用户名: 密码: 验证码:
变量施肥的环境效率测算技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要是对精确农业中变量施肥技术的生态效益作了系统地分析和评价。介绍了农业生产中施用化肥的必然性,施用化肥有一定的积极作用,比如可以增加作物产量、提高土壤肥力、发挥良种潜力、补偿耕地不足、增加有机肥量、发展绿色资源;但同时不合理的施肥又会对环境产生消极影响,比如过量施肥不仅浪费资源、增加农业生产成本,而且未被作物吸收利用的氮素向大气挥发,还会增加“温室气体”,导致温度升高等等。本文分析了施用化肥对环境造成的污染情况,并针对该问题提出变量施肥环境效率的测算方法。针对玉米变量施肥,以榆树市弓棚子镇2002年和2003年两年的试验田数据为基本依据,基于生命周期理论对玉米变量施肥的环境负荷做了系统分析,并测算了玉米变量施肥的环境效率,得出了玉米变量施肥的环境效率值。结果显示,2003年比2002年环境效率有所提高。利用径向DEA模型及其非径向DEA模型评价了各变量施肥网格的有效性,两种模型得出了相同的非有效变量施肥网格,只是非有效的程度不一样而已。最后基于Malmquist指数测算了变量施肥的环境效率的动态变化情况,得出2003年变量施肥的环境有效性有所提高,进一步从理论上定量地论证了变量施肥比传统施肥节约肥料和物料,减少环境污染,增加产量。同时,变量施肥技术的应用也日臻成熟,效率不断增长,这将对农业生产和社会生活带来很大的经济效益和社会效益。
In the work, the ecology benefit of the Variable-rate Fertilization (VRF) in precise agriculture were mainly analyzed and evaluated. Systematically analysis was made. And the work introduced the inevitability of the chemical fertilization in agricultural production. Fertilization has some positive function, while unreasonable fertilization will take some negative effects to the environment.
     We analyzed the situation of the environmental pollution brought by the fertilizer, and brought forward the measuring technology of the VRF to this question. On corn VRF, took the field in Gongpengzi town, Yushu city as the trial field. Using the data of 2002 and 2003, we analyzed the environmental load of the corn VRF by the numbers based on the LCA theory, and measured the environmental efficiency of the crop VRF, at last drew the conclusion of the environmental efficiency value. Using radial DEA and non-radial DEA, we evaluated the validity of the Decision Making Units. Finally the work measured the dynamic change of the environmental efficiency of the VRF based on the Malmquist index, and demonstrated that VRF can save the fertilizer and materiel, reduce the environmental pollution and increase the crop yield than traditional fertilization in theory. At the same time, the application of VRF becomes more and more maturely and the efficiency continues increasing, which will bring much economic benefit and social benefit.
     The main studies and conclusions are as follows:
     (1)Analysis of the situation of the environmental pollution brought by the fertilizer.
     Fertilization has some positive function, such as increasing the crop yield, improving the soil fertility, exerting well-bred potential, compensating infield shortage, adding organic fertility quantity, growing green resource; while unreasonable fertilization will take some negative effect to the environment, for example, excessive fertilization not only will waste the resource, increase the cost of the agriculture, but also the nitrogen which is not absorbed by the crop will volatilize to the air, adding the greenhouse gases, resulting the temperature increasing. And it can also prick up excessive nutrition of the water by eluviations. It decreases the soil absorbency of other elements so that it will destroy the internal balance of the soil polluting the environment, and so on.
     (2)Life Cycle Assessment (LCA)of VRF of corn. The work used LCA to VRF of corn. LCA has been widely used in industry production but it is seldom used in agricultural system. We introduced the LCA system, and analyzed the LCA frame and the phase plot of the corn LCA. At last it confirmed the environmental load index. In this trial, the input factors are mainly diesel oil, fertilizer, and pesticide. The output factors are the corn yield and the environmental load index such as NO3—、NOX、SOX、CO2、N2O.
     ( 3 ) Measurement of the environmental efficiency of VRF. Environmental efficiency (EE) shows the extent of the whole development and the zoology rule. The development is of the economic social and cultural connotation which is achieved by the people. EE is the entia of the economic benefit, social benefit and the environmental benefit. EE embodies sustainable development. So the sustainable development can not be independent of EE. Without EE, there is no sustainable development. The value can be calculated by the economic value of the product and service dividing environmental load, i.e. the economic value of every environmental load unit.
     The functional unit of the trial is 1hm2.The ELU is calculated based on LCA. The economic value of the corn of one hm2 is the price multiplying the yield (the price is 0.85RMB/kg). According to the formula it got the environmental efficiency of VRF.
     From the result, we can see that the whole yield of 2003 is a bit less than that of 2002. But the environmental load of 2003 is much less than that of 2002. So the EE of 2003 is 40.04RMB/ELU, while the EE of 2002 is 39.33RMB/ELU. It shows that the technical efficiency has been improved, taking less pollution gradually, which is the inevitable effect.
     In addition, we ignored some input factors in this LCA which certainly will take much environmental load. Consequently the environmental load value in Table5-1 is smaller than the actual data, and the EE calculated based on the data is greater. The data should be more accurate with the full data collection.
     (4)The Environment efficiency of VRF is assessed based on the DEA model. The environmental pollution indexes are looked on as input factors, so it can calculate the environmental validity of VRF using the evolutive DEA model. The BCC model is the technical efficiency assessment model. By analysis, 59.4% of the grids which applied VRF were technical efficient. While only 42.8% of the grids which applied traditional fertilization were BCC effective.
     This result indicated that VRF is more efficient than traditional fertilization from the view of technology, the proportion of NPK is more reasonable, and the waste and the pollution are all much less. The trial validated the advantage of VRF.
     The CCR model is carries on the synthesis assessment to the technical validity and the scale validity. The CCR efficient grids are less than that of the BCC to both VRF and traditional fertilization. Because the technical and scale validity contain technical validity. The ratio of the technical and scale validity of VRF is 12.5%, while the ratio of traditional fertilization is 7.14%. By comparison it showed that VRF was more pertinent and made the NPK proportion more reasonable thus the crop could absorb the fertilizer more amply, take less environmental pollution and get ideal yield due to reasonable fertilization decision based on the different grid soil nutrient distribution situation.
     (5)The Environment efficiency of VRF is assessed using the non-radial DEA. The paper got the technical efficiency value of the DMUs based on the input and output data of 2002 with the Farrell input DEA model and the CCF non-radial DEA model separately. the non-radial DEA model uses the projection vector is: g x= [15.61 0.71 4.48 8.09 3.07 10.85 7.11]T, g y= [880.49 ]T.
     The DEA efficiency value was equal to 1 or the non- radial DEA efficiency value is equal to 0, both indicate the decision-making unit is effective. Sees by the result, DMU10, DMU16, DMU18, DMU22,DMU23, DMU25, DMU26 and DMU32 DEA efficiency value are all equal to 1, the non- radial DEA efficiency value are all equal to 0.
     This result indicated these 8 decision-making units were effective, simultaneously it explained the radial direction projection and the non- radial directional projection which along ( g x, g y) could get the same effective and non- effective DMUs, just the degree were different.
     For instance, under the Farrell input distance function, the DMU5 is the third one by the degree of the non- efficiency, while it is the second by the technical efficiency along ( g x, g y) projection. Other DMUs have the analogue. The two kinds of sort orders are incompletely consistent. The reason is that the degree of approaching to the production frontier along the radial direction projection and non- radial direction projection of the same DMU is different.
     Simultaneously the non- radial direction model considers both input and output factors, which also possibly is the reason that some decision-making units which along non-radial direction has lower efficiency than that of the radial direction.
     (6)The dynamic changes of the Environment efficiency of VRF was assessed based on the Malmquist index. The result showed that, 75% of the VRF DMUs raised their production boundary and made technical progress. 34.37% of the DMUs approached the production frontier much and the relative technical efficiency had been enhanced. Thus it can be seen that VRF technology has made progress and the technical application has made the certain result, and gotten certain experience. It may provide certain reference and the instruction to the next step of experiment.
     VRF technology becomes more and more mature during the application process. And the deficiency has been consummated day after day. It improved the technical efficiency of the VRF, saved the fertilizer and the materiel input, reduced the environmental pollution, enhanced the output and optimized the resource collocate. To the producer it can save the cost and increase the income; to the society it can protect the people's health and enhance the agricultural product quality.
     The efficiency of 2003 compared with 2002 has grown, which confirmed the former conclusion, showing that the VRF can save the fertilizer and the materiel input, reduce the environmental pollution, enhance the output. At the same time, VRF technology becomes more and more mature and the efficiency is increasing. All can take much economic and social efficiency to both the agricultural production and the social life.
引文
1 汪懋华.“精细农业”的实践与农业科技创新.中国软科学,1999,(4):21-25
    2 汪懋华.“精细农业”发展与工程技术创新. 农业工程学报,1999,15(1):1-8
    3 彭望禄, Pierre Robert, 程惠贤.农业信息技术与精确农业的发展. 农业工程学报, 2001, 17(2):9-11
    4 J.M. McKinion, J.N. Jenkins, D. Akins, et al. Analysis of aprecision agriculture approach to cotton production. Computers and Electronics in Agriculture, 2001, 32:213-228
    5 喻歌农,周泳.试论精确农业及我国行动对策.自然资源学报,1998, 14(1):69-74
    6 吴才聪,杨印生,马成林.我国精确农业技术产业化问题研究. 中国软科学,2002,(1):37-39
    7 徐可英. 国内外精确农业发展现状与对策.中国农业资源与区划,2000, 21(2):53-56
    8 http://post.baidu.com/
    9 Michael Rasher. The use of GPS and mobile mapping for decision-based precision agriculture. Workshop on the Use of GNSS Jointly Organized by/UN/USA/Malaysia hosted by Department of Surveying and Mapping of Malaysia, Kuala Lumpur, August 20-24, 2001
    10 John V. Stanfford. Implementing precision agriculture in the 21st century. J. agric. Engng Res, 2000, 76:267-275
    11 李征航.全球定位系统(GPS)技术的最新进展 第一讲 多功能卫星导航定位服务系统. 测绘信息与工程, 2002, 27(1):19-22
    12 高建新. 欧洲“伽利略”卫星导航计划.测绘信息与工程.2001,(1)
    13 刘焕杰.欧洲伽利略卫星导航计划的应用及效益分析.中国航天, 2000, (5):21-22
    14 陈俊, 宫鹏著.实用地理信息系统. 北京: 科学出版社, 1999
    15 高振松,过静珺,李冰皓.利用地理信息系统控件开发车辆导航和监控系统. 北京测绘,2001,(2):3-5
    16 姚娜, GIS、MapInfo 与 MapBasic 学习教程.北京: 北京大学出版社, 2000
    17 武汉中地信息工程有限公司. http://www.mapgis.com.cn/#
    18 武汉吉奥信息工程技术有限公司. http://www.geostar.com.cn/
    19 北京朝夕科技有限责任公司. http://www.mapengine.com/
    20 中科院地理信息产业发展中心. http://www.gischina.com/
    21 闫彩萍,王锡田.专家系统综述.山西电力技术,1995,(6):61-64(18)
    22 邝扑生等. 精确农业基础.北京:中国农业大学出版社,1999
    23 孙世民,丁健民,李永发.专家系统(ES)及其在农业上的应用.山东农业大学学报,1998,29(2):271-276
    24 刘喜平,熊范纶,宋维.山西省应用农业专家系统的对策研究.科技情报开发与经济,1999,(5):3-4(7)
    25 程言清,黄祖辉.农产品流通现状、问题及发展趋势.价格理论与实践, 2002,(6):1-3
    26 Todd Peterson, et al. Remote sensing and its link to precision farming: today’s reality and tomorrow’s potential. http://www.pioneer.com/usa/technology/remotesum.htm
    27 http://web.zgny.com.cn/stencil/
    28 白由路等.基于GIS的土壤养分分区管理模型研究.中国农业科学, 2001, 34(1):46-50
    29 H.W.G. Booltink, B.J. van Alphen, W.D. Batchelor, et al. Tools for optimizing management of spatially-variable fields Agricultural Systems, 2001, 70:445-476
    30 Iver Thysen. Agriculture in the information society. J. Agric. Engng Res, 2000, 76:297-303
    31 Dan S. Long, Gregg R. Carlson, Gerald A. Nielsen. Increasing profitability with variable rate fertilization. http://www.mandakzerotill.org/book18/fertilization.html
    32 B. M. Whelan, A. B. Mcbratney. The “Null Hypothesis” of precision agriculture management. Precision Agriculture, 2000, (2):265-279
    33 Brian Kozar, Rick Lawrence, Dan S. Long. Soil phosphorus and potassium mapping using a spatial correlation model incorporating terrain slope gradient. Precision Agriculture, 2002, (3):407-417
    34 王荣本, 纪寿文, 初秀民等. 基于机器视觉的玉米施肥智能机器系统设计概述. 农业工程学报, 2001, 17(2):151-153
    35 孙乃民. 吉林蓝皮书 1998—1999 吉林省农村经济形势分析与预测. 长春: 吉林人民出版社, 1998
    36 侯顺艳,王秀, 薛绪掌,屈平.土壤精准管理变量施肥地理信息系统的应用研究.河北大学学报(自然科学版) 2003,23(2)
    37 刘刚. 精细农业的技术组成、决策分析及在我国的应用实践. 农业现代化研究, 2000, 21(1):57-60
    38 Bruce A. Babcock and Gregory R. Pautsch,Moving from Uniform to Variable Fertilizer Rates on Iowa Corn:Effects on Rates and Returns ,Journal of Agricultural and Resourses Economics,1998:(2)385-400
    39 杨印生.中国式精确农业发展问题研究.长春:吉林科学技术出版社2003.12
    40 张书慧等.变量施肥对玉米产量及土壤养分影响的试验,农业工程学报. 2006,22(8):64-67
    41 王熙等.基于 DGPS 定位的大豆变量施肥播种应用试验.黑龙江八一农垦大学学报, 2004,16(4):32-18
    42 符建荣.土壤中铅的积累及污染的农业防治.农业环境保护,1993, 12(5):217-222
    43 王亚丽,林位夫,陈勇.氮肥使用中的污染问题及其解决途径.热带农业科学,2003, 23(1):67-73
    44 Yagi K,Minami K.Effect of organic matter application on methane emission from Japanese paddy fields. Soil Science and Plant Nutrition,1990,36:599-610
    45 Wadmam W P. N itate leaching losses from organic manure—the Dutch experience. Aspects of Applied Biology, 1992(3):117-143
    46 Wang Zhang Ping. Methance production from anaerobic soil amended with rice straw and nitrogen fertilizer. Fertilizer Research, 1992(3):115-120
    47 奚振邦. 化肥与农业—简析化肥对现代农业的作用,磷肥与复肥,20003,18(2):5-10
    48 李庆逵,朱兆良,于天仁.中国农业可持续发展中的肥料问题..南昌:江西科学技术出版社,1998
    49 http://www.sxnw.gov.cn/nyxx/kjxn/ym16.htm
    50 林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化. 北京:中国农业科技出版社,1996
    51 沈善敏. 中国土壤肥力. 北京:中国农业出版社,1998
    52 鲁如坤. 土壤—植物营养学(原理和施肥).北京:化学工业出版社,1998
    53 黄国勤,王兴祥.施用化肥对农业生态环境的负面影响及对策.生态环境 2004,13(4):656-660
    54 刘爱民(中国科学院自然资源综合考察委员会)等.现代精准农业及我国精准农业的发展方向, 中国农业大学学报.2000,5(2).15-20
    55 曹志洪.施肥与大气环境质量[J].土壤,2003,35(4):265-270
    56 Bouwman AF. Soils and the Green house effect. John Wiley and Sons, UK, 1990, 205-209
    57 Houghton J. Global Warning, the complete briefing. 2nded. Cambridge University Press, Cambridge, UK, 1997
    58 上官行健, 王明星. 稻田甲烷排放影响因子的研究进展[J]. 中国农业气象, 1993, 14(4): 48-53
    59 谢小立, 上官行健.施肥对稻田甲烷排放的影响[J]. 农村生态环境,1995, 11(1): 10-14
    60 曹金留, 徐华. 水稻田烤田期间甲烷排放规律研究[J]. 农村生态环境, 1998, 14(4): 1-4
    61 陈宗良, 禹仲举.不同农业管理方式对北京地区稻田甲烷排放的影响研究[J]. 环境科学研究, 1992, 5(4): 1-7
    62 王文兴, 卢筱凤, 庞燕波, 等. 中国氨的排放强度地理分布[J]. 环境科学学报, 1997, 17(1): 2-7
    63 曹志洪. 碳铵长效肥的研制[J]. 土壤学报, 1980, 17(2): 143-154
    64 DE DATTA S K. Nitrogen transformation in wetland rice ecosystems [J]. Fertilizer Research, 1995, 42: 193-203
    65 曹志洪. 石灰性土壤上氮肥施用方法对春小麦利用率的影响[J]. 土壤, 1984, 16(3): 134-137
    66 林葆. 化肥与无公害农业.北京, 中国农业出版社. 2004
    67 De Datta. SK Nitrogen transformation in wetland rice ecosystems. Fertilizer Research.1995(42):193-203
    68 Veldkamp E and Keller M. Fertilizer induced nitric oxids emission from Agricultural soils. Nutrient Cycling inAgro-ecosystems, 1997, 46: 69-77
    69 奚振邦.化学肥料学.北京:科学出版社,1994. 364-365
    70 Baunwan A F. In Soil and Green House Effect. John Willy and Sons, 1990. 11-28
    71 朱建华,李俊良等.几种复合肥施用对蔬菜保护地土壤环境质量的影响. 农业环境保护.2002 (21):5-8
    72 马毅杰,植物营养与肥料学会第一届学术讨论会,1994 年
    73 崔玉亭.化肥与生态环境保护.北京:化学工业出版社,2000:25-26
    74 孙貂荣.北京降雨和土壤下渗水中氮素的研究.土壤肥料,1993 (2):8-10
    75 郑良永.农业施肥与生态环境. 热带农业科学. 2004,24(5):79-84
    76 马朝红, 方建坤. 蔬菜土壤养分积累状况与环境分险[J]. 长江蔬菜,2000, 12: 43-45
    77 吕耀. 苏南太湖流域农业非点源污染与农业可持续发展战略[J].环境科学动态, 1998, 2: 1-4
    78 张兴昌, 邵明安. 水蚀条件下不同土壤氮素和有机质流失规律[J]. 应用生态学报, 2000, 11(1): 231-234
    79 李庆逵.中国农业可持续发展中的肥料问题. 南昌:江西科学技术出版 社,1998.11-20
    80 王起超,麻壮伟.某些市售化肥的重金属含量水平及环境风险.农村生态环境,2004,20(2):62-64
    81 武志杰.化学肥料与生物圈.农业环境保护,1994,13 (6):279-282
    82 Rstone L. D.长期施用氮肥对土壤理化性质的影响.王学锋译.土壤学进展,1992, 20(5):56
    83 王统正.蔬菜施肥技术.北京:农业出版社,1990.76-77
    84 古巧珍, 杨学云, 孙本华, 等.旱地嵝土长期定位施肥土壤剖面硝态氮分布与累积研究[J]. 干旱地区农业研究, 2003, 21(4): 48-52
    85 李晓欣, 胡春胜, 程一松. 不同施肥处理对作物产量及土壤中硝态氮累积的影响[J]. 干旱地区农业研究, 2003, 21(3): 38-42
    86 夏立忠, 杨林章. 大棚番茄优化施肥与土壤养分和盐分的变化特征[J]. 中国蔬菜, 2003, 2: 4-7
    87 崔正忠, 陈友, 单德新. 蔬菜保护地土壤养分变化趋势[J]. 北方园艺, 2001, 2: 10-12
    88 刘养清.利用翻醛废渣生产氮、磷、钾复合优质肥料的研究山西师大学报,1995(9)2:41-45
    89 孙铁珩, 周启星, 李培军. 污染生态学[M]. 北京: 科学出版社,2001
    90 任祖淦, 蔡元呈. 氮肥施用与蔬菜硝酸盐积累的相关研究[J]. 生态学报, 1998, 18(5): 523-528
    91 孙权. 宁南旱地冬小麦丰产栽培综合农艺措施优化方案的研究. 干旱地区农业研究,1997, 15 (2): 26-30
    92 胡承孝,邓波儿,刘国仇.施用氮肥对小白菜、番茄中硝酸盐积累的影响[J].华中农业大学学报, 1992(3):239-243
    93 董美对,何勇,赵云飞.精确农业—21 世纪的农业工程技术[J].浙江大学学报(农业与生命科学版),2000,26(4):433-436
    94 C.Yang.A variable rate application forcontrolling rates of two liquid fertilizers[J]. Applied Engineering in Agriculture, 2001, 17(3):409-417
    95 吕英华,秦双月.测土与施肥.北京:中国农业出版社,2002
    96 Trimble Navigation Limited. http://www.trimble.com/
    97 Trimble Navigation Limited. AgGPS? 124 / 132 Operation Manual, Revision: A. Trimble Navigation Limited, February 1999, Part Number: 38747-00
    98 Trimble Navigation Limited. www.trimble.com/trimmark3.html.
    99 Trimble Navigation Limited. AgGPS? 70 RDL Operation Manual, Revision: Preliminary. Trimble Navigation Limited, April 2000, Part Number:39602-00
    100 SAS Institute Inc.. http://www.sas.com/
    101 SPSS Inc.. http://www.spss.com/
    102 Ma Chenglin, Piao Xianshu. Discussion on developing precision farming in Jilin province of China by steps. ICETS 2000
    103 张书慧, 马成林, 吴才聪等. 一种精确农业变量施肥技术及其实施. 农业工程学报, 2003, 19(1):129-131
    104 吴才聪.精确农业变量施肥决策研究与技术经济分析.吉林大学博士学位论文,长春:吉林大学,2003.4
    105 Jerry Stoller. Plants must have a complete meal: dealing with NPK,2001
    106 孙宗修, 唐传道. 测产中折算稻谷标准产量的正确方法. 杂交水稻, 2001, 16(5):36-37
    107 刘景德, 王占怀. 玉米种子果穗水分测定与成品折算方法. 新疆农垦科技, 1996, 5:16-17
    108 王生. 玉米籽粒含水量对计产的影响. 国外农学-杂粮作物, 1995,5: 31-32
    109 霍宝锋,刘伯莹.可持续发展与环境材料.天津大学学报,2001 34(1):22-24
    110 International Standard Organization. ISO14040-1997 Environmental Management Life Cycle Assessment Principles and Framework.
    111 Society of Environmental Toxicology and Chemistry(SETAC). Guide lines for Life-Cycle Assessment: A Code of Practice. Brussels: SETAC Europe, 1993.
    112 FaraJ,DennisonR, JoneB.ATechnical Framework for Life-Cycle Assessment.Pensacola: SETAC, 1993
    113 席德立,彭小燕.LCA 清单分析数据的获得.环境科学,1997,18:84-87
    114 陆惠琴,陈剑锋,万君康. 面向产品系统的生命周期评价环境管理工具,武汉汽车工业大学学报,1999,21(5)
    115 杨印生.盛国辉.我国开展农业 LCA 研究的对策建议.中国软科学.2003,5
    116 Yinsheng YANG, Xiangfen CHEN. Measurement on Environmental Efficiency of Variable Rate Fertilization of Corn,Biosystem Studies(J),2005(8),88-98
    117 朱兆良.关于提高氮肥利用率问题.国际肥料与农业发展学术论集.1999
    118 朱兆良,文启孝.中国土壤氮素[M],南京:江苏科技出版社,1990
    119 朱兆良. 合理使用化肥充分利用有机肥发展环境友好的施肥体系. 中国科学院院刊,2003,(2):89-93
    120 张国梁,张申.农田氮素淋失研究进展,土壤 1998,30(6),291-297
    121 Adams J. A. and Pattison J. M., Nitrate leaching losses under a legume-baced crop rotation in Central Canterbury, NewZealand.N.Z.J. Agric.Res., 1985, 28: 101-107
    122 Cuttle S.P., Hallard M., Daniel G. and Scurlock R.V., Nitrate leaching Sci.,1992,119:335-343
    123 王家玉,王胜佳,陈义,郑纪慈,李超英,计小江.稻田土壤中氮素淋失的环境效应的渗漏机理研究.土壤学报,1996,33(1)
    124 Jenkinson D S. An introduction to the global nitrogen cycle. Soil Use &Management, 1990,6:56-61
    125 徐谦.我国化肥和农药非点源污染状况总数,农村生态环境,1996,12(2):39-43
    126 杨印生,任辉.面向可持续发展的农业 LCA 体系,2004 年中韩农业机械 化 21 世纪发展论坛论文集, 2004,8:10-19
    127 王庆仁,李继云.大气质量提高与农业中的硫肥需求,应用生态学报,1999,10(4):497-500
    128 刘江龙.材料的环境影响评价[M] .北京:科技出版社,2002
    129 杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002
    130 吕力.论环境公平的经济学内涵及其与环境效率的关系,经济理论问题(生产力研究),2004,11:17-19
    131 雷明.人与自然和谐发展催生绿色 GDP.半月谈.2004,(02):25
    132 文同爱,李寅铨.环境公平、环境效率及其与可持续发展的关系[J] .中国人口、资源与环境,2003,13(4):13-17
    133 蔡守秋.环境资源法学教程 [M].武汉:武汉大学出版社, 2000,5(4)
    134 杨印生,李树根, 郝海. 数据包络分析(DEA)的研究进展. 吉林工业大学学报, 1994, 24(4):111-118.
    135 隽志才等. DEA 方法与运输企业技术规模的有效性. 公路交通科技, 1994, 11(4):44-50.
    136 穆东, 巩传景, 申维嘉等. 外沿生产函数的 DEA 估计新方法. 山东矿业学院学报, 1995, 14(2):163-166.
    137 杨印生. 经济系统定量分析方法[M].吉林科技出版社,2001
    138 盛昭瀚, 朱乔, 吴广谋. DEA 理论、方法与应用[M ]. 北京: 科学技术出版社, 1996.
    139 王波等.考虑环境因素的企业 DEA 有效性分析.控制与决策.2002,17(1):24-28
    140 宋新山,汪永辉, 路献品.数据包络分析模型在清洁生产中的应用,四川环境,2003,22(5):58-62
    141 李发勇,李光金,张建辉.非径向 DEA 方法在技术效率测算中的应用.河南科技大学学报( 自然科学版). 2005,26(3):93-96
    142 Luenberger D G.Benefit Functions and Duality. Journal of Mathematical Economics[J], 1992 ,21 :461-481.
    143 Chambers R G, Chung Y, Fare R.Benefit and Distance Functions [J]. Journal of Economic Theory, 1996, 70:407-419.
    144 Hirofumi Fukuyama. Scale Characterizations in a DEA Directional Technology Distance Function Framework [J]. European Journal of Operational Research ,2003 ,144 :108-127.
    145 赵伟,马瑞永,何元庆.全要素生产率变动的分解—基于 Malmquist 生产力指数的实证分析.统计研究, 2005(7),37-39
    146 张健华.我国商业银行效率研究的 DEA 方法及 1997-2001 年效率的实证分析,金融研究,2003(3):11-25
    147 刘刚. 精细农业的技术组成、决策分析及在我国的应用实践. 农业现代化研究, 2000, 21(1):57-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700