用户名: 密码: 验证码:
长江口滨岸潮滩大型底栖动物重金属的分布累积及其生态毒理效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长江口滨岸滩涂习见的几种大型底栖动物为研究对象。主要研究Cu、Zn、Pb、Cr、Ni五种重金属元素在动物体内的含量和时空分布。探讨底栖动物对重金属的吸收机制和生物、非生物因子对底栖动物重金属富集量的影响。在综合相关领域研究的基础上,对长江口滨岸带的生态环境质量进行了评价。结合底栖动物急性毒理学实验,估算长江口滨岸环境中生物体的最大环境容量,从而为制定环境允许标准提供依据。本文主要研究结果如下:
     1 底栖动物对重金属元素的富集表现出一定的季节差异。秋、春、夏三个季节,泥螺、河蚬、无齿相手蟹、谭氏泥蟹对Cu、Zn、Cr、Ni四种重金属元素累积的总体趋势是夏季>春季>秋季。
     2 底栖动物对重金属元素的富集存在着地点间差异,同种底栖动物在不同采样点的含量不同。以金属污染指数(MPI)综合评价5个地点(XP、LH、GL、LC、CD)河蚬积累重金属的总体情况,发现LH、LC两地河蚬的重金属总体积累量比另外三个点要高,XP河蚬的重金属总体积累量最低;以金属污染指数(MPI)评价12个地点(QL、DGG、QY、XP、LH、SDK、GL、BL、PJ、LG、DH、CD)无齿相手蟹积累重金属的总体情况,发现DGG、BL和LG三点无齿相手蟹的重金属总体积累量最高,QY最低。
     3 软体动物对重金属元素的累积存在部位间的差异。此次实验测试的五种重金属元素绝大部分集中在动物的软体部分,而在钙质外壳中的含量相对较少。
     4 动物的个体大小及富集能力的差异均能影响底栖动物对重金属的累积。实验表明,在重金属负荷较低的CD和QL两点,较大个体的无齿相手蟹对Cu、Zn、Pb、Cr的富集量大于较小个体。在重金属污染指数较高的DGG,则是较小个体对重金属的累积量高。不同种类的底栖动物富集重金属元素的能力不同,泥螺对Cu的富集能力最强,河蚬对Zn的富集能力最强,对Pb、Cr的富集也是泥螺、河蚬较高。
     5 水体温度、盐度、表层沉积物粒径、有机质含量、沉积物和悬浮颗粒中重金属含量、重金属元素间的相互作用等诸多非生物因子对底栖动物的重金属富集量也有一定影响。表现为较高温度有助于泥螺、河蚬、无齿相手蟹、谭氏泥蟹对Cu、
    
    华东师范大学硕士学位论文
    摘要
    Zn、Cr、Ni的吸收;秋季,河蛆体内Cu、Zn含量与盐度呈正相关,无齿相手
    蟹体内Pb含量与盐度呈负相关,春季无齿相手蟹体内Zn含量与盐度呈负相关;
    河规体内的Cu含量与沉积物的粒径存在显著的正相关,即粒径较粗的底质有助
    于河蛆对Cu的富集;河规体内的Zn、Pb含量与沉积物中有机质含量存在一定
    的相关性,Zn含量与沉积物中有机质呈正相关,Pb含量与有机质呈负相关;河
    规对Cu、Zn的富集量高于对应点的沉积物、悬浮颗粒物中Cu、Zn含量,适于
    做长江口滨岸带潮滩Cu、Zn的指示生物,无齿相手蟹适于做长江口滨岸带Cu
    的指示生物;底栖动物富集的重金属元素间具有一定的相互作用,表现为河蛆体
    内Cu一Cr、Cu一Ni、Zn一Cr、Zn一Ni、Cr一Ni之间呈显著正相关,Zn一Pb之间呈显著
    负相关,无齿相手蟹体内Zn一Ni、Pb一Cr之间呈正相关。
    6通过泥螺对Cu、Zn、Pb、Cr·的24小时急性毒理实验,推知Cu对泥螺的半致
    死剂量是0.259/L,全致死剂量是O.41g/L;Zn对泥螺的半致死剂量是0.133留L,
    全致死剂量是lg/L;Pb对泥螺的半致死剂量是0.2759/L,全致死剂量是11.59/L;
    Cr对泥螺的半致死剂量是1.879/L,全致死剂量是2.03留L。
    7与世界各地软体动物的重金属积累情况相比,长江口滨岸带的软体动物重金属
    积累量处于中等程度。通过单因子评价表明,在长江口滨岸带的底栖动物中,泥
    螺和河规体内的C:超标,说明该水域部分底栖动物受到C:的污染。
    8底栖动物人体消费标准评价表明,仅有无齿相手蟹体内Pb含量超过人体消费
    标准。
The paper takes several familiar macrobenthos along Changjiang coastal flat as our research object. We mainly study the heavy metal's concentration and space-time distribution of Cu, Zn, Pb, Cr, Ni in macrobenthos. The mechanism of macrobenthos assimilating heavy metals and the effect of biologic and abiological factors to the enrichment content of heavy metals are discussed. At the basis of synthesizing correlative fields we evaluate the entironment quality in Changjing coastal flat. Combining with acute toxicity test, we estimate the maximal environment capability of organism in Changjiang coastal flat. Accordingly we can offer foundation for establishing environmental permit standard. The primary results as follows.
    1 The heavy metals' enrichment content of benthos shows definite seasonal difference. In summer, the enrichment content of Bullacta exarata, Corbicula fluminea, Sesarma dehaani and Ilyoplax deschampsi is correspondingly higher than spring and autumn.
    2 The enrichment content of benthos to heavy metals exist regional difference. The content of the same benthos is diverse in different site. Using Metal Pollution Index to appraise the heavy metals' holistic circs , we find the heavy metals' enrichment content of Corbicula fluminea in LH and LC is higher than XP, GL and CD. At the same time we also appraise the holistic circs of Sesarma dehaani. We find that the heavy metals' enrichment content in DGG, BL and LG is the most highest and corresponding content in QY is the lowest.
    3 The cumulation of mollusk to heavy metals has segmental difference. In our experiment it shows that most heavy metals in mollusk concentrate on flesh, only a few in shell.
    4 Benthos' size and cumulation faculty can affect the accumulation. In our experiment it shows that the bigger Sesarma dehaani can cumulate much Cu, Zn, Pb, Cr than the little ones in CD and QL which have low Metal Pollution Index. While in the place of DGG which has high Metal Pollution Index, it is the little ones that can cumulate much heavy metals. Different kinds of benthos have dissimilar cumulation faculty to heavy metals, such as Bullacta exarata is the strongest one for cumulating Cu, Corbicula fluminea is for cumulating Zn and the two kinds of benthos also have strong cumulation faculty for Pb and Cr.
    5 Some abiological factors such as water temperature, salinity, surface sediment granularity and organic matter content, heavy metals content in sediment and suspended particle, mutual action of heavy metals etc have definite effects on heavy metals' cumulation content of benthos. It shows that higher temperature conduces to assimilating Cu, Zn, Cr and Ni by Bullacta exarata, Corbicula fluminea, Sesarma
    
    
    
    dehaani and Ilyoplax deschampsi. In autumn the Cu and Zn content in Corbicula fluminea shows positive correlation with salinity and the Pb content in Sesarma dehaani shows negative correlation with salinity. In spring the Zn content in Sesarma dehaani shows negative correlation with salinity. The Cu content in Corbicula fluminea shows marked positive correlation with surface sediment granularity. It means that thick granularity can conduce to cumulating Cu by Corbicula fluminea. The Zn and Pb content in Corbicula fluminea shows definite correlation with organic matter content in sediment in that Zn content shows definite correlation and Pb shows negative correlation. The Cu and Zn content in Corbicula fluminea is higher than that of corresponding sediment and suspended particle. It indicates that Corbicula fluminea adapts to acting as the Cu and Zn referent in Changjiang coastal flat. Sesarma dehaani adapts to acting as the Cu referent. The heavy metals in benthos have mutual action with each other. It is ma
    nifested that Cu-Cr, Cu-Ni, Zn-Cr, Zn-Ni, Cr-Ni shows positive correlation and Zn-Pb shows negative correlation for Corbicula fluminea and Zn-Ni and Pb-Cr shows positive correlation for Sesarma dehaani.
    6 By 24h acute toxicity test for Bullacta exarata we can calculate the follows. Firstly, LC50for Cu is 0.25g/L and LDioo is 0.41g/L
引文
1.蔡如星,1991.浙江动物志(软体动物)[M].杭州:浙江科学技术出版社.
    2.蔡英亚,张英,魏若飞编,1995.贝类学概论[M].上海:上海科学技术出版社.
    3.陈吉余主编,1988.上海市海岸带和海涂资源综合调查报告.上海:上海科学技术出版社
    4.陈沈良,谷国传,虞志英,2002.长江口南汇东滩淤涨演变分折[J].长江流域资源与环境,11(3):239-244.
    5.陈振楼,许世远,柳林等,2000.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,55(6):641~651.
    6.陈宗团,徐立,洪华生,1997.河口沉积物—水界面重金属生物地球化学研究进展[J].地球科学进展,10月刊,434~439.
    7.程和琴等编,1998.上海市岸滩冲淤与海平面上升趋势调查研究报告.
    8.程晓东,郭明新,2001.河流底泥重金属不同形态的生物有效性[J].农业环境保护,20(1):19-22.
    9.戴爱云,杨思谅等,1986.中国海洋蟹类[M].北京:海洋出版社.
    10.付在毅,许学工.2001,区域生态风险评价[J].地球科学进展,16(2):267-271.
    11.甘居利,贾晓平,1997.中国浅海经济鱼类重金属的卫生质量状况[J].海洋通报,16(4):88~93.
    12.高广生,1983.我国主要河流悬浮物样品对镉离子的吸附作用[J].环境化学,2(4):28.
    13.龚志军,谢平,阎云君,2001.底栖动物次级生产力研究的理论与方法[J].湖泊科学,13(1):79-88.
    14.韩丽,戴志军,2001.生态风险评价研究[J].环境科学动态,第三期:7-10.
    15.何文珊,1999.长江河口湿地生态系统中重金属流的生物过程研究.上海:华东师范大学河口海岸国家重点实验室,1999年度硕士学位论文.
    16.黄华瑞,庞学忠,1990.长江口及其邻近海域铬的行为[J].海洋与湖沼,21(6):571-577.
    17.黄文祥,王树芬,1988.重金属污染生物指标种(双壳类)研究概况[J].海洋环境科学,7(3):54-61。
    18.金相灿,王桂林,1986.关于重金属吸附的泥沙效应[J].环境科学情报,5(1):6.
    19.李建萍,李绪谦,王存政,2001.伊通河水环境容量与污染防治对策的研究[J].世界地质,20(2):183-187.
    20.李明德,1995.渤海6种贝类的氨基酸及重金属含量[J].河北渔业,1:8-9.
    21.廖金凤,1999.广东省南海市农业土壤中铜锌镍的环境容量[J].土壤与环境,8(1):15-18.
    22.林光宇,1997.中国动物志(软体动物门)[M].北京:科学出版社.
    23.刘芬,刘文华,娄涛,2002.湘江霞湾段汞环境容量模型研究[J].环境工程,20(6):58-61.
    24.刘杰,2003.大型底栖动物扰动对长江口潮滩无机氮界面交换的影响研究.上海:华东师范大学地理系,2003年度硕士学位论文.
    25.刘素美,张经,杨昕,栾刚,1999.A Study on Heavy Metals in the Bivalves off the Shandong Coast[J].青岛海洋大学学报,29(1):67~74.
    26.刘文祥,李喜俊,郭海燕,1999.新疆博斯腾湖水环境容量研究[J].环境科学研究,12(1):35-38.
    27.卢敬让,赖伟,堵南山,1990.应用底栖动物监测长江口南岸污染的研究[J].青岛海洋大学学报,20(2),32-43.
    28.陆健健,1990.中国湿地研究和保护[M].上海:华东师范大学出版社,259-272.
    29.马藏允,刘海,姚波等,1997.几种大型底栖生物对Cd、zn、Cu积累实验研究[J].中国环境科学,17(2):151-155.
    30.马光,1998.城市规划中的环境容量模型初探[J].环境导报,第六期:33-35.
    31.杞桑,林美心,黎康汉,1982.用大型底栖动物对珠江广州河段进行污染评价[J].环境科学学报,2(3):181~189.
    
    
    32.上海市海岛资源综合调查报告编写组,1996.上海市海岛资源综合调查.上海:上海科学技术出版社.
    33.邵秘华,王正方,1992.长江口海域悬浮颗粒物中铜铅镉的化学形态及分布特征研究[J].海洋与湖沼,23(2):144-149.
    34.沈焕庭等,2001.长江河口物质通量[M].北京:海洋出版社,30-31.
    35.宋树林等,1991.薛家岛湾生物体中有害物质的含量和评价[J].黄渤海海洋,9(3):59-63.
    36.孙平跃,1998.锌、铜、铅、镉、铬在长江河口两种大型底栖动物中的分布和积累.上海:华东师范大学河口海岸国家重点实验室,1998年度硕士学位论文.
    37.汤鸿霄,1993.环境水质学的进展·颗粒物表面络合[J].环境科学进展,1(1):25.
    38.汤奇成,1998.中国河流水文[M].北京:科学出版社,133.
    39.唐亚文,1995.崇明东滩生态系统中重金属元素的分布和迁移.上海:华东师范大学河口海岸国家重点实验室,1995年度硕士学位论文.
    40.王金辉,沈庆红,雒伟民,2001.关于黄浦江水系表层沉积物的现状研究[J].上海环境科学,20(1):11-15.
    41.王永红等,2002.潮滩沉积物重金属累积特征研究进展[J].地球科学进展,2月刊:69-77.
    42.魏崇德等,1991.浙江动物志(甲壳类)[M].杭州:浙江科学技术出版社.
    43.吴晋,张恒君,1998.榆次源涡水源地地下水环境容量评价初探[J].西北水资源与水工程,9(4):57-61.
    44.吴新华,2001.长江口南支河段水质污染特性分析[J].水利水电报,22(15):11-13.
    45.谢世禄,2000.杭州湾北岸(上海段)岸滩保护和开发研究[J].上海水务,1:17-22.
    46.许世远,1997.长江三角洲地区风暴潮沉积研究[M].北京:科学出版社.
    47.许世远,陶晶,陈振搂等,1997.上海潮滩沉积物重金属的动力学累积特征[J].海洋与湖沼,28(5):509-515.
    48.杨欧,刘苍字,2002.长江口北支沉积物粒径趋势及泥沙来源研究[J].水利学报,2:79-84.
    49.杨世伦,时钟,赵庆英,2001.长江口潮沼植物对动力沉积过程的影响[J].海洋学报,23(4):75-80.
    50.杨世伦,姚炎明,贺松林,1999.长江口冲积岛岸滩剖面形态和冲淤规律[J].海洋与湖沼,30(6):764-769.
    51.杨震,许鸥泳,章蕙珠,1987.水环境中重金属的生物可给性研究进展[J].见:陈瑞生等,河流重金属污染研究[M].北京:中国环境科学出版社,317-337.
    52.姚波,纪会敏,孙明霞,郑莉,1996.大连沿海区域几种底栖生物对重金属的耐受力实验[J].水产科学,15(2):16-20.
    53.姚野梅,金有坤,1995.长江口水质污染及生物残毒状况调查[J].水产学报,19(3):280-287.
    54.殷浩文,1995.水环境生态风险评价的原则与应用[J].污染防治技术,8(2):113-115.
    55.于砚民,2000.长江口地区湿地生态环境调查与保护对策[J].首都师范大学学报,21(3):81-87.
    56.袁维佳,俞膺浩,谷瑗,陈虹,2000.螺蛳对重金属元素的富集作用[J].上海师范大学学报(自然科学版),29(3):73-79.
    57.袁兴中,2001.河口潮滩湿地底栖动物群落的生态学研究[J].上海:华东师范大学河口海岸国家重点实验室,2001年度博士学位论文.
    58.袁兴中,陆健健,2002.长江口潮滩湿地大型底栖动物群落的生态学特征[J].长江流域资源与环境,11(5):414-419.
    59.赵瑞生,朱夏娣,颜金良,1996.象山港、三门湾菲律宾蛤仔重金属含量初步分析[J].海洋渔业,18(4):155-156.
    60.郑微云,翁恩琪,1993.环境毒理学概论[M].厦门:厦门大学出版社.
    61.周名江,颜天,1997.中国海洋生态毒理学的研究进展[J].环境科学研究,10(3):1-6.
    
    
    62. Bass, L. E., 1977. Influence of temperature and salinity on oxygen consumption of tissues in the American oyster(Crassostrea virginica)[J]. Comp Biochem Physiol, 58:125~130.
    63. Boyden, C. R., et al., 1975. Mar. Biol., 31:227-234.
    64. Brereton, A., Lord, H., Well, J.S., 1973. Mar. Biol., 9: 96-101.
    65. Brown, V. T., et al., 1976. Transuranium Nudides in the Enviroment [J]. IAEA, Viemma, 107.
    66. Bryan, G. W. & Langston, W. J., 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review[J].Environmental Pollution, 76:89~131.
    67. Bu-Olayan, A. H., & Subrahmanyam, M. N. V., 1997. Accumulation of copper, nickel, lead and zinc by snail, Lunella coronatus and pearl oyster, Pinctada radiate from the Kuwait coast before and after the gulf war oil spil [J]. The Science of the Toal Environment, 197:161-165.
    68. Campanella, L.& Conci. M. E., 2001. Trace metals in seagrass, algae and mollusks from an uncontaminated area in the Mediterranean [J]. Environmental Pollution, 111 : 117~126.
    69. De Gregori, I., Pinochet, H., Gras, N. & Munoz, L., 1996. Variability of cadmium, copper and zinc levels in mollusks and associated sediments from Chile [J]. Environmental Pollution,92(3): 359-368.
    70. De Wolf, R, 1975. Mar. Poll. Bull, 6: 61-63.
    71. Denton, G. R. W., Burdon-Jones, C., 1981. Influence of temperature and salinity on the uptake,distribution and depuration of mercury, cadmium and lead by the black-lip oyster Saccostrea echinata[J]. Mar. Biol, 64:317~326.
    72. Dorn, R, Bull, 1976. Environ. Contam. Toxicol, 15: 714-719.
    73. Favero, N., Cattalini, F., Bertaggia, D.& Albergoni, V., 1996. Metal accumulation in a biological indicator(Ulva rigida)from the lagoon of Vennice(Italy)[J]. Archives of Environmental Contamination and Toxicology, 31: 9~18.
    74. Feng, S. Y., Biol, 1965. Bull., 128: 198-210.
    75. Fowler, S. W., et al., 1977. Rapid removal of plutonium from the oceamic surface layer by zooplankton faecal pellets [J]. Nature, 269: 51-52.
    76. Frazier, J. M., 1976. Chesapeake Sei., 17: 188-197.
    77. Galtsof, R, 1974. Fish. Bull. Fish. Wildl. Serv. U. S., 64: 1-48a.
    78. Gee, J.M., et al., 1992. Soft sediment meiofauna community responses to environmental pollution gradients in the German Bight and at a drilling site off the Dutch coast[J]. Mar.Ecol. Prog. Ser., 91(1-3): 289-302.
    79. Gerald, T., Ankley, 1996. Evaluation of metal/acid-volatile sulfide relationship in the prediction of metal bioaccumulation by benthic macroinvertebrates[J]. Environmental Toxicology and Chemistry, 12: 2138~2146.
    80. Han, B. C., Jeng, W. L., Jeng, M. S., Kao, L. T., et al., 1997. Rcok shell(Thais clavigera)as an indicator of As, Cu and Zn concentration on the Putai coast of the black-foot disease area in Taiwan[J]. Archives of Environmental Contamination and Toxicology. 32:456-461.
    81. Hedges, J. I. and Oades, J. M., 1997. Comparative organic geochemistries of soils in marine sediments [J]. Org.Geochem, 27:319-361.
    82. Ikuta, K., 1986. Metal concentration in byssuses and soft bodies of bivalves [J]. Bull Faculty of Agriculture, Miyazaki University, 33: 265-273.
    83. Jickells, T.D., 1996. The biogeochemistry of nutrients along the tidal zone Science.
    84. Karuppian, M.& Gupta, G., 1996. Impact of point and nonpoint source pollution on pore waters of two Chesapeake Bay Tributaries[J]. Ecotoxicology and Environmental Safety, 35:81~85.
    85. Kerfoot, T. B. and Jacobs, S. A., 1973. Woods Hole Oceanographic Inst. Contribution[J],3174.
    86. Korringa, P, 1952. Quart. Rev. Biol., 27: 266-308, 339-365.
    
    
    87. Kumaqai, H., Sacki, K., 1981. Variation pattern of heavy metal content of short neck clam Tapes Japonica with its growth[J]. Bull Jap Soc Fish, 47(11): 1511-1513.
    88. Mackay, N. J., et al., 1975. Aust. Mar. Freshwat. Res., 26:31-46.
    89. Mcfarren, E. E et al., 1961. Proc. Shellfish Sanitation Workshop. 28-30: 229-234.
    90. Muenzinger, A., et al., 1992. Heavy metal co-tolerance in a chromium tolerant strain of Daphaia-magna [J]. Aquatic Toxicology, 23(3-4): 203-216.
    91. Nedwell, D. B., Jickells, T. D., Trimmer, M. and Sander, R., 1999. Nutrient in estuaries[J].Advances in ecological research, 29: 43-92.
    92. Nriagu, J. O., 1980. Zinc in Environment part Ⅱ [J]. New York, Wiley.
    93. Philips, D. J. H., 1980. Marine Pollut. Bull., 17(1): 10-17.
    94. Phillips, D. J. H., 1976a. Mar. Biol., 38: 59-69.
    95. Phillips, D.J.W.1980. Quanitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution. London [J]. Applied Science Publishers.
    96. Preson, E. M., 1971. J. Exp. Mar. Biol. Ecol., 6: 47-54.
    97. Rainbow, P. S., 1997. Ecophysiology of trace metal uptake in crustaceans. Estuarine[J].Coastal and Shelf Science, 44:169~175.
    98. Schumnacner, M., 1995. Variations of heavy metals in water, sediment and biota from the delta of Ebro River, Spain[J]. Journal of Env Science and Health, Part A, 30(6): 1361-1372.
    99. Shuster, C.N., Pringle, B.H., 1969. Proc. Natl. Shellfish [J]. Assoc., 59: 93-103.
    100. Stone, R. P. & Johnson, S. W., 1997. Survival,growth, and bioaccumulation of heavy metals by juvenile tanner crabs(Chionoecetes bairdi)held on weathered mine ailings [J]. Bulletin of Environmental Contamination and Toxicology, 58: 830~837.
    101. Szefer, P. & Geldon, J., Ali, A. A., 1997. Bawazir, A.& Sad,M. Distribution and association of trace metals in soft tissue and byssus of mollusk Perna perna from the gulf of Aden,Yemen[J]. Environment International, 23(1): 53~61.
    102. Temara, J. H., Wamau, M., Jangoux, M. & Dubois, P., 1997. Factors influencing the concentrations of heavy metals in the asteroid Asterias rubens L. (Echinodennata)[J]. The Science of the Toal Environment, 203:51~63.
    103. Tessler, 1979. Analytical chemistry[M], 7: 844.
    104. Totaro, E., et al., 1992. Efforts of iron pollution of macroinverbrates promoting organic matter transformation in soils of Presila Cosentin Italy [J]. Biol. Fertil. Soils, 14(4): 223-229.
    105. Triebskorn, R., et al., 1991. Invertebrate cells as targets for hazardous substances.Z[J].ANGEW. ZOOL., 78(3): 277-287.
    106. Usero, J., Regalado, E.G.& Gracia, I., 1997. Trace metals in the bivalve mollusks Ruditapes decussates and Ruditapes philippinarum from the Atlantic coast of southern Spain[J].Environmental Pollution, 23(3): 291~298.
    107. Verberg, W. B., 1979. Marine pollution functional respones [J]. Acadmic Press, 183-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700