用户名: 密码: 验证码:
分布式卫星编队构形控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式卫星系统因其独特的技术优势和广阔的应用前景而备受关注。协同控制技术是实现分布式卫星应用的关键技术,而编队构形控制则是协同控制研究的重要内容,因此对分布式卫星技术的发展具有重要意义。本文在考虑一定任务背景的前提下,对分布式卫星编队构形控制及其相关技术开展了研究。
     首先研究了分布式卫星编队构形的构成机理。分别对分布式卫星相对运动的动力学方程和运动学方程进行了推导和简要的分析。在定义编队构形参数的基础上,给出了编队构形确定方程,进而详细分析了编队卫星轨道根数误差对编队构形的影响。
     其次,以相对运动的运动学方程为基础,对近地轨道编队构形的受摄稳定性进行了分析。以无量纲化德洛勒变量描述的轨道摄动方程为工具,研究了J 2项摄动造成的编队构形参数变化规律,并推导了补偿J 2项摄动下构形沿航迹漂移的长半轴修正方法。以考虑周日效应的大气密度模型为基础,分析了编队卫星轨道能量耗散差异,进而得到了编队构形的沿航迹漂移规律,然后设计了补偿大气摄动的面质比调整方法。
     再次,研究了分布式SAR卫星的编队构形优化设计问题。设计了满足系统总体要求的分布式SAR卫星参考轨道。以分布式SAR卫星系统性能作为优化指标,以遗传算法作为优化工具进行编队构形优化设计。以典型SAR卫星的技术参数为初始条件,设计了几种编队构形,计算结果表明设计构形能够满足任务提出的高程测量精度和可测速比要求。
     然后,研究了基于大气阻力的编队构形沿航迹控制问题。在对大气阻力控制基本原理进行详细分析的前提下,提出了相平面控制和模糊控制两种控制方法。分析了构形沿航迹漂移的相轨迹,针对单开关门限控制律不能对初始误差收敛的问题,设计了倾斜开关曲线控制,并分析了相应的极限环参数。提出了沿航迹漂移的模糊控制方法,较好的解决了构形沿航迹漂移不稳定的问题。在对输入输出变量进行模糊化的基础上,设计了模糊控制规则库和控制量解模糊算法,并对控制器进行了稳定性分析。
     随后,研究了基于脉冲推力的编队构形控制问题。针对系统对星间基线的具体要求,设计了采用气动阻力板和脉冲推力发动机作为执行器的编队构形控制方案。提出了延长控制周期的编队构形参数偏置策略,使构形控制周期达到任务的要求。研究了编队构形侧向冲量控制和轨道面内绕飞椭圆冲量控制方法,实现了构形的长期控制。对控制方法的能耗进行了分析,仿真结果表明在采用文中提出的编队构形控制方案的条件下,每年用于构形控制的推进剂仅为卫星总质量的1.73%左右。
     最后,研究了基于连续微推力的编队构形精密保持控制问题。基于克拉索夫斯基定理推导了编队构形非线性反馈控制律,然后利用数值仿真方法研究了反馈系数、导航误差和推力误差对控制的影响。基于非线性反馈控制律,研究了重力场测量内编队系统的精密保持控制。
Distributed Satellite System (DSS) has been well concerned because of its unique technical advantages and good prospects in applications. Control of formation configuration is an important section of coordinate control, which is the key technique to enable distributed satellite. Therefore, control of formation configuration is of great importance to the development of DSS. Considering some certain missions, control of formation configuration and its correlative techniques were studied in the thesis.
     Firstly, the constitution mechanism of formation configuration was studied. The dynamic equations and the kinematic equations of relative motion were derived and analyzed separately. Based on the definition of formation configuration parameters, the determination formulas for formation configuration were given, followed with a detailed analysis on the effect of the orbit elements’errors on the formation configuration.
     Secondly, the stability of perturbed configuration in LEO was analyzed on the basis of the kinematic equations of relative motion. The change of the configuration general parameters was studied with the use of perturbed equations described with non-dimensional Delaunay variables, and then the adjustment of semi-major axis was derived to compensate the J 2 perturbation. Using the model of atmosphere density including daily effect, the difference of orbital energy consumption between the formation flying satellites is analyzed, from which the along-track drift law of the formation configuration was derived. And then two methods for the adjustment of area-mass-ratio were designed to compensate the atmosphere perturbation.
     Thirdly, formation optimized design was studied for the distributed SAR. On the research of the coverage performance of the distributed SAR, the reference orbit was designed to meet with the requirement of the integrated design, and the effect of the technical parameters on the mapping duration was analyzed. Taking the system performance as the sufficiency function, genetic algorithm was used to optimize the formation configuration. Based on the parameters of several typical SAR satellites, a number of formation configurations were designed. The result indicated that the configurations can guarantee the accuracy of the height measurement or the ratio of the measurable velocity to fulfill the mission.
     Fourthly, the control of the along-track drift of the formation was studied based on atmosphere drag. With a detailed analysis on the principle of the control, phase-plane method and fuzzy control method were presented. According to the phase trajectory of along-track drift, the switching function with the oblique lines was designed in order to converge the initial errors, and the limit cycle was analyzed correspondingly. To deal with the instability of the along-track drift of the configuration, the fuzzy control method was presented. Based on the fuzzification of the inputs and outputs, the fuzzy rules and the defuzzification algorithm were designed, followed with the analysis of the stability of the controller.
     Fifthly, the control of the formation was studied based on impulse thrust. According to the limitation of the baselines, the control scheme was designed using the drag panels and impulse thrusters. In order to prolong the control duration to meet the requirement of the mission, the adjustment strategy of the configuration was presented by offsetting the parameters. The cross-track control and co-plane control were studied based on impulse thrust, by which the permanent control of the formation could be enabled. The fuel consumption of the method was analyzed, and the simulation result indicated that the mass of propellant used in the formation control was only 1.73% in proportion to the total mass, on the condition of the control scheme proposed in the thesis.
     Finally, precise maintenance of formation was studied based on continuous micro-thrust. Nonlinear feedback control law was derived using Krassowski’s theorem. Then, the effects of the feedback coefficient, navigation error and thrust error were studied with numerical simulation. Based on the nonlinear feedback control law, the precise maintenance of the inner formation for the gravity field observation was studied at the end.
引文
[1] 林来兴. 微小卫星编队飞行组成虚拟卫星研究[J]. 863 航天技术通信, 2000(5): 1 ~ 29
    [2] Graeme B. Shaw, D. W. Miller, D. E. Hastings. Generalized Characteristics of Communication, Sensing, and Navigation Satellite System[J]. Journal of Spacecraft and Rockets, Vol. 37, No. 6, November-December 2000
    [3] Graeme B. Shaw. The Generalized Information Network Analysis Methodology for Distributed Satellite Systems, PhD Thesis of MIT, 1999
    [4] 姜昌. 编队飞行卫星在间断式导航、天基干涉仪和分工式工作星的可行性构想[J]. 遥测遥控, 2001, 3, 22(2): 1 ~ 7
    [5] R. L. Ticker, J. D. Azzolini. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA’s Earth Science Enterprise in the 2010-2015 Timeframe[R]. NASA/TM-2000-209964, 2000
    [6] Mark E. Perry, Peter Alea etc. Earth Observing-1 Spacecraft Bus[C]. 15th AIAA/USU Small Satellite Conference, 2001, SSC01-Ⅴ-6
    [7] http://nmp.jpl.nasa.gov/st3/indexm.html
    [8] http://nmp.jpl.nasa.gov/st5/
    [9] Jeffrey G. Reichbach, Raymond J. Sedwick, Manuel Martinez-Sanchez. Micropropulsion System Selection for Precision Formation Flying Satellites[D], Master Thesis of Massachusetts Institute of Technology, January 2001
    [10] Kenneth Lau, Mark Colavita, etc. The New Millennium Formation Flying Optical Interferometer[C]. American Institute of Aeronautics and Astronautics GN&C Conference, August 1997, AIAA97-3820
    [11] Cyrus D. Jilla, David W. Miller. A Reliability Model for the Design and Optimization of Separated Spacecraft Interferometer Arrays[C]. 11th AIAA/USU Conference on Small Satellites, 1997
    [12] Maurice Martin, Steve Kilberg. TechSat 21 and Revolutionizing Space Missions using Microsatellites[C]. 15th Annual AIAA/USU Conference on Small Satellites, 2001, SSC01-1-3
    [13] Steve Chien, Rob Sherwood, etc. The Techsat-21 Autonomous Sciencecraft Constellation Demonstration[C]. Proceedings of i_SAIRAS 2001, Montreal, Canada, June 2001
    [14] Das, A. and R. Cobb, TechSat-21 - SpaceMissions Using Collaborating Constellations of Satellites[C], 12th Annual AIAA/USU Conference on Small Satellites, Logan Utah, 1998, SSC98-Ⅵ-1
    [15] Kim Luu, Maurice Martin, etc. University Nanosatellite Distributed Satellite Capabilities to Support TechSat21[C]. 13th AIAA/USU Conference on Small Satellites, AUG 1999, 23 ~ 26
    [16] Maurice Martin, Howard Schlossberg, etc. University Nanosatellite Program[C]. IAF Symposium Redondo Beach, CA, 1999
    [17] Mark E. Campbell, Thomas Schetter. Formation Flying Mission for the UW Dawgstar Satellite[C]. IEEE Aerospace Conference Proceedings, 2000, 117 ~ 125
    [18] B. Underhill, A. Friedman, etc. Three Corner Sat Constellation[C]. 13th Annual AIAA/USU Conference on Small Satellites, Logan Utah, 1999, SSC99-Ⅲ-1
    [19] Charles Swenson, Bela Fejer. The Ionospheric Nanosatllite Fomation, Exploring SpaceWeather[C]. 16th AIAA/USU Small Satellite Conference, 2002, SSC02-Ⅸ-1
    [20] http://planetquest.jpl.nasa.gov/TPF/tpf_index.cfm
    [21] Mike Lieber. Dennis Gallagher, etc. System performance evaluation of the MAXIM concept with integrated modeling[C]. Proceedings of SPIE, X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy, 2003, Vol. 4851, 557 ~ 567
    [22] http://sci.esa.int/home/cluster
    [23] Massonnet D. Capabilities and Limitation of the Interferometric Cartwheel[J], IEEE Trans. on Geo. and Remote Sensing, 2001, 39(3): 506 ~ 520
    [24] Alberto Moreira, Gerhard Krieger. Spaceborne Synthetic Aperture Radar (SAR) Systems: State of the Art and Future Developments[C]. 11th GAAS Symposium, Munich, Germany, 2003. 385 ~ 388
    [25] Alberto Moreira, Gerhard Krieger, etc. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry[C]. IEEE 0-7803-8743-0/04, 2004
    [26] Fiedler H., Krieger G., etc. Analysis of Satellite Configurations for Spaceborne SAR Interferometry[C]. International Symposium Formation Flying Mission & Technologies, Toulouse, France, 29-31 October 2002
    [27] M. Kirschner, O. Monotenbruck, s. Bettadpur. Flight Dynamics Aspects of the Grace Formation Flying[C]. 2nd International Workshop on Satellite Constellations and Formation Flying, Haifa, Israel, 2001
    [28] http://sci.esa.int/home/smart-2
    [29] W. M. Folkner, P. L. Bender, R. T. Stebbins. LISA Mission Concept Study[R]. JPL Publication 97-16, March 2, 1998
    [30] Rich Burns, Ctaig A. Mclaughlin, Jesse Leitner etc. Techsat 21: Formation Design, Control, and Simulation[C]. Aerospace conference proceeding, 2000 IEEE
    [31] 夏南银, 张守信, 穆鸿飞. 航天测控系统[M]. 北京: 国防工业出版社, 2002
    [32] 潘科炎. GPS 在航天器编队飞行任务中的基础性作用[J]. 航天控制, 2003, 5, 21(3): 53 ~ 60
    [33] Egemen Imere, Phil Palmer and Yoshi Hashida. Precise Relative Orbit Determination of Low Earth Orbit Formation Flights Using GPS Pseudorange and Carrier-Phase Measurements[C]. 16th AIAA/USU Small Satellite Conference, 2002, SSC02-Ⅳ-1
    [34] Tobe Corazzini and Jonathan P. How. Onboard Pseudolite Augmentation System for Relative Navigation[C]. Proc. of the ION-GPS Conference, Sept. 1999, 1559 ~ 1568
    [35] Chan-Woo Park. Precise Relative Navigation Using Augmented CDGPS[D]. PhD. Thesis of Stanford University, 2001
    [36] Philip Andrew Ferguson. Distributed Estimation and Control Technologies for Formation Flying Spacecraft[D]. Master Thesis of MIT, 2003
    [37] Franz D. Busse, Jonathan P. How. Demonstration of Adaptive Extended Kalman Filter for Low Earth Orbit Formation Estimation Using CDGPS[C]. the Institute of Navigation GPS Meeting, Portland OR, September 2002
    [38] 王元钦, 马宏, 陈谷仓. 分布式航天器相对状态测量方法研究[C]. 北京: 分布式航天器新概念及其应用技术研讨会论文集, 2004, 114 ~ 121
    [39] Wu S. C. Kuang D. Positioning with Autonomous Formation Flyer(AFF) on Space Technology 3[C]. ION-GPS’99, Nashville, TN, 1999
    [40] Gary Mitchell. High-Accuracy Ranging Using Spread-Spectrum Technology[C]. 15thAIAA/USU Small Satellite Conference, 2001, SSC01-VI-2
    [41] N. Glenn Creamer. Multiple Quantum Well Retromodulators for Spacecraft-To-Spacecraft Laser Interrogation, Communication, and Navigation[C]. 15th AIAA/USU Small Satellite Conference, 2001, SSC01-VI-6
    [42] John L. Junkins, Declan C. Hughes, Karim P. Wazni, Vatee Pariyapong. Vision-Based Navigation for Rendezvous, Docking and Proximity Operation[C], 22nd Annual AAS Guidance and Control Conference, Breckenridge, CO, Feb 1999, AAS Paper 99-021
    [43] John L. Crassidis, Roberto Alonso, John L. Junkins. Optimal Attitude and Position Determination From Line-of-sight Measurements[C], The Richard H. Battin Astrodynamics Conference, College Station, Texas, 20-21 March, 2000
    [44] Roberto Alonso, John L. Crassidis and John L. Junkins. Vision-Based Relative Navigation for Formation Flying of Spacecraft[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, August 2000
    [45] 聂万胜, 庄逢辰. 航天器电推进技术现状与发展趋势[J]. 装备指挥技术学院学报, 2003, 1, 14(1): 37 ~ 45
    [46] Rachel Leach, Kerry L. Neal. Discussion of Micro-Newton Thruster Requirements of a Drag-Free Control System[C]. 16th AIAA/USU Conference on Small Satellites, 2002, SSC02-Ⅷ-1
    [47] Mark Campbell. UW DAWGSTAR: ONE THIRD OF ION-F[C]. 13th AIAA/USU Conference on Small Satellites, SSC99-III-4
    [48] 尤政, 张高飞, 任大海. MEMS 微推进技术的研究[J]. 纳米技术与精密工程, 2004, 6, 2(2): 98 ~ 105
    [49] 李新洪, 曾国强, 王兆魁. 分布式航天器自主运行技术的发展[C]. 北京: 分布式航天器新概念及其应用技术研讨会论文集, 2004, 122 ~ 125
    [50] Nicola Muscettola, P. Pandurang Nayak, etc. Remote Agent: To Boldly Go Where No AI System Has Gone Before[J]. Artificial Intelligence, Vol.103, No.1-2, 1998, 5 ~ 47
    [51] Douglas E. Bernard, Gregory A. Dorais, etc. Design of the Remote Agent Experiment for Spacecraft Autonomy[C]. Proceedings of the 1998 Aerospace Conference, Aspen CO, 1998, 259 ~ 281
    [52] Thomas Schetter, Mark Cambell, Derek Surka. Multiple Agent-Based Autonomy for Satellite Constellation[J]. Artificial Intelligence, Vol. 145, No. 1-2, 2003, 147 ~ 180
    [53] W. Wang, N. Xi, Andy Sparks. Formation Control of Autonomous Agents in 3D Workspace[C]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, April 2000, 1755 ~ 1760
    [54] Stephen Levin-Stankevich. Commanding and Safeguarding the Three Corner Satellite Constellation[C]. 16th AIAA/USU Conference on Small Satellites, 2002
    [55] Gregory Yashko. Ion Micro-Propulsion and Cost Modeling for Satellite Clusters[D]. Master Thesis of MIT, 1998
    [56] R. J. Sedwick, T. L. Hacker, and D. W. Miller. Optimum Aperture Placement for a Space-Based Radar System Using Separated Spacecraft Interferometry[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, Oregon, August 1999, AIAA 99-4271
    [57] Carrie Brackett, Mark Kumashiro, Andrew Peffer. AFRL’s Multi-Satellite Deployment System(MSDS)[C]. 15th AIAA/USU Conference on Small Satellites, 2001, SSC01-Ⅺ-5
    [58] Andrew Robertson, Tobe Corazzini, Jonathan P. How. Formation Sensing and Control Technologies for a Separated Spacecraft Interferometer[C]. the 1998 American Control Conference, Vol. 3, Philadelphia, Pensylvania, USA, June 24-26, 1998, 1574 ~ 1579
    [59] D. Miller, A. Saenz-Otero, etc. SPHERES: A Testbed for Long Duration Satellite Formation Flying in Micro-Gravity Conditions[C]. AAS 00-110
    [60] Robert Twiggs, Jonathan How. Orion: A Microsatellite Testbed for Formation Flying[C]. 12th AIAA/USU Conference on Small Satellites, 1998, SSC98-Ⅻ-6
    [61] 魏钟铨. 合成孔径雷达卫星[M]. 北京: 科学出版社, 2001, 2
    [62] Runge H, Gill E, et al. An Interformetric SAR Satellite Mission[C]. In: 54th International Astronautical Congress, Bremen, Germany, September 29 – October 3 2003. 1 ~ 7
    [63] 周荫清, 徐华平, 陈杰. 分布式小卫星合成孔径雷达研究进展[J], 电子学报, 2004, 31(B12): 1939 ~ 1944
    [64] Massonnet, D., etc. A Wheel of Passive Radar Microsats for Upgrading Existing SAR Projecst[C]. IGARSS, Honolulu, HI, USA, 2000, v3: 1000 ~ 1003
    [65] 林来兴. 发展我国小卫星星座和测控技术[J]. 飞行器测控学报, 2000, 19(3): 17 ~ 22
    [66] 徐华平. 分布式小卫星合成孔径雷达理论与方法研究[D]. 北京航空航天大学工学博士学位论文, 2003
    [67] 梁甸农. 小卫星分布式雷达系统总体研究[C]. 分布式航天器新概念及其应用技术研讨会论文集, 北京, 2004, 290 ~ 295
    [68] 赵军, 肖业伦. 用于对地观测定位的编队飞行卫星群轨道构形设计[J]. 宇航学报, 2003, 11, 24(6): 563 ~ 568
    [69] 林来兴. 近距离空间交会动力学[J]. 中国空间科学技术, 1998, 4, 18(2): 40 ~ 47
    [70] 林来兴. 空间停靠动力学和控制[J]. 宇航学报, 1999, 4, 20(2): 14 ~ 21
    [71] 李俊峰, 高云峰 等. 卫星编队飞行动力学与控制研究[J]. 力学与实践, 2002 年第 4 卷
    [72] J. Van der Ha, R. Mugellesi. Analytical Models for Relative Motion under Constant Thrust[J]. Journal of Guidance, Control, and Dynamics, Vo. 13, No.4, July-August 1990
    [73] 林来兴. 小卫星编队飞行及其轨道构成[J]. 中国空间科学技术, 2001, 2, 21(1): 23 ~ 28
    [74] 周荻, 慕春棣. 交会对接中的 Hill 制导误差[J]. 中国空间科学技术, 1999, 8, 19(4): 1 ~ 7
    [75] 何焱, 谈细春. 空间交会对接中 Hill 方程的计算误差特性研究[J]. 中国空间科学技术, 1998, 12, 18(6): 7 ~ 14
    [76] 张振民, 许滨, 张珩, 孙兰, 潘力均. 航天器相对运动与 Hill 方程的适用性分析[C]. 中国空间科学技术, 2002, 2, 22(1): 1 ~ 8
    [77] Andrew Sparks. Satellite Formation Keeping Control in the presence of gravity perturbation[C]. Proceeding of the American Control Conference, Chicago, Illinois, June 2000
    [78] 张玉锟, 戴金海. 卫星编队飞行的地球扁率摄动分析[J]. 宇航学报, 2002, 5, 23(3): 72 ~ 76
    [79] Samuel Schweighart, Raymond Sedwick. A Perturbative Analysis of Geopotential Disturbances for Satellite Cluster Formation Flying[C]. 2001 IEEE Aerospace Conference, vol.2, Big Sky, Montana, USA, March 10-17,2001
    [80] Samuel A. Schweighart. Development and Analysis of a High Fidelity Linearized J2 Model for Satllite Formation Flying[D]. Master Thesis of MIT, 2001
    [81] Mayer Humi, Thomas Carter. Rendezvous Equations in a Central-Force Field with LinearDrag[J]. Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, January-February, 2002
    [82] Thomas Carter, Mayer Humi. Clohessy-Wiltshire Equations Modified to Include Quadratic Drag[J]. Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, November-December, 2002
    [83] 杨宇, 韩潮. 编队飞行卫星群描述及摄动分析[J]. 中国空间科学技术, 2002, 4, 22(2): 15 ~ 23
    [84] Kyle T. Alfriend, Hanspeter Schaub, Dong-Woo Gim. Gravitational Perturbations, Nonlinearity and Circular Orbit Assumption Effects on Formation Flying Control Strategies[J]. AAS 00-012
    [85] 吴宝林, 曹喜滨. 摄动椭圆参考轨道的相对运动状态转移方程[J]. 宇航学报, 2005, 11, 26(6): 702 ~ 706
    [86] 韦娟, 袁建平. 小卫星编队飞行的相对运动学方程研究[J]. 飞行力学, 2002, 3, 20(1): 29 ~ 32
    [87] Schaub H. Spacecraft Relative Orbit Geometry Description Through Orbit Element Difference[C]. 14th US National Congress of Theoretical and Applied Mechanics, Blacksburg, VA, June 2002
    [88] 李俊峰, 孟鑫, 高云峰, 李响. J2 摄动对编队飞行卫星相对轨道构形的影响[J]. 清华大学学报(自然科学版), 2004, 44(2): 224 ~ 227
    [89] 孟鑫, 李俊峰, 高云峰. 卫星编队飞行相对轨道的摄动研究综述[J]. 宇航学报, 2004, 7, 25(4): 473 ~ 478
    [90] 侯育卓, 赵军. 摄动对编队飞行星座相对构型的影响分析[J]. 飞行器测控学报, 2003, 9, 22(3): 30 ~ 35
    [91] Hanspeter Schaub, Kyle T. Alfriend. J2 Invariant Relative Orbits for Spacecraft Formations[C]. Flight Mechanics Symposium, Goddard Space Flight Center, Greenbelt, Maryland, May 18-20 1999. Paper No. 11
    [92] 吴宝林, 曹喜滨. 大气阻力摄动对卫星编队飞行队形的影响分析[J]. 航天控制, 2006, 1, 24(1): 19 ~ 23
    [93] 黄卫东,张育林. 分布式卫星轨道构形的大气摄动分析及修正方法[J]. 宇航学报, 2005, 9, 26(5): 649 ~ 652
    [94] David Mishne. Formation Control of LEO Satellites subject to Drag Variations and J2 Perturbations[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 5-8 August 2002, Monterey, California
    [95] 王鹏基, 杨涤. 小卫星编队飞行队形设计与轨道要素确定[J]. 飞行力学, 2002, 9, 20(3): 39 ~ 43
    [96] Lovell, Horneman, Tragesser, and Tollefson. A Guidance Algorithm for Formation Reconfiguration and Maintenance Based on the Perturbed Clohessy-Wiltshire Equations[C]. AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, Aug 3-7 2003, AAS 03-649
    [97] Frank R. Chavez, T. Alan Lovell. Relative-Orbit Element Estimation for Satellite Navigation and Guidance[C]. AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Aug 16-19 2004, Providence, Rhode Island, AIAA-2004-5214
    [98] 杨帆, 崔祜涛, 崔平远. 编队飞行卫星轨道的初步设计研究[J]. 飞行力学, 2005, 6, 23(2): 59 ~ 62
    [99] 高云峰, 李俊峰. 卫星编队飞行中的队形设计研究[J]. 工程力学, 2003, 8, 20(4): 128 ~ 131
    [100] 曾国强, 张育林. 编队飞行队形设计一般化方法[J]. 中国空间科学技术, 2003, 1, 23(1): 12 ~ 16
    [101] 曾国强, 陈永志. 编队飞行稳定性及队形设计研究[J]. 装备指挥技术学院学报, 2002, 12, 13(6): 38 ~ 42
    [102] 董哲, 张晓敏, 尤政. 基于最小二乘估计的卫星编队飞行轨道设计[J]. 清华大学学报, 2006, 46(2): 210 ~ 213
    [103] 陈永志. 分布式卫星编队构形设计研究[D]. 装备指挥技术学院硕士学位论文, 2004, 11
    [104] 安雪滢, 杨乐平, 张为华, 郗晓宁. 大椭圆轨道卫星编队飞行相对运动分析[J]. 国防科技大学学报, 2005, 3, 27(2): 1 ~ 6
    [105] 安雪滢, 张为华, 杨乐平, 郗晓宁. 考虑地球扁率的大椭圆轨道编队飞行优化设计[J]. 宇航学报. 2006, 3, 27(2): 306 ~ 311
    [106] 张珩, 孙兰. 大偏心率远距离航天器编队飞行设计[J]. 工程力学, 2005, 12, 22(6): 229 ~ 233
    [107] Harri Laakso, Philippe Escoubet, etc. Cluster – A Microscope and a Telescope for Studying Space Plasmas[J]. ESA Bulletin, Vol 121, Page 11-17, February 2005
    [108] Cyrus D. Jilla. Separated Spacecraft Interferometry – System Architecture Design and Optimization[D]. Master Thesis of MIT, 1998
    [109] Hauke FIEDLER, Gerhard KRIEGER, etc. Analysis of Satellite Configuration for Spaceborne SAR Interferometry[J]. IEE Proceedings, Part F, Radar, Sonar and Navigation, 2003, 150(3): 87 ~ 96
    [110] Alfred NG, Ralph GIRARD, Vyacheslav SOKOL. Orbit Selection for RadarSAT Interferometry Tandem Mission[C]. International Symposium Formation Flying Mission &Technologies, 2002, Toulouse, France, 29 ~ 31
    [111] 陈杰, 周荫清, 李春升. 分布式星载干涉 SAR 基线设计与性能分析[J]. 电子学报, 2004, 12, 32(12): 1974 ~ 1977
    [112] 陈杰, 周荫清, 李春升. 分布式SAR小卫星编队轨道设计方法研究[J]. 中国科学 E辑 信息科学, 2004, 34(6): 654 ~ 662
    [113] 刘建平, 梁甸农. 微小卫星编队系统的干涉 SAR 空间基线稳定性分析[J]. 系统工程与电子技术, 2005, 2, 27(2): 218 ~ 220
    [114] 王彤, 保铮, 廖桂生. 分布式小卫星干涉高程测量[J]. 系统工程与电子技术, 2004 , 7, 26(7): 859 ~ 862
    [115] Randal W. Beard, Wynn Stirling, Rick Frost. A Hierarchical Coordination Scheme for Satellite Formation Initialization[C]. AIAA-98-4225
    [116] 王兆魁. 分布式卫星动力学建模与控制研究[D]. 国防科学技术大学工学博士学位论文, 2006
    [117] Daniel P Scharf, Fred Y Hadaegh, Scott R Ploen. A Survey of Spacecraft Formation Flying Guidance and Control (Part 1): Guidance[C]. Proceedings of the American Control Conference, Denver, Colorado, June 4-6, 2003, 1733 ~ 1739
    [118] Daniel P Scharf, Fred Y Hadaegh, Scott R Ploen. A Survey of Spacecraft Formation Flying Guidance and Control (Part 2): Control[C]. Proceedings of the American Control Conference, Boston, Massachusetts, June 30 – July2, 2004, 2976 ~ 2985
    [119] Rechard H.Vassar. Formationkeeping for a pair of Satellite in a Circular Orbit[J]. Journal of Guidance, Control, and Dynamics, 1985, Vol. 8, 235 ~ 242
    [120] Vikram Kapila, Andrew G. Sparks, James M. Buffington, etc. Spacecraft Formation Flying: Dynamics and Control[C]. Proceeding of American Control Conference, San Diego, California, June 1999
    [121] A. Sparks. Linear Control of Spacecraft Formation Flying[C]. AIAA Guidance, Navigation, and Control Conference, Denver, CO, August 2000, AIAA2000-4438
    [122] Andrew Sparks. Satellite Formationkeeping Control in the Presence of Gravity Perturbations[C]. Proceeding of the American Control Conference, Chicago, Illinois, June 2000
    [123] Scott R. Starin, R.K. Yedavalli. Design of a LQR Controller of Reduced Inputs for Multiple Spacecraft Formation Flying[C]. Proceedings of the American Control Conference, Arlington, VA, June25-27 2001
    [124] Tamas Kormos, Phil Palmer, Martin Sweeting. Series of Satellite Encounters to Solve Autonomous Formation Assembly Problem[C]. 16th AIAA/USU Small Satellite Conference, 2002, SSC02-VII-7
    [125] R. K. Yedavalli, Andrew G. Sparks. Satellite Formation Flying Control Design Based on Hybrid Control System Stability Analysis[C]. Proceedings of the American Control Conference, Chicago, Illinois, June 2000
    [126] 王兆魁, 张育林, 刘昆. 一种共轨道面双星环绕编队飞行的方法[J]. 飞行力学, 2002, 6, 20(2): 43 ~ 46
    [127] 于萍, 张洪华. 椭圆轨道编队的构形变化控制方法[J]. 中国空间科学技术, 2006, 2, 26(1): 1 ~ 8
    [128] Qi guoyan. Nonlinear Dynamics and Output Feedback Control of Multiple Spacecraft in Elliptical Orbits[C]. Proceeding of American Control Conference,Chicago,lllinois, 2000,839 ~ 843
    [129] Marcio S. de Queiroz, Vikram Kapila, and Qiguo Yan. Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying[J]. Journal of Guidance, Control and Dynamics, May-June 2000, Vol. 23, No. 3, pp.385-390
    [130] 刘少然, 曾国强. 编队飞行航天器平均轨道根数非线性控制研究[J]. 中国空间科学技术, 2005, 10, 25(5): 24 ~ 28
    [131] His-Han Yeh. Nonlinear Tracking Control for Satellite Formations[J]. Journal of Guidance, Control and Dynamics, March-April 2002, Vol. 25, No.2
    [132] 王兆魁, 张育林. 分布式卫星精确构形保持变结构控制[J]. 航天控制, 2005, Vol.23 No.6
    [133] Wang Zhaokui, Zhang Yulin. Sliding Mode Control for Satellite Formation Keeping Against J2 Perturbation[C], Proceedings of the 23rd Chinese Control Conference, Wuxi, China, Aug. 2004. , 1386 ~ 1390
    [134] John E. Prussing, Jeng-Hua Chiu. Optimal Multiple-Impulse Time-Fixed Rendezvous Between Circular Orbits[J]. Journal of Guidance, Vol. 9, No.1, Jan-Feb 1986
    [135] M. R. Ilgen. Low Thrust OTV Guidance using Lyapunov Optimal Feedback Control Techniques[J]. Advances in the Astronautical Sciences, Vol. 85, Part 2, 1527 ~ 1545, 1993. AAS93-680
    [136] Hanspeter Schaub, Srinivas R. Vadali, etc. Spacecraft Formation Flying Control usingMean Orbit Elements[J]. JAS-975
    [137] Hanspeter Schaub. Kyle T. Alfriend. Hybrid Cartesian and Orbit Element Feedback Law for Formation Flying Spacecraft[C]. AIAA-2000-4131
    [138] Bo J. Naasz. Classical Element Feedback Control for Spacecraft Orbital Maneuvers[D]. Master Thesis of Virginia Polytechnic Institute and State University, 2002
    [139] 向开恒, 肖业伦. 卫星星座的站位保持[C]. 微小卫星和星座技术学术研讨会论文集, 威海, 1999, 8
    [140] 林来兴. Orbcomm 小卫星星座和数据通信系统[C]. 现代小卫星技术(三), 现代小卫星星座及其关键技术文集, 1998, 5
    [141] 林西强. 军用星座设计及气动力控制技术研究[D]. 国防科技大学工学博士学位论文, 2000, 4
    [142] Leonard C. L. Formationkeeping of Spacecraft via Differential Drag[D]. Master Thesis of MIT, 1986, 7
    [143] Leonard C. L., Hollister W. M., Bergmann E. V. Orbital Formationkeeping with Differential Drag[J]. Journal of Guidance, Control and Dynamics, 1989, 12(1): 108 ~ 113
    [144] Daniel N. J. du Toit, J. J. du Plessis, W. H. Steyn. Using atmospheric drag for constellation control of low earth orbit micro-satellites[C]. The 10th AIAA/USU Conference on Small Satellites, 1996
    [145] 杨维廉. 利用大气阻力对卫星星座的控制[J]. 航天器工程, 1999, 8(1): 16 ~ 20
    [146] Mark Campbell, R. Rees Fullmer. Christopher D. Hall. The ION-F Formation Flying Experiments[C]. AAS/AIAA Space Flight Mechanics Meeting, AAS 00-108, 2000, 1
    [147] Jean Fourcade. Mission analysis and orbit control of interferometric wheel formation flying[C]. Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA SP-548). Jointly organised by the German Space Operations Center of DLR and the European Space Operations Centre of ESA. 11-15 October 2004, Munich, Germany
    [148] Rich Burns, Michael J. Gabor, Craig A. Mclaughlin, K. Kim Luu. Solar Radiation Pressure Effects on Formation Flying of Satellites with Different Area to Mass Ratios[C]. AIAA/AAS Astrodynamics Specialist Conference, Dever, CO, 14-17 August 2000, AIAA 2000-4132
    [149] Daniel W Kwon, Raymond J Sedwick, David W Miller. Electromagnetic Formation Flight[J]. AAS05-013, 163 ~ 179
    [150] 曾颖超. 航天器飞行力学[M]. 西安: 西北工业大学出版社, 1993
    [151] 郗晓宁, 王威. 近地航天器轨道基础[M]. 长沙: 国防科技大学出版社, 2003, 4
    [152] 杨嘉墀. 航天器轨道动力学与控制(上)[M]. 北京: 宇航出版社, 1995
    [153] J R Wertz. Spacecraft Attitude Determination and Control[M]. D. Deidel Publishing Company, Dordrecht, Holland, 2000
    [154] 林来兴. 空间交会对接技术[M]. 北京: 国防工业出版社, 1995, 9
    [155] 林来兴. 卫星编队飞行动力学仿真及其应用[J]. 中国空间科学技术, 2005, 4, 25(2): 26-33
    [156] 黄卫东. 分布式卫星系统轨道构形设计与控制方法研究[D]. 国防科技大学工学博士学位论文, 2004, 10
    [157] Chen Jie, Xu Huaping, Zhou Yinqing, Li Chunsheng. Interferometric Baseline Design and Performance Evaluation for 3-Dimensional Formation Flying SAR Satellites System[C].International Conference on Space Information Technology, edited by Cheng Wang, Shan Zhong, Xiulin Hu, Proc. Of SPIE Vol. 5985: 598523, 2005
    [158] 杨维廉. 近圆轨道控制的分析方法[J]. 中国空间科学技术, 2003, 10, 23(5): 1 ~ 5
    [159] 刘林. 航天器轨道理论[M]. 北京: 国防工业出版社, 2000, 6
    [160] 李果. 同步轨道多星共位轨道保持技术研究[J]. 航天控制, 1997, 3
    [161] 张玉锟. 卫星编队飞行动力学与控制技术研究[D]. 国防科技大学工学博士学位论文, 2002, 10
    [162] 任萱. 人造地球卫星轨道力学[M]. 长沙: 国防科技大学出版社, 1988
    [163] 郝继刚, 张育林. SAR 干涉测高分布式小卫星编队构形优化设计[J]. 宇航学报, 2006, 7, 27(4): 654 ~ 658
    [164] 刘建平, 黄海风, 梁甸农. 主星带辅星群干涉 SAR 编队设计约束条件分析[C]. 分布式航天器新概念及其应用技术研讨会论文集, 北京, 2004, 339 ~ 346
    [165] 王超,张红,刘智. 星载合成孔径雷达干涉测量[M]. 科学出版社,2002, 9
    [166] 廖明生, 林珲. 雷达干涉测量——原理与信号处理基础[M]. 北京: 测绘出版社, 2003, 8
    [167] 何峰, 梁甸农, 刘建平. 星载双基地 SAR 干涉测高误差分析[J]. 系统工程与电子技术, 2005, 9, 27(9): 1519 ~ 1522
    [168] 董臻, 梁甸农, 何峰. 星载双基地 SAR 干涉测高精度分析[C], 分布式航天器新概念及其应用技术研讨会论文集, 北京, 2004, 315 ~ 323
    [169] 周明, 孙树栋. 遗传算法原理及其应用[M]. 北京: 国防工业出版社, 1999, 6
    [170] 保铮. 对于分布式小卫星群天基雷达信号处理一些基本问题的思考[C]. 烟台: 第九届全国雷达学术年会论文集, 2004, 1 ~ 5
    [171] 王彤, 保铮, 廖桂生. 天基分布式雷达 GMTI 方法[J]. 电子学报, 2006, 3, 34(3): 399 ~ 403
    [172] 李真芳, 保铮, 杨凤凤. 基于成像的分布式卫星 SAR 系统地面运动目标检测(GMTI)及定位技术[J]. 中国科学 E 辑 信息科学, 2005, 35(6): 597 ~ 609
    [173] 杨凤凤, 梁甸农. 基于ATI方法的星载SAR动目标检测[C]. 北京: 分布式航天器新概念及其应用技术研讨会论文集, 2004, 561 ~ 566
    [174] 宁蔚, 廖桂生. 分布式小卫星系统沿航迹干涉 SAR 测速去模糊方法[J]. 信号处理, 2004, 10, 20(5): 441 ~ 444
    [175] 胡寿松. 自动控制原理(第四版)[M]. 科学出版社, 2001, 2
    [176] 黄圳圭. 航天器姿态动力学[M]. 长沙: 国防科技大学出版社, 1997, 11
    [177] 李济生. 人造卫星精密轨道确定[M]. 解放军出版社, 1995, 7
    [178] 佟绍成. 非线性系统的自适应模糊控制[M]. 北京: 科学出版社, 2006, 1
    [179] 刘普寅, 吴孟达. 模糊理论及其应用[M]. 长沙: 国防科技大学出版社, 1998, 11
    [180] 吴忠强. 非线性系统的鲁棒控制及应用[M]. 北京: 机械工业出版社, 2005, 1
    [181] 诸静. 模糊控制原理与应用(第 2 版)[M]. 北京: 机械工业出版社, 2005, 1
    [182] Kevin M. Passino, Stephen Yurkovich. Fuzzy Control[M]. Tsinghua University Press, 2001, 11
    [183] 杨嘉墀. 航天器轨道动力学与控制(下)[M]. 北京: 宇航出版社, 2001, 12
    [184] 李晨光, 肖业伦. 多脉冲 C-W 交会的优化方法[J]. 宇航学报, 2006, 3, 27(2): 172-176
    [185] 向开恒, 肖业伦. 空间交会中脉冲变轨燃料消耗研究[J]. 中国空间科学技术, 1999, 6, 第 3 期
    [186] James R. Wertz, Wiley J. Larson. Space Mission Analysis and Design (3rd Version)[M]. Space Technology Library, Microcosm Press and Kluwer Academic Publishers, 1999
    [187] 钟秋海. 现代控制理论[M]. 北京: 高等教育出版社, 2004, 11
    [188] 戴忠达, 吕林. 自动控制理论基础[M]. 北京: 清华大学出版社, 1989, 1
    [189] 刘少然. 分布式航天器协同控制方法研究[D]. 装备指挥技术学院硕士学位论文, 2004
    [190] 郝继刚, 张育林. 分布式卫星编队构形连续保持控制仿真[C]. 武汉: 2006’系统仿真技术及其应用学术年会论文集, 2006, 533 ~ 536
    [191] 张育林, 郑荣跃, 沈力平, 陈善广. 载人航天工程基础[M]. 长沙: 国防科技大学出版社, 1997, 9
    [192] 李勇, 魏春岭. 卫星自主导航技术发展综述[J]. 航天控制, 2002, 19(2): 70 ~ 74
    [193] 宁小琳,房建成. 一种基于信息融合的卫星自主天文导航新方法[J]. 宇航学报, 2003, 12, 24(6): 579 ~ 583
    [194] Bauer, F. H., Hartman, K., How, J. P., Bristow, J., Weidow, D., and Busse, F. Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced Automation Technologies[C]. ION-GPS Conference, Inst. Of Navigation, Alexandria, VA, 1999, 369 ~ 384; Jonathan P. Orion: A Low-Cost Demonstration of Formation Flying in Space using GPS. AIAA-98-4398, 1998
    [195] 宁津生. 卫星重力探测技术与地球重力场研究[J]. 大地测量与地球重力学, 2002, 2, 22(1): 1 ~ 5
    [196] 宁津生, 罗志才. 卫星跟踪卫星技术的进展及应用前景[J]. 测绘科学, 2000, 12, 25(4): 1 ~ 4
    [197] 王谦身等. 重力学[M]. 北京: 地震出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700