用户名: 密码: 验证码:
序批式人工湿地脱氮效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对连续流人工湿地运行负荷低、硝化和脱氮效能低,以及占地面积大等问题,通过改变湿地进水方式和增设排空闲置过程等技术强化大气复氧,开发出序批式人工湿地工艺(SCW),其脱氮效能较常规人工湿地提高4~8倍。通过对水力停留时间、排空闲置时间和进水方式等因素对SCW脱氮效能影响的系统研究,得出了SCW高效脱氮的关键工况参数;同时,通过试验对SCW系统的脱氮机理进行了探讨。为了保证SCW的处理效能,进一步减少占地,提出“ASBBR-SCW”组合工艺系统,采用ASBBR作为SCW的预处理工艺,研究了负荷和运行工况等对其处理效能的影响;同时,得出了组合工艺处理城镇污水的关键工况参数,并对其在小城镇污水处理中的适应性进行了分析。此外,通过对SCW系统的污泥浓度和纳水量的长期监测,探讨了SCW对堵塞的改善和自我修复能力。研究得出的主要结论如下:
     水力停留时间和排空闲置时间对SCW系统处理效能影响研究表明:在高氮生活污水处理中,SCW的脱氮效能随HRT的增加而显著提高,满足脱氮目标的单级最佳水力停留时间为12h;排空闲置时间对SCW系统中反硝化脱氮所需的内碳源的数量影响显著,满足脱氮目标的单级最佳排空闲置时间为4h。当SCW的运行工况为“进水-反应12h-排水-排空闲置4h”,水温为26~32℃时,两级SCW可使进水COD、NH_3-N和TN分别为270mg/L、60mg/L和63mg/L的污水,出水浓度分别为38mg/L、10mg/L和13mg/L,总去除率分别为88%、84%和80%,出水COD和TN浓度达到一级A类排放标准,出水NH_3-N接近一级B类标准;去除负荷为65.6gCOD/(m~3·d)、13.8gNH_3-N/(m~3·d)和13.8gTN/(m~3·d),与白泥坑、沙田、石岩人工湿地脱氮效能相比提高4~8倍。此时,SCW处理每立方米污水所需占地面积为3.8 m2。
     进水方式对SCW系统处理效能影响试验表明:在SCW反应期间采用间歇或连续进水方式时,对系统的COD和NH_3-N去除效果影响不显著,但对TN去除效果影响显著。反应期间采用间歇进水可使SCW系统对COD和TN的总去除率分别提高4%和27%,但使一级SCW的NH_3-N去除率下降7%,两级SCW总去除率下降3%。
     “ASBBR-SCW”组合工艺的效能研究表明:ASBBR作为预处理反应器,集调节、沉淀和生物降解于一体;当温度为28~31℃,HRT为24h,COD进水浓度为320mg/L,出水COD为118mg/L,去除率为64%。同时,两级SCW采用“进水-反应4h-排水-排空闲置4h”的工况运行时,湿地系统对COD和NH_3-N的去除负荷为93gCOD/(m~3·d)和35gNH_3-N/(m~3·d),出水浓度分别为48mg/L和18mg/L,总去除率分别为76%和75%。此时,SCW处理预处理出水占地面积仅为1.6m2。
     SCW经过一年多时间的运行,SCW内部的污泥浓度未随运行时间的增加而显著增加;SCW床体的纳水量基本稳定,平均下降速率仅为0.05L/(m~3·m)。SCW在排空闲置期间,通过强化大气复氧,可使生物污泥的增殖与氧化分解量达到平衡状态,有利于控制污泥的增殖速率,有效改善了人工湿地的堵塞。
     序批式人工湿地有效地解决了现有人工湿地技术脱氮效能低、占地面积大的问题,拓宽了人工湿地的应用范围,为人工湿地技术用于小城镇及农村污水处理提供了新途径,并为序批式人工湿地的工程实践提供了科学依据,研究结果具有重要的实用价值和现实意义。
The difficulty conditions in the continuous flow of low-operation load, low- efficiency of nitration and nitrogen removal, as well as large area occupied,the Sequencing batch Constructed Wetland (SCW) is developed by a change of feed mode in CW and extra setting the idle time for Strengthening reaeration, efficiency for nitrogen removal of SCW is 4~8 times compared with the conventional CW. Obtained the Key Parameters in high efficiency for nitrogen removal of SCW based on the systematic study for nitrogen removal efficiency effect of several factors, such as HRT, IT and feed mode. In addition, discussed the nitrogen removal mechanism about SCW by testing. Put forward the“ASBBR-SCW”combined process for guarantee the treatment efficiency of SCW and further reduce the area occupied. Using ASBBR for the pretreatment process of SCW, studied the treatment efficiency effect of load and running condition. Meanwhile, obtained the Key Parameters in municipal sewage treatment by combined process, and analyzed the combined process adaptability in municipal sewage treatment. In addition, discussed the performance of blocking inhibition and self-repair. The main research conclusions are as following:
     The study on effect of treatment efficiency by HRT and IT show that: in high nitrogen municipal sewage treatment, the nitrogen removal efficiency significantly increased by HRT Prolonged., the best HRT meeting the objective of nitrogen removal is 12h. Idle time could significantly affect the residue of internal carbon source which is essential to denitrification, the best idle time meeting the objective of nitrogen removal is 4h. The effluent concentration about COD, NH_3-N and TN is 38mg/L, 10mg/L and 13mg/L, removal rate is 88, 84 and 80 percent, effluent concentration about COD and TN meeting the primary standard A, and NH_3-N meeting close to the primary standard B, on condition of 26~32℃, influent concentration about COD, NH_3-N and TN is 270mg/L, 60mg/L and 63mg/L, by using the condition:
     "inlet-12h’s reaction-drainage-4h’s emptying idle" in the two-stage SCW. Removal loading is 65.6gCOD/(m~3·d), 3.8gNH_3-N/(m~3·d) and 13.8gTN/(m~3·d). The nitrogen removal efficiency is 4~8 times compared with the Bainikeng, Shatian and Shiyan CW. At this time, unit volume sewage treatment need the site of SCW is 3.8m2.
     The effect of influent modes to the treatment efficiency of SCW shows that: During the reactions of SCW by using intermittent influent or continuous influent had no significant effect on the the removal of COD and NH_3-N, however, the removal of TN is significantly affected. Using intermittent influent during the reaction can enhance the total removal rate of COD and TN in SCW by four percent and 27 percent respectively, but the removal rate of NH_3-N in the first-stage SCW dropped 7 percent, two-stage SCW 3 percent.
     The efficiency study of combined process of ASBBR-SCW shows that: as a pretreatment reactor, ASBBR gathers regulation, sedimentation and biological degradation in integral whole. The removal rate was 64 percent at temperature of 28 to 31℃, HRT of 24h, COD influent concentration of 320mg/L, COD effluent concentration of 118mg/L. Meanwhile, by using the condition "inlet-4h’s reaction-drainage-4h’s emptying idle " in the two-stage SCW, the removal load of COD and NH_3-N were respectively 93gCOD/(m~3·d) and 35gNH_3-N/(m~3·d), the effluent concentration were 48mg/L and 18mg/L, respectively, the total removal rate of 76% and 75% when the site area of SCW pretreatment is only 1.6 m~2.
     After more than one year, the internal sludge concentration of SCW had not increased significantly with the passage of running time . The water acceptance of SCW is basically stable, with an average decline rate only 0.05L/(m~3·m). In the emptying and idle period, through strengthening atmospheric reaeration enables the proliferation of biological sludge and oxidation--decomposition amount reaching a balanced state, which was beneficial to control the proliferation rate of sludge and effectively improve the constructed wetland clogging.
引文
[1]王保学,王银川.小城镇污水处理现状与展望[J].国外建材科技,2007,28(1):119-222.
    [2]翟俊.西部小城镇给水与污水处理技术需求分析[J].中国给水排水,2007,23(4):11-14.
    [3]严素定.三峡库区重庆小城镇污水现状与工艺[J].人民长江,2006,37(7):9-11.
    [4]汪晓宁.论小城镇建设的意义[J]. 2007.1.
    [5]农村污水处理国际研讨[J].建设信息,2006.9:17-18.
    [6]尹军,崔玉波.人工湿地污水处理技术[M].北京:化学工业出版社,2006.4.
    [7]应俊辉.人工湿地处理农村生活污水的研究[J].安徽农业科学,2007,25(4):1104-1105.
    [8]尹炜,李培军.潜流人工湿地的局限性与运行问题[J].中国给水排水,2004,20(11):36-38.
    [9]张甲耀,夏盛林.潜流人工湿地污水处理系统的研究[J].环境科学,1998,19(4):36-39.
    [10]吴晓磊.人工湿地废水处理机理[M].环境科学,16(3):83-86.
    [11]廖日红.北京市小城镇污水处理工程规划设计探讨.北京水利,2003,(2):28-29.
    [12]詹德昊.复合垂直流构建湿地长期安全运行机理与对策研究[D].武汉:中国科学院水生生物研究所,2003.
    [13]张志斌.絮凝技术在污水强化一级处理中的应用[J].水处理技术,2007,33(6):10-13.
    [14]崔丹.沸石在水处理中的应用与展望[J].市政技术,2008,26(1):36-42.
    [15]何小莲.稳定塘污水处理技术研究进展[J].水资源与水工程学报,2007,18(5):75-82.
    [16]袁英兰.浮动生化床预处理在人工湿地系统中的应用[J].环境保护科学,2006,32(3):16-18.
    [17]张永利. UASB+高负荷生物滤池工艺在生活污水处理中的应用[J].水处理技术,2007,33(5):63-66.
    [18]郑元景.污水厌氧生物处理[M].北京:中国建筑工业出版社,1988.8.
    [19]何成达,季俊杰.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水,2004,20(7):11-15.
    [20]裘湛.高效厌氧反应器处理城市污水的现状与发展[J].合肥工业大学学报,2002,25(1)11-122.
    [21]马建勇.低浓度废水厌氧处理的研究进展[J].环境污染治理技术与设备,2002,3(8):63-66.
    [22]朱珂.厌氧序批式反应器的特征与应用[J].工业水处理,2005,25(2):16-19.
    [23]冯华军.低浓度生活污水厌氧处理的认识误区[J].中国沼气,2005,23(4):10-13.
    [24]许丹东.高效厌氧生物反应器快速启动的研究[J].甘肃环境研究与监测,1994,7(1):28-32.
    [25] Kickuth R.. Degradation and incorporation of nutrients from rural wastewaters by plant rhizospHere under limnic conditions[G]. In:Utilization of Manure By Land Spreading. London:Comm. Of the Euro. Communities,1997.
    [26]杜馨.同步硝化反硝化(SND)影响因素的试验研究[J].广州大学学报,2007,6(1):70-74.
    [27] Armstrong W, Cousins D. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:a microelectrode and modeling study with phragmites austrslis[J]. Annals of Botany,2000,86(3):687-703
    [28] Brix H. Treatment of wastewater in the rhizosphere of the wetland plants-the root-zone method[J]. Wat. Sci.& Tech,1987,19:107-118.
    [29]王晟,徐祖信.潜流湿地处理生活污水时的强化方法[J].环境科学,2006,27(1): 2432-2438.
    [30]任拥政,章北平.利用充氧和回流强化波形潜流人工湿地的脱氮效果[J].环境科学,2007,28(12):2700-2704.
    [31]孙亚兵,冯景伟.自动增氧型潜流人工湿地处理农村生活污水的研究[J].环境科学学报,2006,26(3):404-408.
    [32]何成达,谈玲.波式潜流人工湿地处理生活污水的试验研究[J].农业环境科学学报,2004,23(4):766-769.
    [33] Michal Green Investigation of alternative method for nitrification in constructed wetlands. Wat. Sci Tech. 1997, 35.:63-70.
    [34]崔玉波,伊军等.间歇流人工湿地中COD、NH4+-N动态变化特征[J],环境工程,2003,21(3):62-64.
    [35] Reed S C,et al. Natural Systerms for Waste Managerment and Treatment[M]. 2nd ed. NewYork:Mcgraw-Hill,1995.
    [36]张自杰,林荣忱,金儒林.排水工程(下册) (第四版).中国建筑工业出版社,2000.
    [37]付融冰,杨海真.潜流水平沸石湿地系统的脱氮调节再生功能[J].同济大学学报,2006,34(4):523-527.
    [38]徐丽花,周琪.人工湿地控制暴雨径流污染能力研究[J].上海环境科学,2002,24(5):275-277
    [39] Cinambeli P. Zeolites,Syntinesis,Structure,Technlolgy and Application[M]. Elsevier Science Publishers,1985:539.
    [40]王世和.人工湿地污水处理理论与技术[M].北京:科学出版社,2007.5.
    [41] Hans Brix. Functions of macrophytes in constructed wetlands[J]. Wat. Sci.& Tech,1996,29(4):71-78.
    [42]唐运平,米瑞兰.芦苇湿地滤床处理城市污水的研究[J].环境工程,1998,10(2):1-5.
    [43] Rogers K H,et al Nitrogen removal in experimental wetland treatment system:evidence for the role of aquatic plants[J]. Res. Journal of WPCF,1991,63(7):934-941.
    [44]张荣社.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(4):83-86.
    [45] USEPA. Constructed wetlands treatment of municipalwastewaters manual. EPA 6252R2992010 , Cincinnati : Office ofResearch and Development , 2000.
    [46]刘超翔,,胡洪营,张健.表面流与潜流式生态床处理农村污水[J].中国给水排水, 2002 , 18 (11) : 5-8.
    [47]汪俊三,覃环.水力负荷人工湿地处理富营养化湖水[J].中国给水排水, 2005, 21 (1) : 1-4.
    [48] Johns M J. Nitrogen fate in a subsurface flow consctructed wetland for on-site wastewater treatment[A]. Proceedings of the Eighth National Symposium on Individual and Small Community Sewage Systerms[C]. Orlando:American Society for Agriculture Engineers,1998.
    [49]靖孝元,陈昭平.对生活污水的净化效果及其在人工湿地中的应用[J].应用与环境生物学报,2002,8(6): 614-617.
    [50]王晟,徐祖信.潜流湿地处理不同浓度有机污水的差异分析[J].环境工程,2006,27(11):2194-2200.
    [51] Crites, R. W. Design criteria and practice for constructed wetlands [J]. Water Science and Techno logy, 1994, 29 (4):1- 6.
    [52] Reddy. K. R, and Patrick, W.H.,1984.Nitrogen transformations and loss in flooded soils and sediments[ J], CRC Crit. Rev. Environ. Control, 13: 273-309.
    [53] Brodrick, S. J. et al. Denitrification in a natural wetland receiving secondary treated effluent [J]. W at. Res. 1988, 22 (4):431- 439.
    [54]顾维国,王世和.流型人工湿地低温域脱氮效果研究[J],中国给水排水, 2005,21(8):37-40.
    [55]刘学燕.人工湿地在我国北方地区冬季应用的研究[J],农业环境科学学报,2004,23(6):1077-1081.
    [56]宋铁红,崔玉波.间歇流人工湿地处理生活污水的试验研究[J].吉林建筑工程学院学报,2003,20(3):1-3
    [57]雷明.人工湿地土壤堵塞现象及机理探讨[J].工业水处理,2004,24(10):9-12
    [58] USEPA. Constructed wetlands treatment of municipal wastewater[M]. EPA/625/R-99/010, 1993.
    [59]詹德昊,吴振斌等.对复合垂直流湿地水力特性的影响[J].中国给水排水,2003,19(2):1-4
    [60] Kunst&Flasche,1995
    [61] De V J.Soil filtration of wastewater effluent and the mechanism of pore clogging[J]. Water Pollute Control,1972,44(2):565-573
    [62] Siegrist R L. Soil clogging during subsurface wastewater infiltration as affected by effluent composition and loading rate[J]. Environ.Qual. l987. 16(2):181-187
    [63] Ryszard Blazejewski and Sadzide Murat-Blazejewska. Soil clogging phenomena in constructed wetlands with subsurface folw[J]. Wat SciTech,1997,35(5):183-188
    [64]詹德昊.复合垂直流构建湿地长期安全运行机理与对策研究[D].武汉:中国科学院水生生物研究所,2003.
    [65] ristoph Plataer. Klaus Mauch. Soil clogging in vertical flow reed beds-mechanisms, parameters, consequences and…solutions?[J]. Wat Sci Technol,1997,35(5):175-181
    [66] Wong T H F, Somes N L G. A stochastic approach to designing wetlands for stormwater pollution control[J]. Wat. Sci. Tech.,1995,32(1):145-151
    [67]李凌云.人工湿地土壤堵塞现象及机理探讨[J].工业水处理,2004,24(10):9-12
    [68]张建,邵长飞.污水土地处理工艺中的堵塞问题[J].中国给水排水,2003,19(3):17-20
    [69] Kristiansen R. The soil as a removing medium-clogging of infiltrative surface[A]. Alternative Wastewater Treatment[M]. D. Reidel Publishing Company,1982.109-121
    [70] Bouwer H, Rice R C, Escarcega J C. High-rate land treatment 1:infiltration and hydraulic aspect of the Flushing Meadows projece[J]. Journal Water Pollution Control Federation,1974,52(10):834-843
    [71]《水和废水监测分析方法》(第四版),中国环境科学出版社,2002,12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700