生态学报,21(3):409~411
    [72]胡新生,刘建伟.四个杨树无性系在不同温度和相对湿度条件下光合速率的比较研究[J].林业科学,1997,33(2):107-116
    [73]郭俊荣.银杏光合与蒸腾特性的研究[J].西北植物学报,1997,17(4):505~510
    [74]祖元刚,聂绍荃,孙明学,等.凉水地区白桦光—光合特性的比较研究[J].东北林业大学学报,2001,29(2):44-46
    [75]郎有忠,张祖建.水稻卷叶性状生理生态效应的研究Ⅱ.光合特性、物质生产与产量形成[J].作物学报,2004,30(9):883-887
    [76]康建宏,吴宏亮.宁夏灌区春小麦光合作用对光强的响应[J].农业科学研究,2005,26(3):8~21
    [77]徐世凤,吴立勋.江南桤木的光合特性研究[J]..湖南林业科技,1994,21(4):10-14
    [78]朱万泽,王金锡.台湾桤木引种的光合生理特性研究[J].西北植物学报,2004,24(11):2012-2019
    [79]朱万泽,王金锡,薛建辉,等.四川桤木的光合生理特性研究[J].西南林学院学报,2004,21(4):196-204
    [80]卓仁英,陈益泰.五种桤木属植物的光合特性初步研究[J].浙江林业科技,2004,24(6):1-4
    [81]肖文发.杉木人工林单叶至冠层光合作用的扩展与模拟研究[J].生态学报,1998,18(6):621-628
    [82]秦建华,姜志林.森林在大气平衡中的作用[J].世界林业研究,1997,4:18-25
    [83]李合生,孟庆伟,夏凯,等.现代植物生理学[M].北京:高等教育出版社,2002,1(1): 83~137
    [84]武维华编.植物生理学[M].科学出版社,北京,2003(4):168-175
    [85]马淼,陈蓓蕾,骆世洪.濒危植物新疆沙冬青叶解剖结构及其光合特性[J].石河 子大学学报(自然科学版),2005(4):55~57
    [86]许大全.田间小麦叶片光合作用“午睡”现象的研究[J].植物生理学报,1984,10:269-276
    [87]许大全.毛竹叶片光合作用的气孔限制研究[J].植物生理学报,1987,13(2):154-160
    [88]周小玲,田大伦,许忠坤,等.中亚热带四川桤木、台湾桤木幼林的光合生态特性研究[J].中南林业大学学报,2007(1):40~50
    [89]李薇,唐海萍.准噶尔盆地荒漠区短命植物光合蒸腾特性及影响因素研究[J].西北植物学报,2006,(12):2517-2522
    [90]张盹明,金红喜,徐先英.固沙植物沙米光合特性研究[J].中国农学通报,2006(4):272~275
    [91]赵长明,魏小平,尉秋实.民勤绿洲荒漠过渡带植物白刺和梭梭光合特性[J].生态学报,2005(8):1908-1913
    [92]赵广琦,张利权,梁霞.芦苇与入侵植物互花米草的光合特性比较[J].生态学报,2005(7):1604-1611
    [93]张光弟,俞晓艳,徐庆林.矮化型观赏植物B9、N29光合特性的研究[J].北方园艺,2006(6):99-101
    [94]骆建霞,柴慈江,史燕山.盐胁迫对7种草本地被植物生长及光合特性的影响[J].西北农林科技大学学报(自然科学版),2006(9):50-54
    [95]王莉丽,周国逸.两种园林植物断根和剪枝后蒸腾和光合特性的变化研究[J].生态环境,2006,3:598~605
    [96]刘弘.四种蔷薇科植物的光合特性日变化[J].河南科技学院学报(自然科学版),2005,4:56-58
    [97]Kitajima K. Seasonal leaf prototypes in the canopy of a tropical dry forest: photosynthetic characteristics and associated[J]. Oecologia,1997,109:490-498
    [98]Lu, Z. etal. High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower temperature [J].Physiol. Plant,1994, 92:266-272
    [99]Reich P B. Photosynthesis, nitrogen relations in Amazonian tree species Ⅰ. Patterns among species and communities [J].Oecologia,1994,97:62-72
    [100]朱万泽,王金锡,薛建辉,等.引种台湾桤木的蒸腾特性及其影响因子[J].四川林业科技,2005,(1):9-14
    [101]曹凑贵主编.植物生态学概论[M].北京:高等教育出版社,2002,62~76
    [102]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246~252
    [103]肖文发,徐德应.森林能量利用与产量形成的生理生态基础[M].北京:中国林业出版社,1999,21-29
    [104]Jian R. Wang, C D B. Hawkins, Tony Letchford. Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimens [J]. Forest Ecology and Management,1998: 233-244
    [105]冯宗炜.杉木蒸腾作用的研究[A].杉木人工林生态论文集[C],1980
    [106]郭连生.对几种阔叶树种耐旱生理指标的研究[J].林业科学,1989,25(5):389-394
    [107]Choudhury B. An analysis of observed linear correlations between net photosynthesis and a canopy-temperature-based plants water stress index [J]. Agric.For.Meteorol,1986, 36:323-333
    [108]许大全.光合作用气孔限制分析中的一些问题[J].1997,33(4):241-244
    [109]Berry J A, Downton W J S. Environmental regulation of photosynthesis. In:Govindjee eds. Photosynthesis, Vol. New York:Academic Press,1982.263-343
    [110]王孟本,李洪建,柴宝峰.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,(5):401-410
    [111]段华平,谢小立,王凯荣.红壤坡地茶园蒸腾及其影响因子研究[J].农村生态环境,2002,(02):19-23
    [112]阮成江,李代琼.黄土丘陵区人工沙棘蒸腾作用研究[J].生态学报,2001,(12):2141-2146
    [113]杜红梅,王德利,孙伟.松嫩草地全叶马兰夏季与秋季光合及蒸腾作用的比较[J].应用生态学报,2002,(12):1600-1604
    [114]潘占兵,蒋齐,郭永忠.柠条蒸腾特征及影响因子的研究[J].中国生态农业学报,2006,(2):70-71
    [115]毛明策,郭东伟,梁银丽.水分处理对油菜叶位光合速率、蒸腾速率及水分利用效率的影响[J].中国生态农业学报,2001,(1):59-61
    [116]林伟宏.大气C02增加对水稻光合、蒸腾及水分利用率的影响[J].生态农业研究,1996,4(2):40-43
    [117]山仑.植物水分利用效率与半干旱地区农业节水[J].植物生理学通讯,1994,30(1):61~66
    [118]山仑,棘萌.节水农业及其生理基础[J].应用生态学报.1991,2(1):70~76
    [119]王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学进展,200,11(1):99-104
    [120]Zhu Q. Isolation and characterization of a rice gene encoding a basic chitinase [J]. Mol Gen Genet,1991,226:289-293
    [121]Anderson J M Photo Regulation of the composition, function and struction of thylakoid membrance [J]. Ann Rev Plant Physical,1986,37:93-136
    [122]许大全,沈允钢.植物光合作用效率的日变化[J],植物生理学报,1997,23(4):410-416
    [123]Xu D Q Chen X M, Zhang L X et al, Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll deficient soybean mutant[J]. Photosynthetica,1993,29:103-110
    [124]Chow W S, Anderson J M. Photosynthetic responses of Pisum sativum to an increase in irradiance during growth Photosynthetica,activities[J].Aust J Plant Physical,1987,14: 1-8
    [125]Farquhar G D, Caemmerer S V, Berry J A.. A biochemical model of photosynthetic CO2 Assimilation in leaves of C3 species [J].planta,1980,149:78-90
    [126]Wullschleger S D.Biochemical limitation to carbon assimilation in C3 plants-A retrospective analysis of A/Ci curves from 109 species. Journal of Experimermental Botany [J],1993,44:907-920
    [127]Pury D G G, Farquhar G D. Simple scaling of photosynthesis from leaves to canopies without the errors of big leaf models. Plant, cell and Environment [J],1997,20:537- 557
    [128]Gollatz G J Ribas C M J. A. Coupled Photosynhtesis-stomatal conductance model for leaves of C4 plants Physical [J],1992,9:519-538
    [129]Canlel M G R, Thornely J H M. Temperatures and CO2 Responses of Leaf and Canopy Phootsynhtessi:a Calrifciaiton using hte Non-rectangular Hyperbola Model of Phootsynhtessi Annals of Botany [J].1988,28:83-892
    [130]Takahiro ENDO,Toshinori OKUDO, Masasyuki TAMURA, et al. Estimation of net photosynthetic rate based on instiuhyperspectral data. Agriculture and forest Meteorology [J].2002,41:564-570
    [131]Bassman J B, Zwier J C. Gas exchange characteristics of Populous trichocarpa, Populous deltoids and Populous trichocarpa deltoids clone [J].Tree Physiology,1991, (8): 145-149
    [132]Greer D H, Laing W A, Woodley D H.The effect of Chloramphenicol on photo inhibition of photosynthesis and its recovery in intact Kiwifruit (Actinidia deliciosa) leaves [J]. Australian Journal of Plant Physiology,1993,20:33-43
    [133]李承森.植物科学进展(第二卷)[M].北京:高等教育出版社,1999
    [134]Mulkey S S, Pearcy R W. Interactions between acclimation and photoinhobition of photosynthesis of a tropical forest understory herb, Alocasia macrorrhiza, during simulated canopy gap formation [J]. Funct.Ecol,1992,6:719-729
    [135]Lovelock C E, Jebb J M, Osmond C B. Photo inhibition and recovery in tropical plant species:Response to disturbance[J].Oecologia,1994,97:297-307
    [136]Langenheim J H, Osmond C B, Brools A, et al.Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species [J]. Oecologia, 1984,63:215-224
    [137]朱万泽,薛建辉,王金锡,等.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,18(4):170~173
    [138]邓雄,李小明,张希明.四种荒漠植物的光合响应(英文)[J].生态学报,2003,(3):598~605
    [139]甘德欣,王明群,龙岳林,等.3种彩叶植物的光合特性研究[J].湖南农业大学 学报(自然科学版),2006(6):607~610
    [140]Voncaemmerer S, Farquar G D.Some relationship between the biochemistry of photosynthesis and gas exchange of leaves [J]. Planta,1981,153:376-387
    [141]Cure J D, Acock B. Crop responses to carbon dioxide doubling:Aliterature survey[J]. Agric Meteorl,1986,38:127-145
    [142]Surano K, Daley P, Houpis Jetal. Growth and physiological response of Pinus ponder osa Donglex Laws.To long-term elevated CO2 concentration [J]. Tree Physicol,1986, 2:243-259
    [143]蒋高明,林光辉,BrunoD.V.Marino等.几种热带雨林与荒漠植物暗呼吸作用对高CO2浓度的响应[J].生态学报,1999,(4):519-522
    [144]蒋高明,渠春梅.北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J].植物生态学报,2000,2:204-208
    [145]梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较[J].生态学报,2006,(3):842-848
    [146]孙伟,王德利,王立.狗尾草蒸腾特性与水分利用效率对模拟光辐射增强和CO2浓度升高的响应[J].植物生态学报,2003,(4):448-453
    [147]Faik S, Maxwell D E, Huner NPA, Photosynthetic adjustment to temperature [J]. In: Baker NR(ed). Photosynthesis and the Environment. Dordrecht the Nether Lands:Kluwer Academic Phblishers,1996,367-385
    [148]Sassenrath G F, Ort D R. The relationship between inhibition of photosynthesis at low temperature and the inhibition of photosynthesis after rewarming in chill sensitive to mato[J]. Plant Physiol Biochem,1990,28:457-465
    [149]Leegood R C.Regulation of photosynthetic CO2 pathway enzymes by light and the factors [J]. Photosynthesis,1985,6:247-259
    [150]Berry JA Bjrkman O.Photosynthetic response and adaptation to termperture in highter plants[J].Annu Rev Plant Physiol,1980,31:491-543
    [151]Hurry V M,Malmberg QGardestrom P, qusist G. Effects of short term shift to low temperature and of long term cold hardening on photosynthesis and sucrose photosynthesis activity in leaves of winter rye [J]. Plant Physiol,1994,106:983-990
    [152]贺东祥,潘允钢.几种常绿植物光合特性的季节变化[J].植物生理学报,1995,21:1-79
    [153]卢从明.水分胁迫对光合作用影响的研究进展[J].植物学通报,1994,11(增刊):9-14
    [154]刘奉觉,王世绩,刘雅荣,等.杨树水分生理研究[M].北京:北京农业大学出版社,1992
    [155]Dickmann.D.I. et.al. Photosynthesis, water relations and growth of two hybrid Populus genotypes during a severe drough [J]t. Can.J.For.Res,1992,22(8):1092-1106
    [156]李吉跃.太行山区主要造林树种耐旱性的研究(Ⅲ—Ⅳ)[J].北京林业大学学报,1991,(增2):230~279
    [157]骆建霞,柴慈江,史燕山,等.盐胁迫对7种草本地被植物生长及光合特性的影响[J].西北农林科技大学学报(自然科学版),2006,(9):50-54
    [158]顾艳红,刘鹏,徐根娣.铝胁迫对山茶属植物光合特性的影响[J].浙江林业科技,2006,(4):15~18
    [159]杨志成.优良阔叶树种——桤木的分布、生长和利用[J].林业科学研究,1991,4(6):643-648
    [160]许忠坤,徐清乾.南方林木遗传育种研究[M].北京:中国林业出版社,2006,159-161
    [161]顾万春.主要阔叶树速生丰产培育枝术[M].北京:中国科学技术出版社,1992,79-97
    [162]黄守成,李珍春.桤木丰产栽培效益分析[J].湖南林业科技,2004,31(2):28-29
    [163]封剑文,关志山,蔡宏明,等.闽北山地红壤施肥试验及桤木对其肥力的影响[J].南京林业大学学报,1998,22(1):67-70
    [164]蔡宏明.桤木生长适应性及其对土壤肥力的影响[J].华东森林经理,1997,11(3):49-52
    [165]王理平,刘再清.杉木桤木混交林土壤酶与土壤肥力的研究[J].林业科技通讯,1998,2:28~30
    [166]周永丽,刘福云,万军.四川桤木木材材性初步研究[J].四川林业科技,2003, 24(1):75~78
    [167]陈炳星,李光荣,黄光霖,等.引种四川桤木木材化学组分的分析与评价[J].中国造纸,2000,(4):20-23
    [168]徐淑莺,邱玉桂.不同树龄桤木的原料特性分析[J].纸和造纸,2001,(2):34-35
    [169]陈静,苏建勤,陈炳星,等.四川桤木KP法制浆工艺及其应用研究[J].中国造纸,2002, (1):4-7
    [170]王军辉,顾万春,夏良放,等.桤木种源(群体)家系材性性状的遗传变异[J].林业科学研究,2001,14(4):362-368
    [171]李邀夫,吴际友.四川桤木的丰产性能及栽培技术[J].湖南林业科技,2004,31(1):18-19
    [172]许忠坤,徐清乾.桤木造纸材遗传改良前景[A].见:白嘉雨,钟伟华主编.南方林木遗传育种研究[C].北京:中国林业出版社,2006,159-161
    [173]吴际友,童方平,龙应忠,等.四川桤木秋季嫩枝扦插效应分析[J].湖南林业科技,2004,31(5):4-6
    [174]吴际友,龙应忠,童方平.桤木优树选择[J].湖南林业科技,2004,31(6):10-12
    [175]陈炳星,周志春,李光荣,等.桤木制浆造纸研究现状与我国桤木浆的开发利用[J].林业科学研究,1999,12(6):656~661
    [176]谢新根,温卫国.四川桤木立木干形研究及材积计量的探索[J].江西林业科技,2000,增刊:9-13
    [177]刘和林,万军.桤木促萌返幼试验初报[J].四川林业科技,1997,18(2):46-49
    [178]吴火和.四川桤木上胚轴的离体培养与植株再生[J].福建林业科技,2003,30(3):15-19
    [179]李少伟.桤木育苗技术试验[J].湖南环境生物职业技术学院学报,2003,9(2):107-109
    [180]夏良放,余良富.鹅掌楸、桤木幼抚技术[J].江西林业科技.2000,4:6-8
    [181]陈庭平,张少林.桤木播种育苗技术[J].林业实用技术,2002,(12):26
    [182]陈益泰,李桂英,王惠雄.桤木自然分布区内表型变异的研究[J].林业科学研究,1999,12(4):379~385
    [183]王军辉,顾万春,李斌,等.桤木优良种源/家系的选择研究—生长的适应性和遗传稳定性分析[J],林业科学,2000,36(3):59-66
    [185]徐四凤,吴立勋.江南桤木光合特性研究[J].湖南林业科技,1994,21(4):10-14
    [186]刘国凡,邓廷秀.土壤条件与桤木结瘤固氮的关系[J].土壤学报,1985,22(3):251-257
    [187]向永国,王金锡.桤柏混交林能量代谢中能量吸收、固定、积累和损耗研究[J].四川林业科技,1995,16(1):1~11
    [188]石培礼,钟章成,李旭光.四川桤柏混交林生物量的研究[J].植物生态学报,1996,20(6):524~533
    [189]Morse, S R, F. A. Bazzaz. Elevated CO2 and temperature alter recruitment and size hierarchies in C3 and C4 annuals [J]. Ecology,1994,75:966-975
    [190]刘宇锋,萧浪涛,童建华,等.非双直线曲线模型在光合响应曲线数据分析中的应用[J].农业基础科学,2005,21(8):76-79
    [191]陆佩玲,罗毅,于强,等.华北地区冬小麦光合作用的光响应曲线的特征参数[J].应用气象学报,2001,22(2):236-241
    [192]Long S P, Humphries S.Falkowski P G. Photo-inhbition of photo-synibesis in nature [J]. Ann.Rev. Plant. Physiol Mol.Biol,1994,45:633-662
    [193]Zhu Q. Isolation and characterization of a rice gene encoding a basic-chitinase [J]. Mol Gen Genet,1991,226:289-293
    [194]方从兵,樊明琴,孙俊.稀土微肥对桃叶片光合生理特性的影响[J].经济林研究,2002,20(3):18-21
    [195]廖飞勇,何平,谢瑛.S02对植物光合作用影响的研究进展[J].经济林研究,2003,21(3):85-88
    [196]杨模华,李志辉,黄丽群,等.银杏光合特性的日变化[J].经济林研究,2004,22(4):15~18
    [197]莫新禄,赵思东,袁德义.晚大新高梨的净光合速率变化规律初探[J].经济林研 究,2006,24(1):41-44
    [198]陈建华,曹阳,闫文德,等.板栗的光合性状[J].中南林学院学报,2006,26(2):72-74
    [199]张艳丽,张启翔,潘会堂,等.光照条件对小报春生长及光合特性的影响[J].中南林学院学报,2003,23(5):22~26
    [200]姜小文,易干军,陶爱群,等.四季柚净光合速率与生理生态因子间的关系[J].中南林学院学报,2005,25(5):45-48
    [201]张希明,斯蒂堪W,龙格M.自然条件下幼龄欧洲山毛榉的光合速率与气候因子的关系[J].植物学报,1993,35(8):611-618
    [202]许大全.光合作用“午睡”现象的生态、生理与生化[J].植物生理通讯,1990,(6):5-10
    [203]Misson L, Rasse D P, Vincke C, et al. Predicting transpiration from forest stands in Belgium for the 21st century [J]. Agricultural and Forest Meteorology,2002,111:265-282
    [204]陈惠兰,王黎,李茂哉,等.半干旱地区主要造林树种水分生理的研究[J].甘肃林业科技,1990(1):12-21
    [205]韩蕊莲,梁宗锁,侯庆春,等.黄土高原适生树种的耗水特性[J].应用生态学报,1994,5(2):210-215
    [206]Bond-Lamberty B, Wang C, Gower S T. The use of multiple measurement techniques to refine estimates of conifer needle geometry [J]. Canadian Journal of Forest Research, 2003,33:101-105
    [207]陈永亮,刘明河,李修岭.不同形态氮素配比对红松幼苗光合特性的影响[J].南京林业大学学报(自然科学版),2005,29(3):77-80
    [208]Ellsworth D S, Reich P B. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest [J]. Oecologia,1993,96:169-178
    [209]范晶.树木生理生态研究[M].哈尔滨:黑龙江科学技术出版社,2002,47-97
    [210]格日乐,乌仁陶德,张力,等.几种沙漠植物蒸腾作用特性及其环境响应机制的研究[J].水土保持研究,2007,14(1):184-189
    [211]黄丽化,陈训,崔炳芝.黄褐毛忍冬光合特征与水分利用日变化研究[J].贵州 科学,2007,25(1):54~58
    [212]郭连生,田亮.9种阔叶幼树的蒸腾速率叶水势与环境因子关系的研究[J].生态学报,1992,12(1):47~52
    [213]董学军,杨宝珍,郭柯,等.几种沙生植物水分生理生态特征的研究[J].植物生态学报,1994,18(1):86~94
    [214]曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611~614
    [215]王得祥,刘建军,王翼龙,等.西安市四种绿化树种生理特性比较研究[J].西北林业大学学报,2002,17(3):5-7
    [216]曾小平,赵平,彭少麟,等.三种松树的生理生态学特性研究[J].应用生态学报,1999,10(3):275-278
    [217]张光灿,贺康宁,刘晓,等.黄土高原半干旱区林木生长适宜土壤水分环境的研究[J].水土保持学报,2001,15(4):1-5
    [218]VON GENUCHTEN MTH. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soil [J]. Soil Sci. Soc.Am.J.,1980,44:892-898
    [219]马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):50-55
    [220]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,22(9):1380~1386
    [221]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(56):50~55
    [222]Ehleringer J R, Klassen S, Clayton C, etal.Carbon isotope discrimination and transpiration efficiency in common bean [J]. Crop. Sci.,1991,31(6):1611-1615
    [223]Kirkham M B, He H, Bolger T P, etal. Leaf photo synthesis and water use of big blue stem under elevated carbon dioxide [J]. Crop. Sci.,1991,31(6):1589-1594
    [224]王忠.植物生理学[M].北京:中国农业出版社,2000
    [225]王颖,魏国印,张志强,等.7种园林树种光合参数及水分利用效率的研究[J].河北农业大学学报,2006,29(6):44-48
    [226]徐清乾,许忠坤,蒋玉璋.四川桤木引种湖南生长状况及适应性研究[J].湖南林 业科技,2006,33(6):20-22
    [227]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual review of plant physiology,1982,(33):317-345
    [228]Cure J D, Cock B A. Crop response to carbon dioxide doubling:A Literature Survey [J]. Agric. For. Meteorol,1986, (38):127-145
    [229]Wong S C. Elevated atmospheric partial pressure of CO2 and plant growth.1 Interactions of nitrogen nutrition and photosynthetic capacity In C3 and C4 plant [J]. oecologia (Berl.),1979, (44):68-74
    [230]Mott K A. Sensing of atmospheric CO2 by plant [J]. plant cell environment,1990, (13): 731-737
    [231]J R 埃塞林顿.环境和植物生态学[M].北京:北京科学出版社,1974,14-25
    [232]万长建,郑有飞,张建军.小麦蒸腾速率规律分析及其计算[J].中国农业气象,1998,(6):10-13
    [233]柴世伟,刘文兆,李秧秧.伤根对玉米光合作用和水分效率的影响[J].应用生态学报,2002,13(12):1716-1718
    [234]杨文斌,杨茂仁.蒸腾速率、阻力与叶内外水势和光强关系的研究[J].内蒙古林业科技,1996,(3):53~57
    [235]蔡时青,许大全.大豆叶片CO2补偿点和光呼吸的关系[J].植物生理学报,2000,26(6):545-550
    [236]刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27~30
    [237]F B索尔兹伯里,C罗斯.植物生理学[M],北京:科学出版社,1998,213-219
    [238]张林青,周青,肖程玲.园林植物耐阴性研究进展[J].安徽农业科学,2006,34(19):4851-4853
    [239]LACHER W.植物生理生态学[M.].李博译.北京:科学出版社,1982
    [240]王平,周道玮.野大麦、羊草的光合和蒸腾作用特性比较及利用方式的研究[J].中国草地,2004,26(3):8-12
    [241]刘金祥,莫穗秋.三裂叶蟛蜞菊光合生理特性对光合有效辐射增强的响应[J].草原与草坪,2005,(2):27-31
    [242]迟丽华,宋凤斌.松嫩平原4种植物光合作用光响应特性的研究[J].吉林农业大学学报,2007,29(2):119-122,138
    [243]任红旭,陈雄,吴冬秀.C02浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,2001,27(6):729-736
    [244]周玉梅,韩士杰,张军辉,等.C02含量升高对水曲柳幼苗净光合与水分利用的影响[J].东北林业大学学报,2001,29(6):29~31
    [245]张富仓,康绍忠,马清林.大气C02浓度升高对棉花生理特性和生长的影响[J].应用基础与工程科学学报,1999,7(3):267~272
    [246]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995,140-150
    [247]郭志华,王伯荪,张宏达.银杏的蒸腾特性及其对遮荫的响应[J].植物学报,1998,40(6):567-572
    [248]Berry J A W J S. Environmental regulation of photosynthesis [A]. In:Govindjee(ed). Photosynthesis Vol. Ⅱ. Development, carbon metabolism and plant productivity [M]. New York:Academic Press.1992
    [249]Yu, Qing. T D Wang. Simulation of the physiological responses of C3 plant leaves to environmental factors by a model which combines stomatal conductance, photosynthesis and transpiration. Acta Botanica Sinica,1998,40:740-754
    [250]孙伟,王德利,王立,等.狗尾草蒸腾特性与水分利用效率对模拟光辐射增强和C02浓度升高的响应[J].植物生态学报,2003,27(4):448~453
    [251]张利平,王新平,刘立超,等.沙坡头主要建群植物汕蒿和柠条的气体交换特征研究[J].生态学报,1998,18(2):133~137
    [252]Ward J K, Strain B R. Elevated CO2 studied:oast, present and future [J]. Tree Physiol, 1999,19:211-220
    [253]许大全.光合作用及有关过程长期C02浓度的响应[J].植物生理学通讯,1994,30(2):81-87
    [254]Bunce J A. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings growth outdoors at an elevated concentration of carbon dioxide [J]. Plant, Cell and Environment,1992,15:541-549
    [255]Chaudhuri U N, Kirkham M B, Kanemasu E T. Root growth of winter wheat under elevated carbon dioxide and drought[J]. Crop Sci,1990.30:853-857
    [256]刘金祥,李志芳.CO2浓度增高对三裂叶蟛蜞菊光合生理特性的影响[J].广西植物,2005,25(5):477~480
    [257]吴楚,王政权,孙海龙,等.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J].2005,林业科学,41(4):554~560
    [258]冯建灿,张玉洁.喜树光合速率日变化及其影响因子的研究[J].林业科学,2002,38(4):554-560
    [259]沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1998
    [260]Shigesaburo Jsunoda. Photosynthetic efficiency in rice and wheat [J]. Rice breeding (IRRI),1972,475-479
    [261]Eehide Monma, Shigesaburo Jsunod. Photosynthetic heterosis in maize[J]. Japan J Breed,1979,29(2):159-165
    [262]黄士元、翁仁宪、陈清义.台湾之水稻之光合作用、物质生产及谷类生产特性,Π.光合作用之品种间差异[J].中华农学会报,1984,127:18-28
    [263]D Welle R B, P J Hurleyand, J I Pavek. Photosynthesis and stomata conductance of potato clones [J]. Plant Phtsiol,1983,72:172-176
    [264]Bravdo B, J E Pallas. Photosynthesis, photorespiration and RuBP carboxylase oxygenase activity in selected peanut genotypes [J]. Photo synthetica,1982,16:36-42
    [265]龚垒.树木的光合作用与物质生产[M].北京:科学技术出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700