用户名: 密码: 验证码:
食物链氮素养分流动评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N素是动植物的必需元素之一,它通过不同载体的形式沿着食物链的方向流动,其管理好坏直接关系到“人口-资源-环境-粮食安全”等重大问题。长期高投入高产出的农业生产方式,使食物链养分效率不高,环境问题突出。因此,分析食物链养分流动的特征和规律,评价其合理性,是非常必要的。本文采用物质流分析方法,利用食物链N素养分流动模型(CNFC),系统分析了黄淮海不同地区(北京市、天津市、河北省、河南省、山东省)食物链N素养分流动状况。在此基础上,构建了食物链N素养分流动评价指标体系;结合模型计算结果以及层次分析方法(AHP),对黄淮海不同地区食物链N素养分流动的合理性进行定量化评价。主要结果如下:
     1.黄淮海地区食物链N素流量较大,养分流动呈塔型分布,其中以农田生产系统N素养分流量最高,家庭消费系统最少,畜牧生产系统居中。农田生产系统养分盈余数量较高,1988年~2007年间盈余最高时达到320.4万t。化肥N是农田主要的N养分投入形式,2007年该地区化肥N投入达到752.0万t,而籽粒N产量仅为449.1万t,农田N环境排放为426.3万t;黄淮海地区饲料N的自给率呈现逐年下降的趋势,外地调入饲料N逐年增加;而本地饲料粮N逐渐成为本地饲料主要来源;家庭消费系统动植物食品N在完全满足自给的同时,有大量的食品N调出,其中动物性食品N外地调出数量呈现逐年增加的趋势,而植物性食品N调出逐年减少。黄淮海地区食物链N素养分流动系统属于高投入、低产出、环境排放较高的系统,并且属于饲料N调入地区,动植物食品N属于调出区域。
     2.黄淮海三省两市地区食物链N素养分流动合理性指数(S)历年表现为下降的趋势,S都在0.70以下,并因地区而异。2007年与1988年相比,北京市、天津市、河北省、河南省以及山东省合理性指数分别下降了0.34、0.37、0.15、0.27、0.38。由于经济发展水平和农业生产情况不同,各地区亚系统养分流动合理性随年代变化存在差异,其中农田生产系统(S1)、家庭消费系统(S3)以及系统之间(S4)合理性指数都在下降,而畜牧生产系统(S2)合理性指数在增加。
     3.城镇化水平、经济发展水平以及人均收入水平等都与食物链N素养分流动合理性指数(S)存在着极显著的负相关关系,三种因素与食物链氮素养分流动合理性是不相适应的。
     4.各地区食物链N素养分流动合理性(S)对养分利用、环境排放、废弃物循环等指标变化反应的敏感性不同。总体来看,家庭消费系统效率指标、环境指标以及废弃物循环利用指标的变化对S的影响最高,其次是畜牧生产系统,农田生产系统最小;不同指标比较,废弃物N养分循环利用指标变化对S的影响最大,其次是环境指标,效率指标对S的影响最小;同时改变效率和环境指标,家庭消费系统S受影响最大,而农田生产系统和畜牧生产系统较小。应针对不同的系统以及不同的指标的特点,构建提高食物链N素养分合理性的综合措施。
Nitrogen, one of the important components of protein, is also an important nutrient for plant growing and animals. Nitrogen management quality is directly related to the "population-resources-environment-food security" and other major issues. Long term’s high nitrogen input in agriculture production system cause lower nutrient efficiency and serious environment problem. Therefore, it is necessary to analyses nitrogen flow in food chain system, evaluate the reasonableness of nitrogen flow. Based on method of Material Flow Analysis (MFA), we adopted nitrogen flow model in the food chain in China (CNFC) to analyse the status of nitrogen flow in different regions (Beijing Municipality, Tianjin Municipality, Hebei Province, Henan Province, and Shandong Province) of the Huang–Huai–Hai. Considering the relationship of resources, environment, efficiency, and other factors, The indicators of nitrogen flow in food chain were selected to built evaluation framework of nitrogen flow in food chain system; Combining the results of model calculations as well as the Analytic Hierarchy Process (AHP), the quantitative evaluation of nitrogen flow in food chain was obtained in different regions of the Huang– Huai– Hai. The results showed that:
     1. There was a great nitrogen flux in Huang–Huai–Hai region and nitrogen flow was tower-type distribution in food chain system, which was the highest nitrogen flux in agriculture production system, household consumption system least, and livestock production system in the middle. And nitrogen surplus in agriculture production system was very high, and the highest surplus achieves 32.04 M t. by the year of 2003. Synthesis nitrogen was the major input in agriculture production system and synthesis nitrogen input reached 75.19 M t in 2007, but grain nitrogen yield was 44.91 M t only. However, nitrogen emission into the environment was significantly higher than that of farmland surplus. Close to grain N yield, nitrogen emission into the environment was totally 42.63 M t. And nitrogen flow in livestock production system, the self-sufficiency rate of feed nitrogen showed a downward trend year by year, but feed nitrogen import increases yearly. Local feed grain nitrogen became main feed nitrogen input now. And in household consumption system, fauna and flora food nitrogen could meet self-sufficiency completely; and at the same time, there was a lot of food nitrogen exported, in which fauna food nitrogen showed an increasing trend year by year, but flora food nitrogen had a decreasing trend. And Fauna and flora food nitrogen exported 6.41, 2.82 M t in Huang–Huai–Hai Region in 2007. So, nitrogen flow in food chain in Huang-Huai-Hai region was high input, low production output, high environment emission system, and net imports in feed nitrogen and net export in fauna and flora food nitrogen.
     2. Rationality indices (S) in five regions of Huang–Huai–Hai had shown decline in varying degrees over the years, of which rationality indices were all less than 0.7 and different regions had different changes. Compared with 1988, rationality indices decreased by 0.34, 0.37, 0.15, 0.27 and 0.38 respectively in 2007. And because of their level of economic development and different agricultural production levels, nitrogen flow rationality indices in different sub-systems in different regions had difference with the year change, of which rationality indices in agricultural production systems (S1), household consumption systems (S3) and system betweens (S4) were all on the decline over the time, but livestock production systems (S2) was all reasonable increasing in different regions.
     3. Analyzing external factors of impact of rationality indices of N flow in food chain can be seen: there were very significant negative correlations between rationality indices of nitrogen flow in food chain (S) and level of urbanization, economic development and per capita income respectively.
     4. Analysis of main nitrogen flow indicators change in different systems to the impact of rationality index sensitivity in food chain can be seen: different systems in different regions had different impact of S. From a whole, it had been found that efficiency indicator, environmental indicator and waste recycling indicator of household consumption system had the highest effect on the S, followed by livestock production systems, and agricultural production system was the smallest. Compared different indicators, it had been found that waste recycling indicators changes in different sub-systems had high effects on S, environmental indicator the second and efficiency indicators the third. If enhancing efficiency indicator 5 percentages and environmental indicator 5 percentages in sub-systems at the same time (indicated by△S), it could been found that household consumption system had the highest effect on S. Instead of efficiency indicator and environmental indicator in agricultural production system and livestock production system, which all had less effects on S. Therefore, focus on different indicators of different systems, taking different measures to optimize systems or indicators sensitive to S was an important way to enhance rationality indices of nitrogen flow in food chain system.
引文
[1]张福锁.管好食物链养分,保障农业发展[N].中华合作时报,2008-02-21(2297).
    [2]UNFPA. The State of World Population 1999: 6 Billion: A Time for Choices[M]. New York, 1999:41-42.
    [3]中国将迎来三大人口高峰[N].人民日报海外版, 2006-10-11(04).
    [4]Brown. L. Who Will Feed China? Wakeup Call a Small Planet. 1st ed. New York: W. W. Norton & Co., c 1995.
    [5]黄季焜.社会发展、城市化和食物消费[J].中国社会科学,1999,4:115.
    [6]朱希刚.中国粮食供需平衡分析[J].社会科学辑刊,2005(1):91.
    [7]李立军,诸庆全,于心岭,等.2020年中国全面小康社会食物需求研究[J].中国农业科技导报.2004, 6(3):57-62.
    [8]中华人民共和国国家统计局.中国统计年鉴·2008[M].北京:中国统计出版社,2008.
    [9]张福锁,马文奇,江荣风,等.中国养分资源综合管理研究的意义及重点[M].养分资源综合管理.北京:中国农业大学出版社,2003,1-3.
    [10]马文奇,张福锁,张卫锋.关乎中国资源、环境、粮食安全和可持续发展的化肥产业[J].资源科学.2005, 27(3):33-40.
    [11]FAOSTAT [DB/OL].http://faostat.fao.org/site/575/DesktopDefault.aspx?PageID=575#ancor.
    [12]马文奇,张福锁,陈新平.中国养分资源综合管理研究的意义与重点[J].科技导报.2006(10):64-67.
    [13]向平安,周燕,黄璜,等.氮肥面源污染控制的绿税激励措施探讨-以洞庭湖区为例[J].中国农业科学.2007, (2):330-337.
    [14]刘振英,李亚威,李俊峰,等.乌梁素海流域农田面源污染研究[J].农业环境科学学报.2007,(1):41-44.
    [15]朱俊,董辉,王寿兵,等.长江三峡库区干流水体主要污染负荷来源及贡献[J].水科学进展, 2006(5): 709-713.
    [16]张明峰.部分国家畜牧污染防治法规简介[J].世界农业.1996(7):45-46.
    [17]Oenema O. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture[J] A nim. Sci. 2004, 82 (E. Supp l.): E196- E206.
    [18]王尔大.美国畜牧业环境污染控制政策概述[J].世界环境.1998(3):17-18.
    [19]国家环境保护总局自然生态保护司主编.全国规模化畜禽养殖业污染情况调查技术报告,全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社,2002.
    [20]温萌芽,赖格英,刘胤文.赣江流域畜禽养殖营养物质潜在排放量的估算与分析[J].水资源与水工程学报.2007(4):48-52.
    [21]孙江,黄生斌,刘晓霞.北京市水源保护区农业非点源污染基本特征与控制对策[J].农业环境与发展.2006(5):61-63.
    [22]陆杰,魏晓平,张怀志.面源污染中畜禽有机肥磷的流失形态及其环境效应[J].中国人口.资源与环境.2006(5):130-134.
    [23]刘晓利.中国“农田—畜牧—营养—环境”体系氮素养分循环与平衡[D].河北农业大学:2005.
    [24]魏静.城镇化对中国食物消费系统氮素流动和农田氮素循环的影响[D].河北农业大学:2008.
    [25]马林.中国营养体系养分流动循环(CNFC)模型研究[D].河北农业大学:2006.
    [26]Fischer Kowalski M. Society's Metabolism, The Intellectual History of Material Flow Analysis, Part I, 1860-1970[J].Journal of Industrial Ecology, 1999, 2(1):61-78.
    [27]刘滨,王苏亮,吴宗鑫.以物流分析为基础,建立中国循环经济指标体系[A].中日合作循环经济与物质流分析高级研讨会论文集[C].北京,2005.
    [28]周国梅,冯东方,任勇.循环经济的核心调控手段:物质流分析与物质流管理[A].中日合作循环经济与物质流分析高级研讨会论文集[C].北京,2005.
    [29]Brunner, P.H., Rechberger, H. Practical handbook of material flow analysis[M].Lewis Publishiers,2004.
    [30]Yi Liu. PHOSPHORUS FLOWS IN CHINA: Physical Profiles and Environmental Regulation[D] PhD-Thesis. Wageningen University: 2003.
    [31]Ayres R. U., Kneese A. V. Production consumption and Externalities[J].American Economic Review,1969,59 (3):282-297.
    [32]夏传勇.经济系统物质流分析研究述评[J].自然资源学报,2005, 20(3): 415-421.
    [33]Sowell F. Modeling long-run behavior with the fractional ARMA model[J].Monetary Economics,1992, (29):277-302.
    [34]Fischer Kowalski M. Society's Metabolism, The Intellectual History of Material Flow Analysis, PartⅡ, 1970-1998[J].Journal of Industrial Ecology, 1999,2(4):107-136.
    [35]European communities. Economy-wide Material Flow Accounts and Derived Indicators: A Methodological Guide[M]. Luxembourg: Office for Official Publications of the European Communities, 2001.
    [36]陶在朴.生态包袱与生态足迹[M].北京:经济科学出版社,2003,14.
    [37]Granger C. W. J., Joyeux R. An introduction to long-memory time series models and fractional differencing[J].Time Series Anal, 1980(1):15-29.
    [38]陈效逮,乔立佳.中国经济环境系统的物质流分析[J].自然资源学报,2000,15(l): 17-23.
    [39]陈效逮,赵婷婷,郭玉泉,等.中国经济系统的物质输入与输出分析[J].北京大学学报,2003,39(4):538-547.
    [40]徐明,张天柱.中国经济系统的物质投入分析[J].中国环境科学,2005,25(3): 324-328.
    [41]刘斌,向辉,王苏亮.以物质流分析方法为基础核算中国循环经济主要指标[J].中国人口·资源与环境,2006,16(4): 65-68.
    [42]王青,顾晓薇,丁一.本国环境载荷与环境效率研究[J].东北大学学报,2007,28(4): 589-591.
    [43]张思锋,雷娟.基于MFA方法的陕西省物质减量化分析[J].资源科学,2006,28(4): 145-150.
    [44]徐明,贾小平,石垒,等.辽宁省经济系统物质代谢的核算及分析[J].资源科学,2006,28(5): 127-133.
    [45]黄和平,毕军.基于物质流分析的区域循环经济评价-以常州市武进区为例[J].资源科学,2006,28(6): 20-27.
    [46]王军,周燕,刘金华,等.物质流分析方法的理论及其应用研究[J].中国人口·资源与环境,2006,16(4): 60-64.
    [47]张莓.中国矿产品物质流程研究-铜的实践[J].国土资源情报,2004(8): 48-52.
    [48]张莓.矿产品物质流定量研究[J].国土资源情报,2005(4): 18-20.
    [49]刘征,胡山鹰,陈定江,等.中国磷资源产业物质流分析[J].现代化工,2005, 25(6): 1-6.
    [50]刘毅,陈吉宁.中国磷循环系统的物质流分析[J].中国环境科学,2006,26(2): 238-242.
    [51]张福锁,马文奇,陈新平,等.养分资源综合管理理论与技术概论[M]].北京:中国农业出版社,2006.
    [52]Onenema O. and Pietrzak S. Nutrient management in food production: Achieving agronomic and environmental targets.AMBIO.2002, 31(2):159-168.
    [53]马文奇,张福锁,江荣风,等.养分资源的宏观管理[M].养分资源综合管理.北京:中国农业大学出版社,2003,15-29.
    [54]曹凑贵,张光远,王运华.农业生态系统养分循环研究概况[J].生态学杂志,1998,17(4): 26-32.
    [55]P. J. A. Withers, S. Peel, R. M. Mansbride. Transfers of phosphorus within three dairy farming system receivingvarying inputs in feeds and fertilizers[J] Nutrient Cycling in Agroecosystems, 1999, 55: 63-75.
    [56]H. F. M. Aarts, B. Habekott, H. van Keulen. Phosphorus management in the“De Marke”dairy farming system[J]. Nutrient Cycling in Agroecosystems, 2000, 56: 219-229.
    [57]Junko Shindo, Katsuo Okamoto, Hiroyuki Kawashima. A model-based estimation of nitrogen flow in the food production–supply system and its environmental effects in East Asia[J]. Ecological modeling, 2003, 169: 197-212.
    [58]K. Isermann & R. Isermann. Food production and consumption in Germany: N flows and N emissions[J]. Nutrient Cycling in Agroecosystems, 1998, 52: 289-301.
    [59]James N. Galloway, Zhao Dianwu, Vivian E. Thomson, et al. Nitrogen Mobilization in the United States of America and the People’s Republic of China[J]. Atmospheric Environment, 1996, 30: 1551-1561.
    [60]鲁如坤,刘鸿翔,闻大中,等.中国典型地区农业生态系统养分循环和平衡研究Ⅲ-全国和典型地区养分循环和平衡现状[J].土壤通报,1996, 27(5): 193-196.
    [61]许俊香.中国“农田—畜牧—营养—环境”体系磷素循环与平衡[D].河北农业大学, 2005.
    [62]Braat. L. Van Lierp W. Economic-ecological modeling an introduction to methods and application[J]. Ecological Modeling, 1986, 31:33-44.
    [63]刘树华,黄子琛,刘立超,等.植被对近地面层水热交换影响的参数化模型[J].应用生态学报,1995,6(2): 149-154.
    [64]刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2): 118-126.
    [65]莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报. 1998, 56(3):323-332.
    [66]张晶,丁一汇.一个改进的陆面过程模式及其模拟试验研究.第一部分:陆面过程模式及其“独立(off-line)”模拟试验和模式性能分析[J].气象学报,1998,56(1): 1-19.
    [67]丁一汇,张晶,赵宗慈.一个改进的陆面过程模式及其模拟试验研究.第二部分:陆面过程模式与区域气候模式的耦合模拟试验[J].气象学报,1998,56(4): 385-399.
    [68]吕军.作物生长动态模型及其土壤水分关系的模拟.生命科学研究与应用[M].杭州:浙江大学出版社.1996: 442-427.
    [69]戚昌瀚.作物生产系统的模拟模型研究进展[J].江西农业大学学报.1991(A01):1-6.
    [70]严力蛟,沈秀芬,周胥朝,等.作物模拟模型研究概况与展望[J].农业系统科学与综合研究.1998.14(2):126-132,137.
    [71]张光辉.土壤侵蚀模型研究现状与展望[J].水科学进展.2002, 5:389-396.
    [72]Petak W.J., Atkisson A.A.自然灾害风险评估与减灾对策[M].向立云,等译.北京:地震出版社,1993:10-40.
    [73]李世奎,霍治国,王道龙,等.中国农业灾害风险评价与对策[C].北京:气象出版社,1999.
    [74]李世奎,霍治国,王素艳,等.农业气象灾害风险评估体系及模型研究[J].自然灾害学报,2004,2: 77-87.
    [75]薛红霞,何江华.广东省耕地分等中的土壤肥力评价指标体系[J].生态环境, 2004 (3): 461-462.
    [76]孙艳玲,郭鹏,刘洪斌,等.基于GIS的土壤肥力综合评价[J].西南农业大学学报, 2003(2): 176-179.
    [77]刘绍贵,张桃林,王兴祥,等.江西省余江县土壤肥力变化和驱动因素与对策研究[J].土壤通报,2006(5): 869-874.
    [78]程晋南,赵庚星,张子雪,等.基于GIS的小尺度耕地质量综合评价研究—以山东省丁庄镇为例[J].自然资源学报,2009(3):536-544.
    [79]鲁云风,文祯中.基于层次分析法探讨中国畜牧业的可持续发展[J].黑龙江畜牧兽医,2007(3): 25-27
    [80]刘善明,任红.层次分析法在黑龙江省畜牧业系统诊断中的应用[J].黑龙江畜牧兽医,2006(6): 24-26.
    [81]韩江涛,龚新蜀.基于层次分析法的城镇化评价指标体系的优化[J].淮海工学院学报(自然科学版),2009(1): 75-78.
    [82]王丽,李雪铭,许妍.中国大陆秸秆露天焚烧的经济学损失研究[J].干旱区资源与环境,2008,22(2): 170-175.
    [83]田宜水,孟海波.农作物秸秆开发利用技术[M].北京:化学工业出版社,2008:1-12.
    [84]MOA/DOE Project Expert Team. Assessment of biomass resources availability in China[M]. Beijing: China Environment Science Press, 1998:1-19.
    [85]张培栋,杨艳丽,李光全,等.中国农作物秸秆能源化潜力估算[J].可再生能源,2007,25(60): 80-83.
    [86]刘刚,沈镭.中国生物质能源的定量评价及其地理分布[J].自然资源学报,2007,22(1): 9-18.
    [87]韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3): 87-91.
    [88]苑亚茹.中国有机废弃物的时空分布及其利用现状[D].北京:中国农业大学,2008: 14-23.
    [89]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用[J].资源科学,2003,25(4): 62-67.
    [90]Yukihiko Matsumura, Tomoaki Minowa, Hiromi Yamamoto. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan[J]. Biomass and Bioenergy, 2005, 29:347-354.
    [91]Gupta S. C., Onstad C. A., Larson W. E. Predicting the effects of tillage and crop residue management on soil erosion[J]. Soil Water Conserv., 1979, 34: 77-79.
    [92]R.Lal The role of residue management in sustainable agricultural systems[J]. Sustain Agric, 1995, 5:51-78.
    [93]R.Lal. World crop residues production and implications of its use as a biofuel[J]. Environment International, 2005, 31: 575-584.
    [94]Stout, Bill A. Handbook of energy for the world agriculture[M]. Elsevier Applied Science. London. New York, 1990:504.
    [95]Larson W. E, Swan J. B, Pierce F. J. Agronomic implications of using crop residues for energy//Lockertz W. Agriculture as a producer and consumer of energy. AAAS Selected Symposium[C].1982, 78: 91-122.
    [96]王义华,金玉岭,张凤林.农业数据手册[M].长春:吉林人民出版社,1980.
    [97]鲁如坤,史陶钧.农业化学手册[M].北京:科学出版社,1982.
    [98]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [99]马文奇,张福锁,张卫峰.关乎中国资源、环境、粮食安全和可持续发展的化肥产业[J].资源科学,2005,27(3): 33-40.
    [100]李庆逵,朱兆良,于天仁.中国农业可持续发展中的肥料问题:中国肥料结构和肥效的演变、存在问题及对策[M].江西:江西科学技术出版社,1998.
    [101]张卫峰.中国化肥供需关系及调控战略研究[博士学位论文][D].北京:中国农业大学,2007.
    [102]张瑞清.中国生态系统的养分平衡[D].山东:莱阳农学院,2002.
    [103]张克强.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004
    [104]张玉珍.九龙江流域畜禽养殖业的生态环境问题及防治对策探讨[J].重庆环境科学,2003,25(7): 29-34.
    [105]李民.规模化畜禽养殖场粪污染与防治措施[J].农业科技通讯,2001(10): 22-23.
    [106]郝兴璋.畜牧业污染的治理方法[J].饲料工业,2002,23(8): 44-45.
    [107]刘培芳.长江三角洲城郊畜禽粪便的污染负荷及其防治对策[J].长江流域资源与环境,2002,11(5): 456-460.
    [108]苏玉萍.福建省畜禽污染分析与防治对策[J].福建地理,2004,19(13): 38-41.
    [109]妙旭华.甘肃省畜禽养殖污染及粪便的综合利用[J].甘肃环境研究与监测,2002,15(4): 305-307.
    [110]王桂英.牧业污染及其营养调控措施[J].饲料安全,2003(23): 20-24.
    [111]王新谋.家畜粪便学[M].北京,农村读物出版社,1982.
    [112]辛总秀.减轻畜禽粪便对环境污染的现状及技术探索[J].青海畜牧兽医杂志,2004(4): 35-37.
    [113]Hutchings N. J., Sommer S. G., Andersen J. M., et al. A detailed ammonia emission inventory for Denmark[J]. Atmospheric Environment, 2001(35):1959-1968.
    [114]Zbigniew Klimont, Corjan Brink. Modeling of emission of air pollution and greenhouse gases from agricultural source in Europe[J/OL]. http://www.iiasa.ac.at/rains.pdf/html, 2004.
    [115]Webb J. Estimating the potential for ammonia emissions from livestock excreta and manures[J]. Environmental Pollution, 2000,111 (3):395-407.
    [116]United Nations, United Nations Environment Programmer. Guidance on the Global Monitoring Planfor Persistent Organic Pollutants[EB/OL]. http://www.emep.int/html. 2007.
    [117]Misselbrook T. H., van der Weerden T. J., Pain B. F., et al. Ammonia emission factors for UK agriculture[J]. Atmospheric Environment,2000,34(6):871-880.
    [118]Bouwman A. F., Van Der Hoek K. W. Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries[J]. Atmospheric Environment, 1997, 31(24):4095-4102.
    [119]Webb J., Misselbrook T. H. A mass-flow model of ammonia emissions from UK livestock production[J]. Atmospheric Environment, 2004(38):2163-2176.
    [120]Poulsen H. D., Kristensen V. F. ds. Standard values for farm manure. A revaluation of the Danish standard values concerning the nitrogen, phosphorus and potassium content of manure[M]. Tjele: Danish Institute of Agricultural Sciences, 1998,736.
    [121]EEA (European Environmental Agency), 2003: Joint EMEP/EEA Emission Inventory Guidebook[J/OL]. http://www.eea.eu.int/.
    [122]European Environment Agency. Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook[A], 2nd Edition. Copenhagen. 1999.
    [123]刘晓利,许俊香,王方浩,等.畜牧系统中氮素平衡计算参数的探讨[J].应用生态学报, 2006,17(3): 417-423.
    [124]杨月欣,王光亚,潘兴昌.中国食物成分表2002[M].北京:北京医科大学出版社, 2002.
    [125]杨月欣.中国食物成分表2004[M].北京:北京医科大学出版社, 2005.
    [126]张效朴,龚子同,中国南方降水、地表水和地下水的地球化学特征[J].土壤专报, 1987, 41: 169-187.
    [127]Xuejun Liu, Xiaotang Ju, Ying Zhang, et al. Nitrogen deposition in agroecosystems in the Beijing area[J].Agriculture, Ecosystems and Environment, 2006, 113: 370–377.
    [128]鲁如坤,时正元.农田养分再循环研究:Ⅱ.某些有机物料养分的有效系数[J].土壤,1993,25(6): 286-291.
    [129] Sheldrick W. Syers JR., Lingard J. Contribution of livestock excreta to nutrient balances[J]. Nutrient Cycling in Agro. Ecosystems, 2003, 66: 119-131.
    [130]刘晓利,许俊香,王方浩,等.中国畜禽粪便中氮素养分资源及其分布状况[J].河北农业大学学报,2005,28(5): 27-32.
    [131]马恒运.在外饮食、畜产品需求和食品消费方式变化研究[D].北京:中国农业科学院,2000.
    [132]许世卫.中国食物消费与浪费分析[J].中国食物与营养, 2005(11): 4-8.
    [133]李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较[J].首都师范大学学报(自然科学版),2004(3): 73-80.
    [134]马文奇,张福锁.食物链养分管理—中国可持续发展面临的挑战[J].科技导报(北京),2008,26(1): 68-73.
    [135]北京市统计局,国家统计局北京调查总队.北京统计年鉴·2008[M].北京:中国统计出版社,2008.
    [136]中国畜牧业年鉴编辑委员会.中国畜牧业年鉴·2008.北京:中国农业出版社,2008.
    [137]刘东,马林,王方浩,等.中国猪粪尿N产生量及其分布的研究[J].农业环境科学学报,2007,26(4): 1591-1595.
    [138]马林,魏静,王方浩,等.基于模型和物质流分析方法的食物链氮素区域间流动—以黄淮海区为例[J].生态学报,2009,29(1): 475-483.
    [139]中国社会科学院.中国人口年鉴·2008[M].北京:经济管理出版社, 2008.
    [140]中华人民共和国农业部.中国农业统计资料·2007[M].北京:中国农业出版社,2008.
    [141]河北省统计局,河北省人民政府办公厅.河北农村统计年鉴·2008[M].北京:中国农业出版社,2008.
    [142]王方浩,马文奇,窦争霞等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5): 614-617.
    [143]Wenqi Ma, Jianhui Li, Lin Ma, et al. Nitrogen flow and efficiency in production and utilization of wheat, rice and maize in China[J]. Agricultural Systems, 2008, 99(1): 53-63.
    [144]任雪琴.浅析中国的粮食安全问题[J].中国农业大学学报(社会科学版), 2006 (1):44-48.
    [145]魏静,马林,路光,等.城镇化对中国食物消费系统氮素流动及循环利用的影响[J].生态学报,2008,28(3): 1016-1025.
    [146]Kaiser, J. 2001. The other global pollutant: nitrogen proves tough to curb[J]. Science 294:1268–1269.
    [147]Nicola Nosengo. Fertilized to death[J]. Nature, 2003, 425, 894-895.
    [148]Peter M. Vitousek, Harold A. Mooney, Jane Lubchenco, et al. Human Domination of Earth's Ecosystems[J]. Science, 1997, 277: 494– 499.
    [149]JAN WILLEM ERISMAN The Nanjing Declaration on Management of Reactive Nitrogen[J]. BioScience, 2004, 54: 286-287.
    [150]David Tilman, Joseph Fargione, Brian Wolff, et.al. Forecasting Agriculturally Driven Global Environmental Change[J]. Science, 292:281-284.
    [151]J. N. Galloway, F. J. Dentener, D. G. Capone, et al. Nitrogen Cycles: Past, Present, and Future[J]. Biogeochemistry, 2004, 70(2): 153-226.
    [152]李建辉.中国主要粮食作物生产-消费体系养分流动分析与评价研究[D].河北农业大学: 2007.
    [153]Xiao-Tang Ju, Guang-Xi Xing, Xin-Ping Chen, et al. From the Cover: Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS, 2009, 106: 3041-3046.
    [154]裴辉儒,宋伟.中国统计数据质量体系存在的问题及解决思路[J].统计与决策,2006(7): 32-34.
    [155]Michael Pollan. From field to table– the truth behind the food chain[M]. The omnivore's dilemma: a natural history of four meals. New York: Penguin Press, 2006.
    [156]From farm to fork - Safe food for Europe’s consumers[EB/OL]. www.europa.eu.int/comm/publications.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700