用户名: 密码: 验证码:
电动汽车最优自动变速及能量回馈的控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车产业是国家战略性新兴产业当中新能源战略的重要组成部分,大力开发电动汽车技术对于实现国家新能源战略具有重大现实意义。当前,在我国电动汽车技术领域存在许多亟待解决的技术问题,如:电动汽车自动变速控制、电动汽车制动能量回馈利用及与之相关的控制算法、控制理论、实现技术等。
     机械自动变速(AMT, Automated Manual Transimission)系统是在传统机械变速系统的离合器与变速箱上加装自动离合器执行机构、选换挡执行机构以及转速、挡位、油门位置等各类传感器,通过变速箱控制器(TCU, Transmission Control Unit),分析从传感器、CAN (Controller Area Network)总线等获得的有关油门踏板、车速、行驶加速度、制动踏板、电机转速与控制电流、发动机或电动机转矩等各种信息,以计算最佳的换挡时刻,控制换挡执行机构完成自动换挡。
     机械自动变速AMT系统作为汽车自动变速解决方案之一,目前已在不同种类、不同规格型号汽车中展开应用,但由于对其内在规律的认识尚不到位,加之被控对象的多样性与复杂性,在该技术领域还有许多亟待解决的技术问题,如:换挡控制规律及换挡过程控制关键技术、制动动能回馈利用及其控制技术、整车综合控制策略等。
     本文采用理论分析、计算机仿真模拟实验及台架或道路测试验证的方法,对电动汽车最优自动变速控制技术、电动汽车能量回馈利用及其控制进行系统的理论与实验研究,其中自动变速最优控制是本文的主要研究内容,论文进行了以下主要研究工作:
     (1)针对电动公交汽车AMT驱动系统特点,进行了三挡机械自动变速AMT系统开发,包括:整车动力系统布置、主驱动电机选择、三挡机械变速箱传动比确定、AMT系统选换挡驱动电机选择与执行机构设计、变速控制单元TCU构成及整车通信系统构成等;针对机械自动变速AMT系统的特点,重点分析了当前AMT系统控制理论、换挡控制影响因素、换挡控制具体内容及换挡品质评价等内容。
     (2)结合电控机械自动变速系统的特点,分析在变速控制过程中影响控制目标的因素,充分利用车辆行驶过程参数及驾驶员行驶意图等信息,在模糊控制理论指导下,进行换挡控制规律研究,形成多参数模糊换挡控制规律,用以指导机械自动变速AMT系统的具体换挡过程;针对AMT系统换挡控制过程复杂、控制对象多变的特点,对纯电动公交汽车进行了主驱动电机建模、整车动力学建模、三挡AMT选换挡电机控制建模与选换挡过程建模仿真。对多挡AMT系统,完成其选换挡执行机构数字化模型设计,应用线性二次型最优控制方法对选换挡驱动电机位置及挤同步过程进行最优化控制,在离合器动力学模型及接合过程分析基础上,应用自适应控制方法对离合器的接合过程进行最优控制。
     (3)鉴于能量存储技术在电动汽车研究中的重要地位,对动力电池充放电控制进行了研究,对单体电池进行了均衡实验研究;同时,由于电池SOC估算对整个电池管理系统控制策略的制定具有重要影响,进行了动力电池SOC估算的HPPC测试方法与状态空间法研究。
     (4)在制动力分配控制理论分析及能量回馈控制策略指导下,作者应用“后向/前向”混合仿真,且以“后向”仿真方法为主,在ADVISOR软件环境下,对混合动力汽车能量回馈利用控制过程进行了仿真研究。仿真结果表明,在新欧洲行驶工况(NEDC, New Europe Driving Condition)下,整车动能回收利用效率可达16.27%,燃油消耗为6.1L/100km,为混合动力汽车能量存储利用控制设计提供了仿真依据;分析了混合动力电动汽车能量综合管理策略,分别应用动态规划(DP, Dynam ic Programming)理论和模型预测(MPC, Model Predict Control)方法对能量回馈控制过程中,挡位变化及SOC变化情况进行仿真。仿真显示,挡位权重系数对混合动力汽车换挡过程影响显著。
     (5)完成了机械自动变速AMT系统软硬件平台搭建、AMT系统台架测试及实车道路行驶测试研究。通过对所开发的多挡AMT系统进行了系统的台架实验研究,作者获得了机械自动变速AMT换挡过程离合器控制、发动机同步控制及选换挡控制分析曲线,验证了所开发系统的可行性与可靠性;通过数据通信系统与实车行驶数据采集系统构建,对所开发的纯电动公交汽车三挡AMT系统进行道路行驶测试研究,获得AMT系统换挡过程控制曲线。
The electric vehicle industry is the important part of the state strategical new prosperous industries; it is of great reality significance to develop the electric vehicle technologies. At present, some technological problems are badly needed to be solved in the field of EV (Electric Vehicle) technology, such as automated manual transmission, brake kinetic energy recuperation, and the control algrithom, control theories, complement techniques related to the ablove problems.
     Automated manual transimission (AMT) system is based on the traditional manual transmission which varies with the traditional one by mounting the automated mechanism on the clutch and transmission. The automated mechanisms include the automatic select and change gear actuators, a variety of sensors about rotation speed, gear state, throttle position etc. The transmission control unit (TCU) controls the accomplishment of gear change by calculating the proper change gear moment after it analyzed the information about acceleration pedal position, vehicle speed, vehicle acceleration, brake pedal position, motor rotation speed, engine or motor torque etc through controller area network (CAN) bus.
     As one of the vehicle's automated transmission solutions, the AMT systems have been used in a variety of vehicles with different specification and type. Due to the lack of the knowledge about the inner law of the transmission process as well as the variety and complexity of the control objects, many technological problems such as change gear laws and the key techniques of gear changing process controlling, brake kinetic energy recuperation and its control, the whole vehicle control etc are remaining not being solved.
     By adopting the techniques of theoretical analysis, computer simulation, rig tests and road tests, this thesis studies the optimal automatd manual transmission control techniques and the energy recuperation technology while the AMT optimal control comprises the main parts of the thesis. The main researching work is as follows.
     (1) By the features of the AMT system in electric bus, a3-gear AMT system has been developed. The work done includes the whole driving system layout design, the choosing of the main driving motor, the specification of the transmission ratio, the change gear motor selection, the actuator mechanism design, transmission control unit configuration and the whole communication system establishment. Some AMT system control theories, the influential factors on the gear changing, shift control contents and shift control quality are discussed as well.
     (2) Incorporated with the features of AMT system, the factors which influences on the control goals during the shift process were analyzed. By the guiding of the fuzzy theory, the control regulations were sdudied while using parameters such as the driving variables and the intents of the driver, the multi-parameter control law about the AMT control was formed which can be used as a guide to control shift process in the AMT system. Due to the complexity of shifting process and the variability of the controlled objects, this thesis tried models the main driving motor used in an EV and the whole vehicle dynamic, after that, the simulation of the change gear autuators and the3-gear shift process were carried out. For the multi-gear AMT system, the shift mechanisms were digital modeled. The linear quadratic optimal contrl methods were employed for the position control of change gear motors and the synchronous process. The auto adaptive methods were employed in the clutch engagement control.
     (3) Due to the importance of the energy storage system in electric vehicle technology, the battery charge/discharge control was investigated and the battery balancing technique was carried out. Meanwhile, for the magnificient impact of state of charge of the battery on the energy management system, the hybrid pulse power characterization was obtained by tests.
     (4) By applying the "back and fro" hybrid simulation method while the backforward is the main part, the ADVISOR simulation of energy recuperation process in hybrid electric vehicle were studied under the theories of brake force distribution and the energy recuperation control strategies. The simulation results show that the kinetic energy recuperation rate is16.27%; the fuel rate is6.1L/100km under the NEDC (New Europe Driving Condition) which can help providing some foundation for the energy storage and utility application in the hybrid electric vehicles. The energy comprehensive management strategies in hybrid electric vehicle were analyzed. The simulation of SOC variation and gear change states were carried out by using the dynamic programming theory and model predictive control method respectively, the results show that the gear change state weight has significant influence on the vehicle's shift process.
     (5) The test platform of AMT system was built and the rig and road tests were carreed out for the validation of the AMT system. The systematic rig test were put on the developed multi gear AMT system in order to aquire the curves about clutch control, engine synchrozing and shift controlling while AMT shifting. The rig tests validated the feasibility and reliability of the developed AMT system.
     This thesis is sponsored by the Provincial or Ministerial Universityindustry Cooperation on Guidance Projects (No.2010B090400521). The researching results can provide supports for the development of the state strategical prosperous energy industry.
引文
[1]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版,2002.11.
    [2]杨亚联.金属带无级自动变速传动的关键问题研究[D].重庆:重庆大学,2002
    [3]刘振军,秦大同,李培军.汽车牵引式无级变速器及速比控制[J].重庆大学学报,2002,25(9):94-96.
    [4]Tasuo Teratani. Kohjiro Kurampochi. Development of Toyata Mild-hybrid system(THS-M[J].Toyota Technical Review.2002,2(1):46-51.
    [5]Sumiko Sekiguchi, Koichi Kondo, et al. development of Electrical 4WD System for Hybrid Vehicles[J].Toyota Review. 2002,151(2):86-89.
    [6]赵世琴,黄宗益等.同步器换挡接合过程的数学模型[J].同济大学学报,1999,27(6):676-680.
    [7]雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程,2000,22(4):266-269.
    [8]葛安林等.离合器最佳结合规律的研讨[J].汽车工程,1998,10(2):54-65.
    [9]陈俐等.自动离合器的自适应最优控制[J].上海交通大学学报,2000,34(10):1312-1316.
    [10]胡建军,李光辉,伍国强等.汽车起步过程离合器传递转矩精确计算分析[J].汽车工程,2008,30(12):1083-1086.
    [1l]张俊智,王丽芳,葛安林.自动换挡规律的研究[J].机械工程学报.1999,(4):38-41.
    [12]王丽芳.自动变速器换挡规律确定方法的研究[J].汽车技术.1998,(6):7-9.
    [13]宋国民,王锦雯,何仁.基于模糊综合评判的汽车换挡规律研究[J].江苏理工大学学报,1998,(2):27-31.
    [14]张勇.车辆自动变速系统自适应模糊控制研究[D].长春:吉林工业大学.2002,(2).
    [15]百川.我国自动变速器发展现状及未来趋势(上)[J].MC现代零部件,2010,(10):67-72.
    [16]秦贵和.机械式自动变速器控制技术的研究与系统开发[D].长春:吉林大学.1997.
    [17]申水文,葛安林.基于二参数换挡规律的模糊换挡技术[J].汽车技术.1998,(1):9-12.
    [18]李永军.电控机械式自动变速器起步过程的智能控制[D].吉林工业大学.1997.
    [19]张泰,葛安林,郭立书.改善车辆起步换挡品质提高乘坐舒适性的研究[J].农业机械学报.2003,34(1):18-24.
    [20]葛安林,李君,雷雨龙等.AMT车辆巡航模糊神经网络控制[J].汽车工程1999,21(5):263-268.
    [21]雷雨龙,李永军,葛安林.机械式自动变速器换挡综合智能控制[J].汽车工程,2002,23(5):311-314.
    [22]雷雨龙等.提高电控机械式自动变速器换挡品质实验方法的研究[J].中国公路学报,1999,12(2):95-99.
    [23]葛安林,沈波.AMT换挡品质的研究[J].汽车技术,2003,(2):43-45.
    [24]施国标.电控机械式自动变速器中离合器控制的研究[D].长春:吉林工业大学.1998.
    [25]刘保林.AMT起步和换挡品质研究[D].长春:吉林大学.2003.
    [26]史维刚.汽车智能换挡系统的研究[D].长春:吉林大学.2003.
    [27]李永军等.机械式自动变速器起车过程综合控制[J].汽车工程.2003,25(2):178-181.
    [28]雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程.2000,(4):266-269.
    [29]曹桂军.电控机械式自动变速器传动系综合控制的研究[D].长春:吉林大学.2004.
    [30]葛安林等.AMT离合器接合速度的精确控制[J].机械工程学报.2000,36(10):68-75.
    [31]金辉,葛安林,秦贵和等.基于纵向动力学的坡道识别方法研究[J].机械工程学报.2002,38(1):79-86.
    [32]雷雨龙.提高电控机械式自动变速器性能的研究[D].长春:吉林工业大学,1998.
    [33]金立生.液压挖掘机电子节能控制系统研究[D].长春:吉林大学.2003.
    [34]王丽芳.电控机械自动变速器关键技术的研究[D].长春:吉林工业大学.1997.
    [35]申水文.AMT控制技术的应用研究[D].长春:吉林工业大学.1996.
    [36]刘大权等.公共汽车AMT最佳动力性换挡规律的建模与仿真[J].农业装备与车辆工程,2009,(2):36-38.
    [37]张国胜,牛秦玉,方宗德.最佳燃油经济性换挡规律理论及其应用研究[J].中国机械工程,2005.Vol.16.No.5 :446-449.
    [38]彭建鑫等.基于最优化理论的离合器接合曲线研究[J].北京理工大学学报,2009,129.(11):964-971.
    [39]赵熙俊等.基于同步器的自动机械变速器挂挡过程控制研究[J].兵工学报,2010,31(5):534-540.
    [40]何忠波等.AMT车辆爬行工况离合器控制策略与试验[J].汽车工程.2003,25(6):575-578.
    [41]廖承林.车辆动力传动一体化控制系统的研究与开发[D].北京:北京理工大学2001.
    [42]何忠波,席军强,陈慧岩.发动机断油控制对AMT换挡品质的影响[J].北京理工大学学报,2004,24(1):48-52.
    [43]林程等.电动大客车传动系统控制技术研究[J].北京理工大学学报,2007,27(1):25-28.
    [44]李强.电控机械式自动变速汽车换挡智能控制[D].重庆:重庆大学,2003.
    [45]胡敏.长安之星电控机械自动变速系统研究与开发[D].重庆:重庆大学,2006.
    [46]阿米尔·易布拉黑穆·阿力(Amir Ibrahim Ali A).电控机械自动变速系统实时平顺换挡建模与仿真[D].重庆:重庆大学,2006.
    [47]赵玉省.双离合器自动变速系统的综合控制[D].重庆:重庆大学,2009.
    [48]康海涛.双离合器式自动变速器的研究[D].重庆:重庆大学,2006.
    [49]张世义.双离合器自动变速汽车传动系统性能研究[D].重庆:重庆大学,2008.
    [50]张世义,李光辉.双离合器自动变速汽车起步过程离合器模糊控制策略研究[C].2009中国控制与决策会议论文集(2),2009.
    [51]胡建军.汽车无级变速传动系统建模仿真及其匹配控制策略研究[D].重庆:重庆大学,2001.
    [52]谭显清.回流式无级自动变速传动系统的匹配控制仿真研究[D].重庆:重庆大学,2007.
    [53]徐佳曙.基于硬件在环控制的液力机械自动变速传动系统参数匹配与实验研究[D].重庆:重庆大学,2005.
    [54]董其慧,胡建军,秦大同.液力机械自动变速传动系统快速原型控制[J].重庆大学学报.2006,29(12):13-17.
    [55]胡建军,徐佳曙,秦大同.液力机械自动变速传动系统控制仿真及试验[J].农业机械学报,2006,37(7):l-4.
    [56]刘振军.基于人-车-路环境下的汽车电控机械自动变速智能控制研究[D].重庆:重庆大学,2005.
    [57]苏玉刚.汽车AMT的系统设计和智能控制技术研究[D].重庆:重庆大学,2004.
    [58]Yoshinori Taguchi. Et al. development of an automated transmission system based on robust control[J]. Transmission & Driveline Systems Symposium 2003.
    [59]殷红幸等.AMT自动变速技术的发展及国内现状[J].汽车技术,2002,(7):21-22.
    [60]百川.我国自动变速器发展现状及未来趋势(中)[J].MC现代零部件,2010.11: 58-61.
    [61]C.C. Chan(Fellow IEEE), The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles [J],Proceedings of the IEEE, 2007,95(4) :704-718.
    [62]An Feng, A. Vyas, J. Anderson, and D. Santini. Evaluating commercial and prototype HEVs [J]. Argonne National Laboratory, Society of Automotive Engineers, SAE 2001-01-0951.
    [63]Timothy Lipman. Hybrid electric and fuel cell vehicle technological innovation:Hybrid and zero-emission vehicle technology links [C]. The 20th International Electric Vehicle Symposium and Exposition.November 15-19,2003, Long Beach, California.
    [64]李国洪.混合动力汽车控制策略与动力电池系统的研究[D].天津:天津大学.2005.12.
    [65]JANAINA GONCALVES DE OLIVEIRA. Power Control Systems in a Flywheel based All-Electric Driveline[D]. ACTA UNIVERSITATIS. UPSALIENSIS. UPPSALA.2011.
    [66]E. Ozatay et al. Power distribution control coordinating ultracapacitors and batteries for electric vehicles[J]. Proc. of the American Control Conference.2004.
    [67]Leon C Rosario. Power and Energy Management of Multiple Energy Storage Systems in Electric Vehicles[D]. Cranfield University. United Kingdom.2007.
    [68]Adam W. Stienecker. Thomas Stuart. Cyrus Ashtiani. An ultracapacitor circuit for reducing sulfation in lead acid batteries for Mild Hybrid Electric Vehicles[J]. Journal of Power Sources 156 (2006) 755-762.
    [69]Srdjan M. Lukic.Sanjaka G. Wirasingha.Fernando Rodriguez. Jian Cao, and Ali Emadi. Power Management of an Ultracapacitor/Battery Hybrid Energy Storage System in an HEV[J]. 1-4244-0159-3/06/IEEE. C2006.
    [70]张世亮.车辆制动能量回收装置的研究[J].机械设计与制造工程,1997,28(4):22-24.
    [71]刘大权.曲金玉.公共汽车制动能量再生系统AMT换挡规律研究[D].济南:山东理工大学.2009.
    [72]林妙山,王玉群,胡文锋.液压储能再生装置在汽车制动中的应用研究[J].液压与气动,2010,(2):4244.
    [73]刘天豪,刘海朝,祝昌洪.液压蓄能式车辆制动能量回收系统的AMESim仿真研究[J].机床与液压.2011,39(3):123-125.
    [74]张银彩,苑士华,胡纪滨.城市公交车辆液压节能装置的研究[J].农业机械学报,2007,38(6):34-37.
    [75]张银彩,郭京波,韩彦军.车辆液压储能传动能量转化元件的匹配分析[J].机械设计与制造,2010,(10):193-195.
    [76]U. Diego-Ayala,P. Martinez-Gonzalez,N.McGlashan, K.R.Pullen. The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system[C]. Proc. MechE, Part D:J. Automobile Engineering, 2008,(222):2086-2101.
    [77]U. Diego-Ayala,P. Martinez-Gonzalez,N McGlashan,K R Pullen.机械混合驱动车辆:飞轮载体车用回收能量吸收装置的研究[J].机械传动,2011,25(1)32-38.
    [78]Chris B rockbank, Will Body. Flywheel based mechanical hybrid system: simulation of the fuel consumption benefits of various transmission arrangements and control strategies [C]. Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference:1-8.
    [79]刘明辉.混合动力客车整车控制策略及总成参数匹配的研究与仿真[D].长春:吉林大学,2005.
    [80]Van Mierlo Joeri et.al. Simulation methodologies for innovative vehicle drive systems, http://etec.vub.ac.be/publications/A71712.pdf.
    [81]孟嗣宗,崔艳萍.现代汽车防抱死制动系统和驱动系统[M].北京:北京理工大学出版社,1997.
    [82]李朝禄,刘荣华译.汽车制动防抱装置(ABS)构造与原理[M].北京:机械工业出版社,1995.
    [83]余卓平,管迪华.汽车防抱制动过程仿真计算模型及其参数的系统辨识[J].汽车工程,1997,19(3):129-133.
    [84]程军.车辆动力学控制的模拟[J].汽车工程,1999,21(4):199-205.
    [85]Yeh et al. parametric study of anti-skid brake systems using Poincare map concept[J]. Int.J.Vehicle Design, 1992,13(3):210-232.
    [86]Guy Kokes,Tarunraj. Adaptive fuzzy logic control of an anti-lock braking system[C]. Proceedings of the IEEE, Int. Conf. on Control Applications,USA,1999.
    [87]Mazumdar S K.The application of neural networks to anti-skid brake design. Proc. IEEE Int. Conf. on Neural Networks.Perth, Australia, 1995.
    [88]R.Somakumar,J.Chandrasekhar.Intelligent anti-skid brake controller using neural network. Control Engineering Practice, 1999,(7):611-621.
    [89]赵和平.硬件在环仿真技术在防抱死制动系统试验台架开发中的应用[D],上海:上海交通大学,2002.
    [90]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D],吉林工业大学,2000年.
    [91]张俊智,卢青春,王丽芳.汽车混合动力传动的能量流动与比较[J].机械科学与技术.2001,20(9):47-51.
    [92]王宇琳,沈颖刚,何保红.燃料电池及其在汽车上的应用[J].昆明理工大学学报,2002,27(1):99-102.
    [93]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海:上海交通大学,2004.
    [94]彭栋.非稳态轮胎模型刚性分析及精细积分法的使用[D].长春:吉林大学,2001.
    [95]Deepak Somayajula, Andrew Meintz, Mehdi Ferdowsi. Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles[C]. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5,2008, Harbin, China.
    [96]Ryan C. Kroeze, Philip T. Krein. Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations[J].978-1-4244-1668-4/08/$25.00 (?)2008 IEEE.
    [97]Fazal U. Syed, Ming L. Kuang, Matt Smith, et al. Fuzzy gain-scheduling proportional-integral control for improving engine power and speed behavior in a hybrid electric vehicle [J]. IEEE Transactions on Vehicular Technology.2009, 58(1):69-84.
    [98]Fazal U. Syed, Ming L. Kuang, Hao Ying. Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology.2009.58 (9):4769-4785.
    [99]Yuan Zhu, Yaobin Chen, Guangyu Tian, et al. A four-step method to design an energy management strategy for hybrid vehicles[C]. Proceeding of the 2004 American Control Conference. Boston, Massachusetts June 30-July 2.2004:156-161.
    [100]Thomas H. Bradley, Andrew A. Frank. Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles[J], Renewable and Sustainable Energy Reviews, 2009,(13):115-128.
    [101]W. K. Yap, V. Karri. Performance simulation and predictive model for a multi-mode parallel hybrid electric scooter drive [J]. Int. J. Energy Res.,2010,34:67-83.
    [102]张俊智,陆欣,张鹏君等.混合动力城市客车制动能量回收系统道路试验[J].机械工程 学报,2009,45(2):25-30.
    [103]Seneca Andrew Schepmann. Ultracapacity Heavy Hybrid Vehicle: Model Predictive Control Using Future Information to Improve Fuel Consumption[D]. Clemson University. 2010.
    [104]解少博.双电机独立驱动汽车协调制动控制关键问题研究[D].北京:北京理工大学机械与车辆学院,2011.
    [105]熊明洁,胡国强,闽建平.纯电动汽车动力系统参数选择与匹配[J].汽车工程师,2011(5):36-38.
    [106]姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006,(34):33-37.
    [107]刘惟信.汽车设计[M],清华大学出版社,2001.
    [108]HIROHISA TANAKA, HIDEYUKI WADA. Fuzzy control of Clutch Engagement for Automated Manual Transmission[J].Vehicle System Dynamics,1995,(24):365~376.
    [109]Joachim Horn, Joachim Bamberger, Peter Michau, Stephan Pindl. Flatness-Based Clutch Control for Automated Manual Transmissions[C].15th Triennial World Congress,Barcelona,Spain 2002(IFAC).
    [110]Ottenbruch P and B Gaubitz. Automated Shifting of Robotized Gearbox-Alternative to manual Gearbox and Automated Transmissions[C].International Symposium On Advanced Vehicle Control 1996,pp1193~1207.
    [111]张慧峰.客车AMT_TCU及混合动力客车HCU测试系统的研制[D].长春:吉林大学2006.
    [112]邬宽明.CAN总线原理和应用系统设计[M].航空航天出版社,2002,3.
    [113]Etschberger K.CAN-based higher layer protocols and profiles[A].Proceedings of the 4-ihe International CAN Conference[C].Berlin 1997.
    [114]闫勋成.AMT综合控制技术[D].长春:吉林大学,2005.
    [115]申水文,葛安林,模糊换挡技术与综合换挡规律[J].农业工程学报,1997,(7):145-149.
    [116]秦贵和,葛安林等.电控自动变速器挡位决策神经网络方法[J].兵工学报,1997,18(1):80-83.
    [117]李永军.电控机械式自动变速器起步过程的智能控制[D].长春:吉林工业大学,1997.
    [118]秦贵和,葛安林等.模糊逻辑在汽车电子控制中的应用[J].汽车工程,1999,21(5):275-279.
    [119]Peter Schoeggl, Erich Ramschak. Vehicle Driveability Assessment using Neural Networks for Development, Calibration and Quality Tests, SAE2000-01-0702.
    [120]G. Rizzoni, X. Wei. Objective metrics of fuel economy, performance and driveability- a review. In Testing and Instrumentation, Detroit, Michigan, March 8-11. 2004. SAE:2004-01-1338.
    [121]Quanan Huang, Huiyi Wang, Fundamental Study of Jerk:Evaluation of Shift Quality and Ride Comfort, SAE2004-01-2065.
    [122]葛安林.车辆自动变速理论与设计[M].机械工业出版社,1993.
    [123]葛安林.沈波AMT换挡品质研究[J].汽车技术,2003(2):43-45.
    [124]雷雨龙,葛安林,秦贵和,范巨新,刘长春.提高电控机械式自动变速器换挡品质实验方法的研究[J].中国公路学报,1999(2):95-99.
    [125]S.Johansson. Shunt and shuffle evaluation for vehicle powertrains[D]. Chalmers University of Techno logy,Gothenburg, Sweden, January 2004.
    [126]J.Persson.Integrated powertrain control-a literature survey on longitudinal vibrations, driveability aspects and future challenges[D].Chalmers University of Technology, Gothenburg,Sweden, March 2004.
    [127]Johan DUFBERQSEBASTIAN DYRKELL.Objective Evaluation of Shunt and Shuffle [D].University of Technology, Gothenburg, Sweden, March 2004.
    [128]李志强.电控机械式自动变速汽车换挡智能控制[D].重庆:重庆大学,2003.
    [129]王丽芳.自动变速器换挡规律确定方法的研究[J].汽车技术.1998,(6)7-9.
    [130]薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用[M].2011.
    [131]Ling Ling,Zhengsheng Chen and Yuan. Study on Control Process of Automatic Mechanical Transmission System for Pure Electric Bus [J]. Applied Mechanics and Materials 2012,220-223:1795-1799.
    [132]Richard C.Dorf, Robert H.Bishop. Modern Control Systems[M]. Beijing:Publishing House of Electronics Industry,2011.
    [133]余志生.汽车理论[M].北京:机械工业出版社,2006.
    [134]哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社,2002.
    [135]李发海,王岩.电机与拖动基础[M].北京:清华大学出版社,2008.
    [136]尾形克彦.现代控制工程[M].北京:电子工业出版社,2007.
    [137]李永军.电控机械式自动变速器起步过程的智能控制[D].长春:吉林工业大学.1997.
    [138]万沛霖.电动汽车的关键技术[M].北京:北京理工大学出版社,1998,12.
    [139]陈俐等.自动离合器的自适应最优控制[J].上海交通大学学报,2000,34(10):1312-1316.
    [140]Burke AF (2007) Batteries and ultracapacitors for electric hybrid and fuel cell vehicles. Proceeding of IEEE 95:806-820
    [141]Jaafar A, Akli CR, Sareni B, Roboam X, Jeunesse A (2009) Sizing and energy managementof a hybrid locomotive based on flywheel and accumulators. IEEE Trans Veh Techno158:3947-3958.
    [142]Mi C (2008) ASIC based active charger balancing lithium battery to extend life and maximize capacity of mobile and laptop batteries. Presented in lithium mobile power 2008 conference
    [143]ECE regulation No.13—uniform provisions concerning the approval of vehicles of categoriesM,N and O with regard to braking. E/ECE/TRANS/505/Rev.l/Add.12/Rev.7,4 August 2011.
    [144]Van Mierlo Joeri et.al. Simulation methodologies for innovative vehicle drive systems, http://etec.vub.ac.be/publications/A71712.pdf.
    [145]李卫民.混合动力汽车控制系统与能量管理策略研究[D].上海:上海交通大学,2008.
    [146]Seneca Andrew Schepmann.ULTRACAPACITOR HEAVY HYBRID VEHICLE:MODEL PREDICTIVE CONTROL USING FUTURE INFORMATION TO IMPROVE FUEL CONSUMPTION[D]. Clemson University.
    [147]蒋勇.中度混合动力汽车模型预测控制研究[D].重庆:重庆大学,2009.
    [148]聂天雄.插电式并联混合动力汽车模型预测控制[D].重庆:重庆大学,2011.
    [149]舒红,聂天雄,邓丽君,乔俊林.插电式并联混合动力汽车模型预测控制[J].重庆大学学报,2011,(5):3641.
    [150]A. Bemporad. Model Predictive ControlDesign: New Trends and Tools. IEEE Conference on Decision and Control, December 2006.
    [151]E.F.Camacho and C.Bordons.Model Predictive Control. Springer,second edition,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700