用户名: 密码: 验证码:
西藏邦铺钼铜多金属矿床成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏邦铺斑岩型钼铜多金属矿床位于冈底斯东段,大地构造位置上位于西藏特提斯构造冈底斯-念青唐古拉(地体)板片中南部,行政上隶属西藏墨竹工卡县尼玛江热乡管辖,是2007~2009年度发现的大型钼铜多金属矿床。本文主要通过详细的矿床地质特征、元素地球化学、成岩成矿年代学、流体包裹体、S、Pb同位素等研究手段,对该矿床的成因进行了深入研究,建立了成矿演化模式,并从找矿评价方面指出了以后找矿工作的重点。
     矿区内出露地层由老到新主要有下二叠统洛巴堆组(P1l)、古近系典中组(E1d)和第四系(Q)。研究表明,二长花岗斑岩为含矿母岩。详细的岩石学和地球化学研究表明,二长花岗斑岩富硅(67.06%~73.70%)、富K_2O(3.61%~7.642%)贫CaO(0.14%~4.40%)贫Na_2O(0.140%~4.40%),属钾玄岩系列及高钾钙碱性系列。稀土总量变化变化很大(22.01×10~(-6)~107.61×10~(-6)),稀土曲线为平缓的右倾型,轻稀土元素相对富集,重稀土元素相对亏损。 Eu的变化范围为0.592~1.064,具有微弱的负铕异常到无铕异常。岩石微量元素相对富集不相容元素(LILE),贫高场强元素(HFSE),即相对富集Rb、U、Cs和Nd而亏损Ba、Sr、P、Ti和Y。二长花岗斑岩形成的环境比较复杂,主要为同碰撞造山构造环境,即印度大陆与亚洲大陆碰撞造山带内,发育与碰撞后的地壳伸展环境,并可能涉及到冈底斯区域板块俯冲碰撞作用的多个阶段。含矿二长花岗斑岩可能主要来自于壳源改造(S型)的花岗岩,但也不排除幔源分异型花岗岩(A型)的混入。
     矿体主要由Mo矿体、Cu矿体和Pb-Zn矿体组成。钼铜矿体主要赋存于喜马拉雅晚期的二长花岗斑岩(ηγπ)及围岩典中组火山岩中,钼(铜)矿体在平面上呈空心椭圆形的扁豆体或者巨大的等轴状体,在剖面上呈长柱状体或者筒状体,产状基本稳定。铅锌矿体主要赋存于下二叠统洛巴堆组(P1l)地层中,处于灰岩、大理岩透镜体边缘地带,呈巢状、透镜状、脉状、似层状分布。
     矿石构造主要为浸染状、脉状、细脉-浸染状、块状构造等;矿石结构主要有自形粒状、自形-半自形粒状、自形-半自形板状和它形粒状结构等。
     金属矿物主要有辉钼矿、黄铜矿,黄铁矿、方铅矿,闪锌矿等;非金属矿物主要为石英、钾长石、斜长石、绢云母、方解石、绿泥石等。通过电子探针测试,辉钼矿中主要成分Mo、S含量与其理论值(40.06%)相近,计算获得辉钼矿的分子式为Mo_(0.99)S_2-Mo_(1.02)S_2。除主元素Mo、Cu、Pb、Zn外,可综合利用的元素有S、Au和Ag。
     矿床具有典型的围岩蚀变特征,蚀变分带特征类似于Lowell和Gnilbert模式。从平面上和剖面上看,均具有明显的分带性:即从内到外为钾-硅化带-绢云母化带-绢云母-粘土化带-青盘岩化带;钼铜矿化主要分布于钾-硅化带,次为绢云母化带;铜钼矿化主要分布于绢云母化带及粘土化带;铅锌矿化主要分布于青盘岩化带。
     成岩成矿年代学研究表明,邦铺矿床中二长花岗斑岩和花岗斑岩中锆石SHRIMP U-Pb年龄值分别为13.9±0.3Ma(MSWD=3.05)和14.2±0.2Ma(MSWD=0.79),二长花岗斑岩全岩Rb-Sr等时线定年(13.88±0.38Ma),其年龄值均在误差范围内;4件辉钼矿样品获得等时线年龄为14.92±0.18Ma(MSWD=1.3),其加权平均年龄为14.56±0.18(MSWD=6.0),二者在误差范围内一致,结合前人数据的9个点获得的等时线年龄(14.67±0.54Ma)、加权平均年龄(14.54±0.093Ma)(二者在误差范围内非常接近),9个点的等时线年龄(14.67±0.54Ma)代表了邦铺矿床中斑岩钼铜矿的成矿年龄;通过激光显微探针(40)~Ar-(39)~Ar微区定年,获得等时线年龄为(13.9±0.9)Ma(MSWD=29),反等时线年龄为(13.8±1.6)Ma(MSWD=30)。黄铁矿Rb-Sr同位素等时线年龄为11.0±1.5Ma(MSWD=3.5),这一年龄可能代表了该矿床晚阶段成矿年龄;闪锌矿包裹体Rb-Sr定年获得等时线年龄为13.6±1.5Ma(R=0.9942),该年龄低于锆石U-Pb、辉钼矿Re-Os及脉石英激光显微探针Ar-Ar年龄,说明该铅锌矿是斑岩期后热液成矿作用的产物,13.6Ma代表了铅锌矿的成矿年龄。等时线年龄从l5.32±0.79Ma~11.0±1.5Ma,Mo-Cu矿化年龄可能主要为14.67Ma~11.0Ma,成矿斑岩体的结晶年龄可能为14.4Ma~13.5Ma,从侧面反映该矿床成岩-成矿过程是几乎是一个连续成矿作用过程。
     流体包裹体研究表明,各矿化阶段石英(方解石)中的流体包裹体均一温度与压力、盐度与密度、包裹体成分和流体包裹体H和O同位素等诸方面的初步研究表明,各个阶段成矿流体为中高温(172~239℃)、中高盐度(23.96~50.85wt%NaCleq)、高-中等密度流体(1.0696~1.0849g/cm~3)、属(Cl--)SO_4(2-)-Na~+(K~+)型水化学类型,成矿环境为低压(36.9×10~5~110.23×10~5Pa),成矿压力为低压(23.4×10~5~41.9×10~5Pa),成矿深度为0.094~0.184km,属超浅成成矿。各个阶段的成矿流体均可能主要来源于岩浆水与大气降水的混合,以大气降水为主。
     通过硫、铅同位素研究,获得含矿岩浆岩的硫同位素34S(-0.48‰~12.2‰,平均3.80‰)与硫化物矿物的硫同位素34S(-1.5‰~+4.3‰,平均0.98‰)组成一致,总硫同位素34S∑S组成为-1.903‰,具有典型的岩浆硫组成特点(34S=0‰);含矿岩浆岩铅同位素(206)~Pb/(204)~Pb、(207)~Pb/(204)~Pb、(208)~Pb/(204)~Pb比值分别变化于38.857~39.857、15.620~15.704、18.684~18.768之间,方铅矿铅同位素组成(206)~Pb/(204)Pb、(207)~Pb/(204)~Pb、(208)~Pb/(204)~Pb比值分别变化于18.752~18.825、15.712~15.718、39.348~39.463之间,显示其具有正常铅同位素的特点,可能同源,具有相同的演化历史或起源;特征值及铅同位素图解显示其具有壳幔混合特征,以壳源为主,可能主要来源于参加造山带的上部地壳。Sr同位素、Re同位素表明,矿床的成矿物质可能来源于地幔,或以地幔为主。
     通过以上研究,确立了该矿床的成因为次火山-热液矿床;按赋矿岩石分类,钼铜矿为斑岩型矿床,铅锌矿为碳酸盐岩型;根据成矿作用过程分析,建立了该矿床的成矿演化模式图;通过蚀变分带特征、勘探线剖面、流体包裹体等方面进行了找矿评价,提出在矿区西部,尤其是深部仍具有良好的成矿潜力,以后的勘探找矿工作重心应放在矿区深部和西部。
The Bangpu porphyry-type Mo-Cu polymetallic deposit is a typical large-scaledporphyry deposit was found between the years from2007to2009,which lies ineastern Gangdese metallogenic belt,Tibet.Its geotectonic position is in Gangdese andNyenchen Tanglha Range terrane Tibetan Plateau,Tibet.On administration, which wascame within the jurisdiction of Nimajiangre County, Maizhokunggar County.Thispaper mainly through detailed study of geological characteristics, geochemistry of theelements, isochronology of the magma emplaced into the crust and formed theore-bearing porphyries,fluid inclusions,sulfur and lead isotope and so on,deeplyanalyzes important problems of its genesis, built up a metallogenic evolutionmodel,and throuth the study of prospeeting and evaluation,pointed out the maintargets of exploration guide.
     The exposed strata in the Bangpu ore filed from old to young are Luobaduiformation(P1l) of Lower Permian,the Dianzhong formation(E1d) of the Eogene andQuaternary(Q).Study shows that its mother rock is monzonite granite-porphyry.Detailed petrographic and geochemical studies show that it belongs to theshoshonite series and high-K calc-alkaline series,which high in SiO2(67.06%~73.70%)、K_2O (3.61%~7.642%), poor in CaO (0.14%~4.40%)and Na_2O(0.140%~4.40%).The monzonite granite-porphyry have high content of∑REE andvary grealy from22.01×10~(-6)to107.606×10~(-6),rich in LREE,low in HREE. A weaknegative to normal Eu anomaly vary from0.592~1.064.Traceelements arecharacterized by LILE-rich(enrichments in Rb、U、Cs) and HFSE-depletion(depletments in Ba、Sr、P、Ti and Y).The forming environment of monzonitegranite-porphyry is complex,but mainly in syn-collisional tectonic setting whichbelongs to the Indian-Asian Continental Collision,to which full of crust extensionaltectonic and refer to many stages of Gangdese Regional Plate subduction.Ore bearing monzonite granite-porphyry was mainly came from the crust’s reworking granitewhich belongs to S-types,but does not rule out of A-types of mantle oringin granite.The ore body maily be made up of Mo and Cu ore body and Pb and Zn ore body.TheMo and Cu ore body are located within the monzonite granite-porphyry(ηγπ) whichbelongs to the late Himalayan stage and wall rock of Dianzhong formation volcanicrock.In the plane of the horizon,the ore body is hollow-oval which like a bean orenormous size equiaxed dendrites in shape,while in section,it likes aciculate types orvertical body.ore body occurrences along their extension are stable.The Pb and Zn orebody yields in the contact zone and nearby where rock contact with limestone belongsto Luobadui Formation in Lower Permian(P1l),the distribution of ore body are nests,lentil,vein and layer-like-shaped.
     The structure of ore are impregnation,string,crumb, breccoated and massivestructure et al.The main testure are self-crystals to semi-self crystals,xenotopic,inclusion and coterminal texture et al. Dominanent metallic minerals are molybdenite,chalcopyrite,pyrite, and galenite,sphalerite et al.Nonmetallic minerals arequartz,potassium feldspar,plagioclase,sericite,calcite,chlorite etc.Through electronicprobe test, Mo, S main components content in molybdenite is similar to its theoreticalvalue(40.06%),calculate the molecular formula of molybdenite as Mo0.99S2-Mo1.02S2.In addition of the main elements such as Mo,Cu,Pb,Zn can be used, elementsof S,Au and Ag can also be comprehensive utilizated.
     This deposit have typical wall-rock alteration,which alteration zoningcharacteristic are similar to the model of lowell and Geibert.Zoning in plane or insection are like the same,from the inner to outer,K-silicate zone, sericite altered zone,argillic zone and aropilitic zone.The mineralization of Mo and Cu are mainly inK-silicate zone,secondly in sericite altered zone,while Pb and Zn are distributed inaropilitic zone.
     Isochronology study of rock forming and ore forming was applicated in thisarticle The zircon SHRIMP U-Pb technique was applied to measure the age of themonzonite granite-porphyry and granite-porphyry from the Bangpu porphy deposits,It was obtained that the206Pb/238U mean age respectively are13.9±0.3Myrs (MSWD=3.05)and14.2±0.2Myrs(MSWD=0.79).The isochron of whole rock Rb-Sr ofmonzonite granite-porphyry is13.88±0.38Myrs,which are all consistent with theirmodel ages.The isochron of Re-Os of molybdenite is14.92±0.18Myrs(MSWD=1.3),weighted mean age is14.56±0.18(MSWD=6.0),which are consistentwith their errors.While associated with the former researched data,full of nine point,gained an isochron age of Re-Os are14.67±0.54Myrs,weighted mean age as14.54±0.093Myrs,these ages are so closed to each other.So the age of14.67±0.54Myrs presented the age of ore-forming of Mo and Cu from Bangpu porphyrydeposit.Continuous laser microprobe40Ar-39Ar technique has been taken to carry outin stiu analysis on to the ore-bearing vein quartz,an40Ar-39Ar isochron which givesout an isochrons age of13.9±0.9Myrs(MSWD=29) and reverse isochrones age of13.8±1.6Myrs(MSWD=30).A pyrite Rb-Sr Isochron age of11.0±1.5Myrs withMSWD=3.5was obtained from ore-bearing Mo and Cu ores which represents the ageof Mo-Cu’s later episode mineralization.A sphalerite Rb-Sr Isochron age of3.6±1.5Myrs(R=0.9942)was obtained from ore-bearing lead and zinc ores,thise ageis lower than the age of zircon U-Pb,Re-Os age and Ar-Ar age, shows that the leadand zinc deposit is the activity of porphyry-after the term hydrotherMyrsl,whichrepresents the age of Pb and Zn’s later episode mineralization.The isochron age of thisdeposit is from l5.32±0.79Myrs to11.0±1.5Myrs.In this deposit,the Mo-Cu Myrsinlymineralized from14.67Myrs to11.0Myrs, ore-beard porphyry age of mineralizationwas from14.4Myrs to13.5Myrs,shows that its rcok-forming and ore-forming is acontinuous process,which belongs to a rapid outbreak of large-scale mineralizationprocess.
     Study of the temperatures,pressures,salinities,compositions and oxygen andhydrogen isotopes of fluid inclusions in quartz and calcite in various mineralizationstages of the hydrothermal ore-forming process indicates that the ore fluids in everyperiods belong to high and medium temperature (172~239℃),medium sality(23.96~50.85wt%NaCleq),high and medium density(1.0696~1.0849g/cm3)onesand the(Cl~--)SO_4(2-)Na~+-(K~+)hydrochemical type and formed in a low-pressure(36.9×10~5Pa~110.23×10~5Pa)and ore-forming pressure(23.4×10~5Pa~41.9×10~5Pa),ore-forming depeth is0.094~0.184km which belongs to super hypabyssal oreforming process.Three periods of the ore fluids may have been derived frommagmatic-hydrothermal and subsurface hydrothermal water,while subsurfacehydrothermal water prodorminent.
     Through the study of sulfur, lead and noble gas isotopes, it show that34S fromore-bearing magmatic and sulfide mineral are in accordance with magma sulfurcomposition (34S=0‰) which vary from-0.48‰~12.2‰(mean=3.80‰) and-1.5‰~+4.3‰(mean=0.98‰)respectively,and34S∑Sis-1.903‰.The lead isotopeof206Pb/204Pb,207Pb/204Pb,208Pb/204Pb from ore-bearing magmatic is vary from38.857~39.857,15.620~15.704,18.684~18.768respectively, while the lead isotopefrom galena is vary from18.752~18.825,15.712~15.718,39.348~39.463, it shows thenormal lead characteristics with the same homologous evolutionary history or the source.The eigenvalue and lead isotopic diagram shows they mixed with crustalmaterials and mantle materials, but majored in crust origin, mainly comes from theupper crust in orogenic belts.Sr isotopes and Re isotopes indicate that themetallogenic substance may be derived from the mantle, or mainly from mantle.
     Through these studies above,the genesis of this deposit was confirmed, it is avolcano hydrothermal deposit.while basised on the ore-bearing rock,the ore of Moand Cu is a porphyry copper type deposit,while the lead and zinc ore is carbonatetype.According to the analysis of ore-forming process, the evolution model of ore-forming in the area being established.Through alteration zones characteristics,geological prospecting line section,fluid inclusions and other aspects for explorationguide, We suggest that the west area have metallogenic potential of Mo-Cu deposit,especially at depth,the emphasis may be on the west and depth for later work.
引文
陈德潜,陈刚.1990.实用稀土元素地球化学[M].北京:冶金工业出版社,219-232.
    程顺波,庞迎春,曹亮.2008.西藏蒙亚啊矽卡岩铅锌矿床的成因探讨[J].华南地质与矿产,(3):50-56.
    丛柏林.1979.岩浆活动与火成岩组合[M].北京:地质出版社.
    丁枫,唐菊兴,崔晓亮.2006.硫、铅同位素及微量元素对西藏雄村铜金矿成矿物质来源的指示[J].矿床地质,25(sup):399-402.
    董彦辉,许继峰,曾庆高,等.2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J].岩石学报,22(3):661-668.
    杜欣,刘俊涛,王亚平.2004.西藏拉屋铜铅锌多金属矿床地质特征及成因分析[J].矿产与地质,18(5):410-414,449.
    范新,陈雷,秦克章,等.2011.西藏山南地区明则斑岩钼矿床蚀变矿化特征与成矿时代[J].地质与勘探,47(1):89-99.
    费光春.2010.西藏洞中拉热液型铅锌矿床成矿作用研究(博士论文)[D].导师:温春齐.成都:成都理工大学.
    费光春,温春齐,王成松,等.2010a.西藏墨竹工卡县洞中拉花岗斑岩锆石SHRIMP U-Pb定年[J]中国地质,37(2):470-476.
    费光春,温春齐,王成松,等.2010b.冈底斯东段洞中拉辉绿玢岩锆石SHRIMP U-Pb定年及意义[J].地质通报,29(8):1138-1142.
    费光春,温春齐,周雄,等.2010c.西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义[J]矿物岩石,30(3):38-43.
    费光春,温春齐,周雄,等.2010d.西藏洞中拉铅锌矿床成矿流体研究[J]地质与勘探,46(4):576-582.
    高一鸣,陈毓川,唐菊兴,等.2009.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J].地质学报,83(10):1436-1444.
    高一鸣,陈毓川,唐菊兴.2010.西藏工布江达县沙让斑岩钼矿床角闪闪长岩锆石SHRIMP定年及其地质意义[J].矿床地质,29(2):323-331.
    高一鸣,陈毓川,唐菊兴,等.2011.西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义[J].地质通报,30(7):1027-1036.
    高永丰,侯增谦,魏瑞华,等.2006.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的[J].岩石学报,22(3):547-557.
    葛良胜,邹依林,李振华,等.2003.西藏崩纳藏布和甲岗雪山地区花岗岩的地球化学特征及成因初探[J].矿物岩石,23(2):55-61
    和钟铧,杨德明,王天武.2006.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义[J].岩石矿物学杂志,25(3):185~193
    侯增谦.2010.大陆碰撞成矿论[J].地质学报,84(1):30-58.
    侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,28(10):27-30.
    侯增谦,吕庆田,王安建,等.2003a.初论陆-陆碰撞与成矿作用-以青藏高原造山带为例[J].矿床地质,22(4):320-329.
    侯增谦,曲晓明,王淑贤,等.2003b.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),33(7):609-618.
    侯增谦,莫宣学,杨志明,等.2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,33(2):340351.
    侯增谦,杨竹森,徐文艺,等.2006b.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,25(4):337358.
    侯增谦,潘桂棠,王安建,等.2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521543.
    侯增谦,曲晓明,杨竹森,等.2006d.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
    侯增谦,潘小菲,杨志明,等.2007,初论大陆环境斑岩铜矿[J].现代地质,21(2):332-351.
    侯增谦,王二七,莫宣学,等.2008.青藏高原碰撞造山与成矿作用[M].北京:地质出版社.
    黄典豪,吴澄宇,杜安道,等.1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J].矿床地质,13(3):221-230.
    黄勇,丁俊,唐菊兴,等.2011.西藏雄村铜金矿床Ⅰ号矿体成矿构造背景与成矿物质来源探讨[J].成都理工大学学报(自然科学版),38(3):306-312.
    蒋少涌,杨竞红,赵葵东,等.2000.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自然科学版),36(6):669-677.
    姜子琦,王强,WYMAN DA,等.2011.西藏冈底斯南缘冲木达约30Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?[J]地球化学,40(2):126-146
    孟祥金.2004.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究(博士论文)[D].导师:候增谦.北京:中国地质科学院.104页.
    孟祥金,侯增谦,高永丰,等.2003a.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,49(6):660-666.
    孟祥金,侯增谦,高永丰,等.2003b.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J],矿床地质,22(3):246-252.
    孟祥金,侯增谦,李振清.2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,80(4):554-560.
    郎兴海,唐菊兴,陈毓川,2010.西藏谢通门县雄村斑岩型铜金矿集区Ⅱ号矿体中辉钼矿Re-Os年代学及地质意义[J].矿物岩石,30(4):55-61.
    李丹,温春齐,周雄,等.2009.西藏邦铺钼(铜)多金属矿床锶同位素示踪[J].矿物学报,29(supp1):311-312.
    李奋其,高明,唐文清,等.2011.西藏亚贵拉含钼岩体锆石LA-ICP-MS年龄和地质意义[J].中国地质,37(6):1566-1574.
    李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,28(2):165-170.
    李光明,刘波,屈文俊,等.2005a.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学,29(4):482-492.
    李光明,芮宗瑶,王高明,等.2005b.藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义[J].矿床地质,24(5):481-489.
    李光明,刘波,余宏全,等.2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用-来自冲木达铜金矿床的Re-Os同位素年龄证据[J].地质通报,25(12):1481-1486.
    李晶,孙亚莉,何克,等.2010.辉钼矿Re-Os同位素定年方法的改进与应用[J].岩石学报,26(2)642-648.
    李金祥,秦克章,李光明,等.2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar:对岩浆-热液系统演化和成矿构造背景的制约[J].岩石学报,23(5):953-966.
    李仕辉,赵艳.2008.原子吸收光谱分析技术与应用[J].忻州师范学院学报,24(2):25~28.
    李胜荣,袁万明,屈文俊,等.2008.西藏墨竹工卡县甲马多金属矿床几组年龄数据的比较与成因研究[J].岩石学报,24(3):511-518.
    李永胜,赵财胜,吕志成,等.2011.西藏甲玛铜多金属矿床流体包裹体特征及地质意义[J].吉林大学学报(地球科学版),41(1):122-136.
    李振清,杨志明,朱祥坤,等.2009.西藏驱龙斑岩铜矿铜同位素研究[J].地质学报,83(12):1985-1996.
    连永牢,曹新,燕长海.2009.西藏工布江达县亚贵拉铅锌矿床地质特征及成因分析[J].地质与勘探,45(5):570-576.
    梁银平,朱杰,次邛,等.2010.青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J].地球科学-中国地质大学学报,32(2):211-223.
    刘鸿飞,多吉,张金树,等.2009.西藏雅鲁藏布江成矿区东段铜多金属矿勘查报告(2002.1~2007.12)[R].西藏自治区地质调查院(2009.12).
    刘婷婷,唐菊兴,刘鸿飞,等.2011.西藏墨竹工卡县洞中拉铅锌矿床S、Pb同位素组成及成矿物质来源[J].现代地质,25(5):869-876.
    刘显凡,战新志,高振敏,等.1999.云南六合深源包体与富碱斑岩成岩成矿的关系[J].中国科学(D辑),29(5):413-420.
    刘亚轩,张勤,黄珍玉,等.2006. ICP-MS法测定地球化学样品中As,Cr,Ge,V等18种微量痕量元素的研究[J].化学世界,(1):16~20.
    卢奂章,范宏瑞,倪培,等.2004.流体包裹体[M].北京:科学出版社
    路远发.2004.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,33(5):359-464.
    莫济海,梁华英,喻亨祥,等.2008.西藏冲木达铜-金(钼)矿床黑云角闪二长花岗岩锆石U-Pb年龄及其意义[J].地球化学,37(3):206-212.
    莫济海,梁华英,喻亨祥,等.2006.冈底斯斑岩铜矿带冲江及驱龙含矿斑岩体锆石ELA-ICP-MS及SHRIMP定年对比研究[J].大地构造与成矿学,30(4):504-509.
    潘桂棠,陈智梁,李兴振,等.1997.东特提斯地质构造形成演化[M].北京:地质出版社.
    秦志鹏,汪雄武,多吉,等.2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义[J].矿床地质,30(2):339-348
    曲晓明,侯增谦,黄卫.2001冈底斯斑岩铜矿(化)带:西藏的第二条玉龙铜矿带[J]?矿床地质,20:355-366.
    曲晓明,侯增谦,李佑国.2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.[J]地质通报,21(11):768-776.
    曲晓明,辛洪波,徐文艺.2007a.三个锆石U-Pb SHR IMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定[J].矿床地质,26(5):512-518.
    曲晓明,辛洪波,徐文艺.2007b.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报,81(7):964-971.
    芮宗瑶,黄崇轲,齐国明,等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社.1-350.
    芮宗瑶,侯增谦,曲晓明,等.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J]矿床地质,22(3):217-225.
    芮宗瑶,张立生,陈振宇,等.2004a.斑岩铜矿的源岩或源区探讨[J].岩石学报,20(2):229-238.
    芮宗瑶,李光明,张立生,等.2004b.西藏斑岩铜矿对重大地质事件的响应.地学前缘[J],11(1):145-152.
    芮宗瑶,侯增谦,李光明,等.2006a.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J].地质与勘探,42(1):1-6.
    芮宗瑶,张洪涛,陈仁义,等.2006b.斑岩铜矿研究中若干问题探讨[J].矿床地质,25(4):49-500.
    芮宗瑶,侯增谦,李光明,等.2006c.冈底斯斑岩铜矿成矿模式[J].地质论评,52(4):469-466.
    桑海清,王非,贺怀宇,等.2006.中国K-Ar法地质年龄标准物质ZBH-15黑云母的研制[J].矿物岩石地球化学通报,25(3):201-217
    邵洁涟.1988.金矿找矿矿物学[M].北京:中国地质大学出版社,147-205.
    佘宏全,丰成友,张德全,等.2006.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,22(3):689-696.
    宋彪,张玉海,万渝生,等.2002,锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,48(增刊):2630.
    宋彪,张拴宏,王彦斌,等.2006.锆石SHRIMP年龄测定数据处理时系统偏差的避免-标准锆石分段校正的必要性[J].岩矿测试,25(1):914.
    唐菊兴,陈毓川,王登红,等.2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,83(5):698-704.
    唐菊兴,黎风佶,李志军,等.2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,29(3):461-475.
    王保弟,许继峰,陈建林,等.2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究[J].岩石学报,26(6):1820-1832
    王登红,陈郑辉,陈毓川,等.2010.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,84(7):1031-1040.
    王立强,顾雪祥,程文斌,等.2010.西藏蒙亚啊铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪[J].现代地质,24(1):52-58.
    王立强,顾雪祥,唐菊兴,等.2011.西藏蒙亚啊铅锌矿床成矿流体来源及特征[J].成都理工大学学报(自然科学版),38(1):67-75.
    王立全,潘桂棠,朱弟成,等.2008.西藏冈底斯带石炭纪-二叠纪岛弧造山作用火山岩和地球化学证据[J].地质通报.27(9):1509-1534.
    王亮亮,莫宣学,李冰,等.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报,22(4):1001-1008.
    王治华,王科强,喻万强,等.2006.西藏申扎县甲岗雪山钨钥秘多金属矿床的Re-Os同位素年龄及其意义[J].安徽地质,16(2):112-119.
    王之田,秦克章.1991.REE在判别斑岩体含矿性上的应用[J].地质科技情报.10(2):37-41.
    温春齐,多吉.2009.矿床研究方法[M].成都:四川科学技术出版社.
    温春齐,周雄,吴鹏宇,等.2009a.西藏自治区墨竹工卡县邦铺矿区钼铜多金属矿区钼(铜)多金属矿详查地质填图报告(1:1000)[R].拉萨:西藏自治区地勘局地热地质大队.
    温春齐,彭秀红,霍艳,等.2009b.西藏邦铺钼铜多金属矿床成因初析[R].成都:成都理工大学.
    温春齐,周雄,霍艳,等.2010.冈底斯东段典型矿床定年及流体来源研究[R].成都:成都理工大学.
    温泉,多吉,温春齐,等.2011.西藏邦铺钼铜矿区花岗斑岩成岩年龄研究[J].矿物岩石,31(2):48-53.
    吴鹏宇.2011.西藏邦铺斑岩型钼铜多金属矿床围岩蚀变研究[D].成都:成都理工大学.
    西藏自治区地勘局地热地质大队.2007.西藏自治区墨竹工卡县邦铺矿区铜钼多金属矿普查总体设计暨2007年工作安排[R].拉萨:西藏自治区地勘局地热地质大队.
    夏抱本,夏斌,王保弟,等.2010.汤不拉含矿斑岩的形成时代及其对斑岩钼铜矿的制约[J].大地构造与成矿学,34(2):291-297.
    夏斌,徐力峰,张玉泉,等.2008.西藏南部谢通门花岗闪长岩锆石SHRIMP定年及其地质意义[J].大地构造与成矿学,32(2):238-242.
    谢玉玲,李应栩,Zhaoshan CHANG,等.2009.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征[J].地质学报,83(12):1869-1887.
    徐文艺,曲晓明,侯增谦,等.2006a.西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨[J].矿床地质,25(3):243-251.
    徐文艺,曲晓明,侯增谦,等.2006b.西藏雄村大型铜金矿床的特征、成因和动力学背景[J].地质学报,80(9):1392-1407.
    薛春纪,陈毓川,王登红,等.2003.滇西北金顶和白秧坪矿床:地质和He,Ne,Xe同位素组成及成矿时代[J].中国科学(D辑):33(4):315-322.
    姚鹏,王全海,李金高.2002.西藏甲玛-驱龙矿集区成矿远景[J].中国地质,29(2):197-202.
    闫国强,钟康惠,白景国,等.2011.西藏洞中拉铅锌矿床S、Pb同位素组成对成矿物质来源的示踪[J].甘肃地质,20(2):35-65.
    闫学义,黄树峰,杜安道.2010.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用[J].地质学报,84(3):398-406.
    杨志明,侯增谦.2009a.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质,28(5):515-538.
    杨志明,侯增谦.2009b.西藏驱龙超大型斑岩铜矿的成因:流体包裹体及H-O同位素证据[J].地质学报,83(12):1838-1859.
    叶先仁,吴茂炳,孙明良.2001.岩矿样品中稀有气体同位素组成的质谱分析[J].岩矿测试,20(3):174-178.
    叶先仁,陶明信,余传螯,等.2007.用分段加热法测定的雅鲁藏布江蛇绿岩的He、Ne同位素组成:来自深部地幔的信息[J].中国科学(D辑),37(5):573-583.
    应立娟,唐菊兴,王登红,等.2009.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,28(3):265-268.
    应立娟,王登红,唐菊兴,等.2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J].地质学报,84(8):1165-1174.
    应立娟,唐菊兴,王登红,等.2011.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系[J].岩石学报,27(7):2095-2102.
    翟伟,孙晓明,贺小平,等.2006.新疆阿希低硫型金矿稀有气体同位素地球化学及其成矿意义[J].岩石学报,22(10):2590-2596
    赵文津.2007,大型斑岩铜矿成矿的深部构造岩浆活动背景[J].中国地质,34(2):179-205.
    赵政章,李用铁,叶和飞,等.2001.青藏高原大地构造特征及盆地演化[M].北京:科学出版社.
    张洪涛,陈仁义,韩芳林.2004.重新认识中国斑岩铜矿的成矿地质条件.矿床地质,23(2):150-163.
    张刚阳,郑有业,龚福志,等.2008.西藏吉如斑岩铜矿与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,24(3):473-479.
    张万平,莫宣学,朱弟成,等.2009.西藏冈底斯带南部雄村铜金矿成因探讨-来自锆石U-Pb年龄的证据[J].岩石矿物学杂志,28(3):235-242.
    张绍云,王联魁,朱为方,等.1985.用磷灰石中稀土元素判别花岗岩成矿系列[J].地球化学,14(1):45~57
    郑永飞,陈江峰.2000.稳定同位素地球化学[M].北京:科学出版社.
    郑有业,张刚阳,许荣科,等.2007.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,52(21):2542-2548.
    章邦桐,吴俊奇,凌洪飞,等.2008.“花岗岩锆石U-Pb年龄能代表花岗岩侵位年龄”质疑-花岗岩锆石U-Pb年龄与全岩Rb-Sr等时线年龄对比证据[J].地质论评,54(6):775-785.
    张宏飞,徐旺春,郭建秋,等.2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据[J].地球科学,32(2):155-166.
    张学全,胡先才,温春齐,等.2009.西藏自治区墨竹工卡县邦铺矿区钼(铜)多金属矿详查报告[R].拉萨:西藏地勘局地热地质大队.
    中国科学院数学研究所概率统计室编.1979.常用数里统计表[M].科学出版社.pp18
    周肃,莫宣学,董国臣,等.2004.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J].科学通报,49(20):2095-2103.
    周雄.2009.西藏邦铺钼铜多金属矿床流体包裹体研究(硕士论文)[D].导师:温春齐.成都:成都理工大学.
    周雄,温春齐,张学全,等.2008a.西藏邦铺钼多金属矿床成矿元素特征[J].西藏地质,(2):50-53.
    周雄,温春齐,曹盛远.2008b.西藏冈底斯邦铺铜钼矿床Cu-Mo、Pb-Zn相关性分析[A].见:陈毓川等主编.第九届全国矿床会议论文集[C].北京:地质出版社.315-317.
    周雄,温春齐,费光春,等.2010a.西藏邦铺斑岩钼矿床二长花岗斑岩地球化学特征及构造意义[J].矿物岩石,30(4):48-54.
    周雄,温春齐,温泉,等.2010b.西藏邦铺大型斑岩钼铜矿床二长花岗斑岩锆石SHRIMP定年及其地质意义[J].矿物岩石地球化学通报,29(4):373-379.
    周雄,温春齐,张学全,等.2010c.西藏邦铺大型钼铜多金属矿床Rb-Sr等时线年龄及地质意义[J].高校地质学报,16(4):448-456.
    周雄,温春齐,霍艳,等.2010d.西藏邦铺钼铜多金属矿床成矿流体的特征[J].地质通报,29(7):1039-1048.
    周雄,温春齐,张学全,等.2010e.西藏邦铺钼铜多金属矿床电子自旋共振测年[J].矿床地质,29(sup):851-852.
    周雄,温春齐,张贻,等.2011a.西藏邦铺钼铜多金属矿床变质岩原岩恢复探讨[J].矿物学报,31(Sup1):439.
    周雄,温春齐,温泉,等.2011b.西藏邦铺斑岩型钼铜多金属矿床含钼铜脉石英的激光显微探针40Ar/39Ar年龄及地质意义[J].矿物岩石,31(1):43-48.
    周雄,温春齐,张学全,等.2012.西藏邦铺钼铜多金属矿床硫、铅同位素地球化学特征[J].地质与勘探,48(1):24-30.
    周玉,温春齐,周雄,等.2009.西藏邦铺钼铜多金属矿床稀土元素特征[J].矿物学报,29(Sup):363-364.
    朱炳泉.1998.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社.
    朱训,黄崇轲,芮宗瑶,等.1983.德兴斑岩铜矿[M].北京:地质出版社.
    Areulus R J.1994.Aspects of magma genesis in arcs[J].Lithos,33:189-208.
    Arnold G L, Anbar A D, Barling J,et al.2004.Molybdenum isotope evidence for widespreadanoxia in mid-Proterozoic oceans[J].Science,304:87–90.
    Ballentine C J, O’Nions R K.1991.The nature of mantle neon contributions to Vinena Basinhydrocarbon reservoirs [J].Earth and Planetary Science Letters,111:533-567.
    Baptiste P J, Fouquet Y.1996. Abundance and isotopic composition of helium in hydrothermalsulfides from the East Pacific Rise at13°N [J].Geochim Cosmochim Acta,60:87-93.
    Batchelor R A,Bowden P.1985.Petrogenetic interpretation of granitoid rock series usingmulticationic parameters[J].Chemical Geology,48(1-4):43-55.
    Banks N A and Page N J.1977.Some observations that bear on the origin of porhphyry copperdeposit[M].United States Geology Survey,Open File Report,77-127.
    Beane R E and Titley S R.1981.Porphyry copper deposits:Part II.Hydrothermal alteration andMineralization [C].Economic Geology75th Anniversary Volume,235-263.
    Becker S P, Fall A and Bodnar RJ.2008.Synthetic Fluid Inclusions. XVII. PVTX Properties ofHigh Salinity H2O-NaCl Solutions(>30wt%NaCl): Application to Fluid Inclusions thatHomogenize by Halite Disappe-arance from Porphyry Copper and Other Hydrothermal OreDeposits[J].Economic Geology,103(3):539~554.
    Belousova E A,Griffin W L,O'Reilly S Y,et al.2002.Igneous zircon; trace element composition asan indicator of source rock type[J]. Contributions to Mineralogy and Petrology,143(5):602622.
    Bischoff J L.1991.Densities of liquids and vapors in boiling NaCl-H2O solutions;a PVTxsummary from300℃to500℃[J].American Journal of Science,291(4):309-338.
    Bodnar R J.1985.Pressure-volume-temperature-composition (PVTX)properties of the systemH2O-NaCl at elevated temperatures and pressures[D].Unpublished PhD dissertation thesis,The Pennsylvania State University,183p.
    Bouse R M, Ruiz J, Titley S R,et al.1999. Lead isotope compositions of Late Cretaceous and earlyTertiary igneous rocks and sulfide minerals in Arizona; implications for the sources ofplutons and metals in porphyry copper deposits[J].Economic Geology,94(2p):211-244.Boynton W V.1984.Geochemistry of the rare earth elements: meteoritestudies[C] Henderson P.Rare earth element geochemistry. Amsterdam:Elsevier,63~114.
    Braxton D and Mathur R.2011.Exploration Applications of Copper Isotopes in the SupergeneEnvironment: A Case Study of the Bayugo Porphyry Copper-Gold Deposit, SouthernPhilippines[J].Economic Geology,106:1447-1463.
    Burnard P G, Turner H R G.1999.Mantle, crustal and atmospheric noble gases in Ailaoshan Golddeposits,Yunnan Province,China[J].Geochimica et Cosmochimica Acta,63:1595-1604.
    Burnham C W.1979.Magmas and hydrothermal fluids.In Barnes H L(ed.)Geochemistry ofHydrothermal Ore Deposits [M].2nd ed.Wiley, New York.71-136.
    Candela P A and Holland H D.1986. The partitioning of copper and molybdenum silicate meltsand aqueous fluids[J].Geochimica et Cosmochimica Acta,48:373-380.
    Candela P A, Piccoli P M.2005.Magmatic processes in the development of porphyry2type oresystems [C]//Economic Geology100th Anniversary Volume,25-38.
    Clayton R N,Rex R W,Syers J K,et al.1972.Oxygen isotope abundance in quartz from Pacificpelagic sediments [J].Journal of Geophysical Research,77(21):3907-3915.
    Cline J and Bodnar R J.1991.Can economic porphyry copper mineralization be generated by atypical calc-alkaline melt?[J]. Journal of Geophysical Research,96:8113-8126.
    Coleman M L.1977.Sulphur isotopes in petrology[J].Journal of the Geological Society of London.165(1/2):37-46.
    Cooke D R, Deyell C L,Waters P J, et al.2011.Evidence for Magmatic-Hydrothermal Fluids andOre-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District,Philippines[J].Economic Geology,106:1399-1424.
    Cooke D R,Hollings P and Walshe J L.2005.Giant Porphyry Deposits:Characteristics distribution,and tectonic controls[J]. Economic Geology,100:801-818.
    Core D P, Kesler S E, Essene E J.2006.Unusually Cu-rich magmas associated with giant porphyrycopper deposits: evidence from Bingham,Utah[J]. Geology,34(1):41-44.
    Damon P E.1986.Batholith-volcano coupling in the metallogeny of porphyry copper deposits, inFriedrich, G H, ed,Geology and metallogeny of copper deposits[M]. Berlin, Springer-verlag,216-234.
    Dauphas N,Reisberg L,Marty B.2001.Solvent extraction, ion chromatography, and mass spectro-metry of molybdenum isotopes[J].Analytical Chemistry,73:2613-2616
    Depaolo D J,Manton W I,Grew E S,et al.1982.Sm-Nd, Rb-Sr, and U-Th-Pb systematics ofgranulite facies rocks from Fyfe Hills,Enderby Land, Antarctica [J].Nature,298:614-618.
    Dilles J H.1987.Petrology of the Yerington Batholith,Nevada:Evidence for evolution of porphyrycopper ore fluids[J]. Economic Geology,82:1754-1789.
    Dilles J H and Einaudi M T.1992.Wall-rock alteration and hydrothermal flow paths about theAnn-Mason porphyry copper deposit,Nevada-a6-km vertical reconstruction[J].EconomicGeology,87:1963-2001.
    Doe B R and Zartman R E.1979.Plumbotectonics[A].the Phanerozoic.In:Barnes H L(ed).Geochemistry of hydrothermal ore deposits[C]. John Wiley&Sons. New York, NY, UnitedStates.22-70.
    Farmer G L and Donald DePaolo J.1984. Origin of Mesozoic and Tertiary granite in the WesternUnited States and implications for pre-Mesozoic crustal structure;2, Nd and Sr isotopicstudies of unmineralized and Cu-and Mo-mineralized granite in the Precambrian craton.Journal of Geophysical Research,89(B12):10,141-10,160
    Faure G and Mensing T M.2005.Isotopes: Principles and Applications.2nd ed[M].New York: JohnWiley&Sons,321-343.
    Force E R.1998. Laramide alteration of Proterozoic diabase: A likelycontributor of copper toporphyry systems in the Dripping Springmountains area.southeastern Arizona [J].EconomicGeology,93(2):171-183.
    Gustafson L B and Hunt J P.1975.The porphyry copper deposit at El Salvador, Chile [J].Economic Geology,70:857-912.
    GutscherM A,Maury R, Eissen J P, et al.2000, Can slab melting becaused by flat subduction?[J].Geol ogy,28(6):535-538.
    Hagstrum H D.1956.Auger Ejection of Electrons from Molybdenum by Noble Gas Ions[J].Physical Review.104(3):672-683.
    HalterW E, Heinrich C A, Pettke T.2005.Magma evolution and the formation of porphyry Cu-Auore fluids: evidence from silicate and sulfide melt inclusions[J]. Mineralium Deposita,39(8):845-863.
    Hall D L,Sterner S Ml,Bodnar R J.1988.Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology,83(1):197-202.
    Harris A C, Golding S D, and White N C.2005. Bajo de la Alumbrera copper-gold deposit: Stableisotope evidence for a porphyry-related dominated by magmatic aqueous fluids[J].EconomicGeology,100:863-886.
    Harris A C, Kamenetsky V S, White N C, et al.2003. Melt inclusions in veins: Linking magmasand porphyry Cu deposits[J]. Science,302:2109-2111.
    Harris A C, Kamenetsky V S, White N C, et al.2004. Volatile phase separation in silicic magmasat Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina[J]. Resource Geology,54:341-356.
    Harrison D,Bernard P,Turner G.1999.Noble gas behaviour and composition in the mantle: constr-aints from the Iceland Plume[J]. Earth and Planetary Science Letters,171:199-207
    Heinrich C A.2005. The physical and chemical evolution of low-salinity magmatic fluids at theporphyry to epithermal transition: a thermodynamic study[J].Mineralium Deposits,39:864-889.
    Heinrich C A, Gunther D, Audetat A, et al.1999. Metal fractionation between magmatic brine andvapor, determined by microanalysis of fluid inclusions[J].Geology,27:755-758.
    Helgeson H C.1969.Thermodynamics of hydrothermal systems at elevated temperatures andpressures[J]. American Journal of Science,267(7):729-804.
    Herzarkhani A, Williams J A, Gammons C.1999, Factors controlling copper solubility andchalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. MineraliumDeposita,34(8):770-783.
    Hollings P, Wolfe R, David R et al.2011.Geochemistry of Tertiary Igneous Rocks of NorthernLuzon, Philippines: Evidence for a Back-Arc Setting for Alkalic Porphyry Copper-GoldDeposits and a Case for Slab Roll-Back?[J].Economic Geology,106:1257-1277.
    Hollister V F, Potter R R, and Barker A L.1974. Porphyry-type deposits of the Appalachianorogen[J]. Economic Geology,69:618-630.
    Hoog J C M,Mason P R O and van Bergen M J.2001.Sulfur and chalcophile elements inSubduction zones:Contraint from a laser ablation ICP-MS study of melt inclusions fromGalunggung volcano,Indonesia [J].Geochimica et Cosmochimica Aeta,65:3147-3167.
    Hoskin P W O, Black L P.2000,Metamorphic zircon formation bysolid-state recrystallization ofprotolith igneous zircon[J].Journal of Metamorphic Geology,18:423439.
    Hoskin P W O, Schaltegger U.2003,The composition of zircon and igneous and metamorphic petrogenesis [J]. Reviews of Mineralogy and Geochemistry,53:2762.
    Hon ZQ,GaoYF,QuXM,et al.2004.Origin of adakitic intrusives generated during mi d-Mioceneeast-west extension in southern belt[J].Earth and Planetary Science Letters,220:139-155.
    Hou Z Q,Ma H W,Zaw, K,et al.2003, The Himalayan Yulong porphyry copper belt: Product oflarge-scale strike-slip faulting in Eastern Tibet[J]. Economic Geology,98:125-145.
    Irvine T N, Baragar W R A.1971. A guide to the chemical classification of the common volcanicrocks.Canadian Journal of Earth Sciences=Revue Canadienne des Sciences de la Terre,8(5):523-548
    James D, Sacks I S.1999.Cenozoic formati on of the centralAndes: A geophysical pers pective [M]//Skinner B F.Geology and Ore Deposits of the CentralAndes. Society of EconomicGeologists,Special Publication,7:1-25.
    Keith J D,Whitney J A, Hattori K, et al.1997.The role of magmatic sulfides and mafic alkalinemagmas in the Bingham and Tintic mining district,Utah[J]. Journal of Petrology,38(12):1679-1690.
    Kelley K D,Eppinger R G,Lang J,et al.2011.Porphyry Cu indicator minerals in till as anexploration tool:example from the giant Pebble porphyry Cu-Au-Mo deposit, Alaska,USA[J].Geochemistry: Exploration, Environment, Analysis,11(4):321-334.
    Kennedy B M,Hiyagon H,Reynolds J H.1980.Crustal neon:a striking uniformity[J]. Earth andPlanetary Science Letters,98:277-286.
    Kerrich R, Goldfrab R, Groves D, et al.2000.The geodynamics of world class gold deposit:characteristics, space-time distributi ons, and origin[J]. Reviews in Economic Geology,13:501-551.
    Kesler S E andWilkinson B H.2008.Earth's copper resources estimated from tectonic diffusion ofporphyry copper deposits[J].Geology,36:255-258.
    Kister D,H arms.1998.U.Post-col1isiona1potassic granitoids from the southern and northwesternparts of the Late Neopro-Terozoic East African Orogen:a review[J].Lithos.45:177-196.
    Lance P Black, Sandra L Kamo, Allen C M,et al.2003a, TEMORA1: A new zircon standard forPhanerozoic U-Pb geochronology [J]. Chemical Geology,200:155170.
    Lance P B, Sandra L Kamo, Ian S Williams, et al.2003b.The Application of SHRIMP toPhanerozoic geochronology; a critical appraisal of four zircon standards [J].ChemicalGeology,200:171188.
    Landtwing M R,Furrer C,Redmond P B.,et al.2010.The Bingham Canyon Porphyry Cu-Mo-AuDeposit.III.Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion[J]. EconomicGeology,105:91-118.
    Lowell J D and Guilbert J M.1970.Lateral and vertical alteration-mineralization zoning inporphyry ore deposits[J]. Economic Geology,65:373-408.
    Ludwig K R.SQUID1.02, a user’s manual.2002. Berkeley Geochronology Center SpecialPublication No.2.2455Ridge Road, Berkeley, CA94709, USA.
    Ludwig K R.User's manual for Isoplot3.00.2003. A geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication No.4a, Berkeley, California.
    Lutz N,Wolfgang H,Nicholas N,et al.2008.Zircon M257-a homogeneous natural referencematerial for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and GeoanalyticalReseach,32:247265.
    Maitre R W,Bateman P,Dudek A,et al.1989.he International Union of Geological SciencesSubcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell Scientific.
    Markl G,Lahaye Y,Schwinn G.2006.Copper isotopes as monitors of redox processes inhydrothermal mineralization[J]. Geochim Cosmochim Acta,70:4215-4228
    Mathur R, Brantley S, Anbar A,et al.2010. Variation of Mo isotopes from molybdenite inhigh-temperature hydrothermal ore deposits[J].Miner Deposita,45:43-50.
    Mcdonoigh W F.1989. Chemical and isotopic systematics of oceanic basalts: implications formantle compositions and processes. In: Saunders A D, ed. Magmatism in the OceanicBasins[M]. Geological Society, London: Special Publication,313~345
    Mirnejad H,Mathur R,Einali M.,et al.2010.A comparative copper isotope study of porphyrycopper deposits in Iran[J].Geochemistry: Exploration, Environment, Analysis,10:413-418.
    Misra K C.2000. Understanding mineral deposits[M]. Kluwer Academic Publishers,353-413.
    M ller A, O’Brien P J, Kennedy A,et al.2003, Linking frowth episodes of zircon and metamorphictextures to zircon chemistry:An example from the ultrahigh-temperature granulites ofRogaland(SW NORWAY).EMU Notes in Mineralogy,5:6582.
    Nagao K, Takahashi E.1993.Noble gas in the mantle wedge and lower crust: An inference fromthe isotopic analyses of xenoliths from Oki-Dogo and Ichinom egata, Japan[J]. GeochemicalJournal.27:229-240.
    Nagaseki H and Hayashi K.2008.Experimental study of the behavior of copper and zinc in aboiling hydrothermal system[J]. Geology,36:27-30.
    Noble J A.1970.Metal provinces of the western United States.Geol Soc Am Bull.81:1607.1624
    Noll PD,NewsonHE,LeemanW Pand an JG.1996.The role of hydrotherma[fluids in the productionof subduction zone of magmas:evidence from sidemphile and chalcophile trace elements andboron [J].Geochimica et CosmochimieaAeta,60:587-611.
    Norman D I and Landis G P.1983.Source of mineralizing components in hydrothermal ore fluidsas evidenced by87Sr/86Sr and stable isotope data from the Pasto Bueno deposit, Peru[J].Economic Geology,78:451-465.
    Norman D I,Musgrave J A.1994.N2-Ar-He compositions in fluid inclusions:N2-Ar-Hecompositions in fluid inclusions; implicators of fluid source[J].Geochimica et CosmochimicaActa,58(3):1119-1131.
    Ohmoto H,Rye R O.1979.Isotopes of sulfur and carbon[A].In:Barnes H L,ed.Geochemistry ofHydrothermal Ore Deposits[C].New York:W iley,509-567.
    O’Neil J R and Taylor H P.1969.Oxygen isotope equilibrium between muscovite andwater[J].Journal of Geophysical Research,74(25):6012-6022.
    Ozima M and Podosek F A.1983Noble Gas Geochemistry[M].Cambridge University Press
    Patterson D B, Honda M, McDaugall I.1994.Atmospheric, MORB-like,and crustal-derived noblegas compenents in subduction-related samples[A].In: Matsuda J I,ed.Noble Gas Geochem AndCosmochem[C].Tokyo: Terra Sci Publi Co,147-158.
    Peacock S M.1993.Large-scale hydration of the lithosphere above subdueting shbs [J].ChemicalGeology,108:49-59.
    Pearce J A,Harris N B W,Tindle A G.1984. Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks[J].Journal of Petrology,25(4):956-983
    Pearce J A,Mei H.Volcanic rocks of the1985Tibet geotraverse:Lhasa to Golmud.PhilosophicalTransactions of the Royal Society of London[J].Mathematical and Physical Sciences:Series A1988,327(1594):169-201.
    Philippe S,Thomas S,Claude J A.1988.Neon isotope in submarine basalt[J]. Earth and PlanetaryScience Letters,91:73-88
    Pinckney D M and Rafter T A.1972.Fractionation of Sulfur Isotopes During Ore Deposition in theUpper Mississippi Valley Zinc-Lead District[J].Economic Geology,67(3):315-328.
    Poreda.1983.None,water and carbon in vocanic rocks and gases[D].University of California.
    Redmond P B, Einaudi M T, Iran E E, et al.2004. Copper deposition by fluid cooling inintrusion-centered:New insights from the Bingham porphyry ore deposit, Utah[J].Geology,217-230.
    Richards J P.2003.Tectono-magmatic precursors for porphyry Cu(-Mo-Au) deposit formation[J].Economic Geology,98:1515-1533.
    Richards, J.P,2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu depo-sits:In Porter T M[C](.edSuper-Porphyry Copper&Gold Deposits[A]:A Global Perspective,PGC Publishng, Adelaide, pp.7-25.
    Richards J P,Boyce, A.J,and Pringle M S.2001.Geologic evolution of the Escondida area, northernChile: a model for spatial and temporal location of porphyry Cu mineralization[J]. EconomicGeology,96:271-306.
    Richards J P and Kerrich R.2007. Adakite-like rocks: Their diverse origins and questionable rolein metallogenesis[J]. Economic Geolgoy,102:537-576.
    Rickwood P C.1989.Boundary lines within petrologic diagrams which use oxides of major andminor elements[J]. Lithos,22(4):247~263
    Robb L.2005.Introduction to ore-forming progresses[M].Oxford:Blackwell Publishing.
    Roedder E.1977.Fluid Inclusions as tool in mineral exploration[J].Econology Geology,2(3):503-525.
    Roedder E.1984.Fluid inclusions[J].Reviews in Mineralogy,12:644pp
    Rubatto D,Gebauer D.2000.Use of cathodoluminescence for U-Pb zircon dating by ionmicropro-be;some examples from the Western Alps (in Cathodoluminescence in geoscienc-es).Springer, Berlin, Federal Republic of Germany,373400.
    Ruiz J,Jones L M and Kelly W C.1984. Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks, using calcite and other common Sr-bearing mineral [J].Geology,12:159-262.
    Rusk B G, Reed M H,Dilles J Het al.2004.Compositions of magmatic hydrothermal fluidsdetermined by LA-ICP-MS of fluid inclusion from the porphyry copper-molybdenumdeposit at Butte,MT[J].Chemical Geology,210:173-199.
    Scarsi P.2000.Fractional extraction of helium by crushing of olivine and clinopyroxenephenocrysys: Effects on the3He/4He measured ratio[J]. Geochim Cosmochim Acta,64(21):3751-3762.
    Schlosser P, Winckler G.2002.Noble gases in ocean water and sediments.In:Porcelli D P,Ballentine C J, Wieler R, eds.Noble Gases. Reviews in Mineralogy and Geochemistry,47(1):701-730
    Shinohara H and Hedenquist J W1997. Constraints on magma degassing beneath the FarSoutheast porphyry Cu-Au deposit[J]. Philippines.38:1741-1752.
    Sillitoe R H.1972.A plate tectonic model for the origin of porphyry copper deposits[J].EconomicGeology,67:184-197.
    Sillitoe R H.1973.Geology of the Los Pelambres porphyry copper deposit,Chile[J].EconomicGeology,68:1-10.
    Sillitoe R H.1980.Arc porphyry copper and Kuroko-type massive sulfide deposits incompatible[J].Geology,8:11-14.
    Sillitoe R H.1997.Characteristics and controls of the largest porphyrycopper-gold and epithermalgold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,44:373-388.
    Sillitoe R H.2010.Porphyry Copper Systems[J].Economic Geology,105:3-41.
    Simmons S F, Sawkins F J, Schlutter D J.1987.Mantle-derived helium in two Peruvianhydrothermal ore deposits[J].Nature,329:429-432.
    Singer D A, Bergen V I, Menzie W D, et al.2005.copper deposit density[J].Econmic Geology,100:491-514.
    SmoliarML,Walker R J and Morgan JW.1996.Re-Os ages of group ⅡA,ⅢA,ⅣA and ⅥB ironmeteorites.Science,271:1099-1102.
    SolomonM.1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits inisland arc[J].Geology,18:630-633.
    Soloviev S G.2011.Geology, Mineralization, and Fluid Inclusion Characteristics of the KensuW-Mo Skarn and Mo-W-Cu-Au Alkalic Porphyry Deposit, Tien Shan, Kyrgyzstan[J].Economic Geology,106:193-222.
    Stacey J S,Hedlund D C.1983.Lead isotope compositions of diverse igneous rocks and oredeposits from southwestern NewMexico and their implications for early Proterozoic crustalevolution in the western United States[J].Geological Society of America Bulletin.94:43-57.
    Stacey J S, Kramers J D.1975.Approximation of terrestrial lead isotope evolution by a two-stagemodel[J]. Earth Planet. Sci. Lett.,26:207221.
    Sterner S M,Hall D L,Bodnar R J,Norman D I.1988.Synthetic fluid inclusions; V, Solubilityrelations in the system NaCl-KCl-H2O under vapor-saturated conditions[J].Geochimica etCosmochimica Acta.52(5)989-1005.
    Stuart F M, Burnard P G, Taylor R P,et al.1995.Resolving mantle and crustal contributions toancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Momineralisation,South Korea[J].Geochim Cosmechim Acta,59:4663-4673.
    Sylvester P J.1998.Post-collisional strongly peraluminous granites[J].lithos,45(1):29~14.
    Tatsumi Y.1986.Formation of the volcanic from:in sumuction zones [J].Geophysical ResearchLetters,17:717-720.
    Taylor H P.1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems ofHydrothermal Alteration and Ore Deposition[J].Economic Geology,69(6):843-883.
    Taylor S R,McLennan S M.1986. The chemical composition of the Archaean crust(in The natureof the lower continental crust)Geological Society Special Publications,24:173-178
    Titley S R and Beane R E.1981.Porphyry copper deposit:Part I.Geologic settings,petrology,andtectnogenesis [C].Economic Geology75th Anniversary Volume,214-234.
    Thomas S,Claude J A.1982.Terrestrial xenology[J].Earth and Planetary Science Letters,60:389-406
    Ulrich T,Gilnther D and Heinrich C A.1999.Gold concentrations of magmatic brines and the metalbudget of porphyry copper deposits[J].Nature,399:676-679.
    Ulrich T,Gunthur D and Heinrich C A.2001.The evolution of a porphyry Cu-Au deposit based onLA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera,Argentina[J].EconomicGeology,96:1743-1774.
    Vanko D A., BonninM M, Philippot P. et al.2001.Fluid inclusions in quartz from oceanichydrothermal specimens and the Bingham, Utah porphyry-Cu deposit; a study w ith P IXEand SXRF[J].Chemical Geology,173(1-3):227-238.
    Wen D R, Liu D Y, Chung S L, et al.2008.Zircon SHRIMP U–Pb ages of the Gangdese Batholithand implications for Neotethyan subduction in southern Tibet[J].Chemical Geology,252(3-4):191-201.
    Wilson T H.1989. Geophysical studies of large blind thrust, Valley and Ridge Province, CentralAppalachians.AAPG Bulletin,73(3):276-288.
    Xu Wenyi,Fengchu Pan,Xiaoming Qu,et al.2009.Xiongcun, Tibet: A telescoped system ofveinlet-disseminated Cu (Au)mineralization and late vein-style Au (Ag)-polymetallicmineralization in a continental collision zone[J].Ore Geology Reviews,36(1-3)174–193.
    Zartman R E and Doe B R.1981.Plumbotectonics; the model(in Evolution of the upper mantle)[J]. Tectonophysics,75(1-2):135-162.
    Zheng Y F.1991.Sulphur isotopic fractionation between sulphate and sulphide in hydrothermal oredeposits:disequilibrium vs equilibrium processes[J].Teera Nova,3:510-516.
    Zhiming Yang, Zengqian Hou,Noel C. White, et al.2009.Geology of the post-collisional porphyrycopper–molybdenum deposit at Qulong, Tibet[J].Ore Geology Reviews,36(1-3):133–159.
    Zhu X K, O'Nions R K, Guo Y,et al.2000.Determination of natural Cu-isotope variation byplasma-source mass spectrometry; implications for use as geochemical tracers[J].ChemicalGeology,163:139–149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700