用户名: 密码: 验证码:
生物脱氮除磷ASM2D模拟及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以实际生活污水为碳源的A/A/O工艺为研究对象,结合活性污泥ASM2D模型,深入研究了生物脱氮除磷的生化反应机理。
     首先,通过对影响生物脱氮除磷效果的工艺参数研究,结果表明最佳运行工况为混合液回流比200%、厌氧-缺氧-好氧水力停留时间(HRT)为1.6-1.6-4.8h和污泥龄(SRT)12d,其出水浓度基本能达到我国城镇污水处理厂排放一级标准。同时以ASM2D模型为平台,自编了A/A/O工艺模拟程序,在分析化学计量系数和动力学参数灵敏度的基础上对试验数据进行了模拟,计算表明COD模拟精度为90%以上;NH_3-N和P在厌氧、缺氧池内模拟精度分别为90%和88%以上,在好氧池内模拟精度相对较差,但绝对误差分别低于1.0mg/L和0.8mg/L:在SRT为12、15d时NO_3-N模拟精度为86%以上,在SRT为8、10d时模拟精度仅为55~75%,绝对误差为2.0~4.4mg/L,这是由模型结构中简化硝化反应所致。可见,在试验条件下经校正后的模型可以较好地模拟工艺运行。在本研究试验范围内还进行了工艺优化模拟,得出最佳运行工况为混合液回流160%、厌氧HRT2.0h和SRT13d,与试验结果基本相吻合。因而,活性污泥ASM2D模型作为一种有效的工具,能应用于辅助实验研究和优化污水处理厂运行管理。
     在试验条件下,异养反硝化主要发生在厌氧区,反硝化吸磷发生在缺氧区。因而,论文还重点研究了混合液回流比和污泥龄对缺氧区内反硝化除磷的影响。结果表明,混合液回流比对污泥厌氧合成单位PHAs释磷量和好氧利用单位PHAs吸磷量的影响并不大,但对缺氧利用单位PHAs吸磷量有较大影响;过高或过低的回流比均会降低缺氧吸磷效率,以混合液回流比为200%时反硝化除磷效果最好。污泥龄过短(厌氧区内有机负荷就越高)会减少厌氧区内微生物对可生物降解有机物的吸收量,使未被利用的有机物进入缺氧区,降低了对内碳源PHAs的利用,从而抑制了缺氧反硝化吸磷作用;且缺氧吸磷作用随着污泥龄的延长而增大,以SRT12d时缺氧吸磷效果最好。同时,通过批式试验对反硝化除磷污泥的特性进行考察。结果表明吸磷速率、反硝化速率和PHAs降解速率随着聚磷菌胞内PHAs含量的增加而加快;过高NO_3-N(30mg/L)或过低NO_3-N(10mg/L)浓度均会影响缺氧吸磷速率和PHAs降解速率;低浓度NO_2-N
The research of this thesis emphasized on the biochemical metabolism of BNR in A/A/O process fed with municipal wastewater, combining with activated sludge model No.2D.
    Firstly, the process paramenters that influenced the treatment efficiency of biological nutrient process were investigated. The results indicated that the optimal process operation was under the internal return ratio of 200%, an anaerobic hydraulic retention time (HRT) of 1.6 h and a solid retention time (SRT) of 12 days. The effluent concentratons could comply with the first class discharge standard of pollutants for municipal wastewater treatment plant. Based on ASM2D, A/A/O activated sludge model was programmed to simulate the lab-scale experimental results after the sensitivity of key parameters was analysed. The resulted indicatd the simulated COD simulation precision was above 90%. The simulating precision of ammonia and P concentrations were above 90% and 88% in anaerobic and anoxic stages, respectively. Although the simulating precisions of them were low in aerobic stage, absolute errors were lower than 1.0, 0.8 mg/L, respectively. The simulating precision of nitrate concentration was higher than 86% under the SRT of 12 and 15 days, while under the SRT of 8 and 10 days the simulating precision was only in range of 55 to 75% and absolute errors were in range of 2.0 to 4.4 mg/L because of simplification of nitrification reaction. In a whole, the calibrated model could satisfactorily simulate the process operation. After simulation, the optimal internal return ratio, hydraulic retention time and sludge retention time were 160%, 2.0 h and 13 days, respectively, which were close to experimental results. As a effective tool, ASM could successfully help experimental research and optimize the operating management of wastewater treatment plant.
    During the experimental research, it was found that denitrification occurred in anaerobic stage, and P uptake occurred in anoxic stage. Therefore, the effects of internal return ratio and SRT on the anoxic denitrifying phosphorus removal occured in
引文
[1] 郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [2] Wrage N., Velthof G.L., Van Beusichem M.L., et al. Role of Nitrifier Denitrification in the Production of Nitrous Oxide[J]. Soil Biology & Biochemistry, 2001,33:1723-1732.
    [3] Buchanan R.E. Studies on the Nomenclature and Classification of the Bacteria: Ⅲ. The Families of the Eubacteriales[J]. Journal of Bacteriology, 1917, 2(4):347-350.
    [4] Van Groenestijn J.W., Deinema M.H. and Zehnder A.J.B. ATP production from polyphosphate in Acinetobacter strain 210A[J]. Arch. Microbiol, 1987, 148:14-19.
    [5] Van Groenestijn J.W., Bentvelsen M.M., Deinema M.H., et al. Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge[J]. Appl. Environ. Microbiol., 1989, 55 (1):219-223.
    [6] Van Veen H.W., Abee T., Kortstee G.J.J., et al. Characterization of two phosphate transport systems in Acinerobacterjohnsonii 210A[J]. Bacterial., 1993, 175:200-206.
    [7] Meganck M. The importance of the acidegenic microflora in biological phosphorus removal[J]. Wat. Sci. Tech., 1985, 17:199-212.
    [8] Münch E.V., Lant P., and Keller J. Simultaneous Nitrification and Denitrification in Bench-Scale Sequencing Batch Reactors[J]. Wat. Res., 1996, 30(2):277-284.
    [9] Yoo H.K. and Ahn K.K. Nitrogen removal from synthetic wastewater by Simultaneous Nitrification and Denitrification (SND) via nitrite in an intermittently-aerated reactor[J]. Wat. Res., 1999, 33(1):145-154.
    [10] Robertson L.A., van Niel E.W.J., Torremans R.A..M., et al. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera Pantotropha[J]. Appl. Environ. Microbiol., 1988, 54(11):2812-2818.
    [11] Fuerhacker M., Bauer H., Ellinger R., et al. Approach for a Novel Control Strategy for Simultaneous Nitrification/Denitrification in Activated Sludge Reactors[J]. Wat. Res., 2000, 34(9):2499-2506.
    [12] George N. and Shaukat F. Simultaneous Nitrification-denitrification in Slow Sand Filters[J]. Joumal of Hazardous Materials, 2003, 96(2-3):291-303.
    [13] Masuda S., Watanabe Y. and Ishiquro M. Biofilm properties and simultaneous nitrification and denitrification in aerobic rotating biological contactors[J]. Wat. Sci. Tech., 1991, 23(7-9):1355-1363.
    [14] Münch E.V., Lant P. and Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactor[J]. Wat. Res., 1996, 30(2):277-284.
    [15] Rittmann B.E. and Langeland W.E. Simultaneous denitrifieation with nitrification in single-channel oxidation ditch[J]. J. WPCE, 1985,57(4):300-308.
    [16] 王建龙.生物脱氮新工艺及技术原理[J].中国给排水,2000,16(2):25-28.
    [17] Collivignare C. and Bertanza G. Simultaneous nitrification and denitrification process in activated sludge plant: performance and applicability[J]. Wat. Sci, Tech., 1999, 40(4-5): 187-194.
    [18] Pochana K. and Kellar J. Study of factors affecting simultaneous nitrification and denitrification (SND) [J]. Wat. Sci. Tech., 1999, 39(6):61-68.
    [19] Stepanov A.L. and Korpela T.K. Microbial basic for the biotechnological removal of nitrogen oxides from flue gases[J]. Biotechnol. Appl. Biochem., 1997, 25(2):97-104.
    [20] 王建龙.NH_4~+的厌氧氧化[J].生命的化学,1997,17(6):37-38.
    [21] Kuenen J.G. and Robertsor L.A. Combined nitrification-denitrification process[J]. FEMS. Microbial. Rev., 1994, 15(2):109-117.
    [22] Broda. Two kinds of lithotrophs missing in nature[J]. Z. Allg. Microbiol., 1975, 17 (6):491-493.
    [23] Mulder A., Van de Graaf A.A, Robertson L.A., et al. Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol. Ecol., 1995, 16:177-184.
    [24] Van de Graaf A.A, Mulder A., Bruijn P.D., et al. Anaerobic oxidation of ammonia is a biologically mediated process[J]. Appl. Environ. Mierobiol., 1996, 64 (4):1246-1251.
    [25] Van de Graft A.A., De Bruijn P., Robertson L.A., et al. Autotrophic growth of anaerobic ammonia-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142: (8)2187-2196.
    [26] Turk O. and Mavinic D.S. Stability of nitrite build-up in an activated sludge system. J Water Pollut Contr Fed, 1989, 61:1440-1448.
    [27] Rahmani H., Rols J.L., Capdeville B., et al. Nitrite removal by a fixed culture in a submerged granular biofilter[J]. Wat. Res., 1995, 29 (7):1745-1753.
    [28] Hellinga C., Schellen A.A.J.C., Mulder J.W., et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater[J]. Wat. Sci. Tech., 1998, 37(9):135-142.
    [29] Matsuo Y. and Miya A. Anaerobic uptake of organics by the activated sludge grown in the anaerobic/aerobic process[J]. Proc. Environ. Sani. Eng. Res., 1987, 23:287-298.
    [30] Comeau Y., Hall K.J., Hancock R.E.W., et al. Biochemical model for enhanced biological phosphorus removal[J]. Wat. Res.,1986, 20:1511-1521.
    [31] Wentzel M.C., Lotter L.H., Loewenthal R.E., et al. Metabolic behavior of Acinetobacter spp. in enhanced biological phosphate removal-a biochemical model[J]. Wat. S.A., 1986, 12(4):209-244.
    [32] Mino T. and Matsuo T. Principal mechanism of biological phosphate removal[J]. Wat. Pollut. Res., 1984, 7:605-609.
    [33] Mino T., Tsuzuki Y. and Matsuo T. Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Advances In Water Pollution Control: Biological phosphorus Removal from Wastewater. Rome Oxford Pergamon Press, 1987:27-38.
    [34] Arun V., Mino T. and Matsuo T. Metabolic pathway of anaerobic uptake of amino acids in biological phosphorus removal process. Adv. in Wat. Pollut. Cont., Water Pollution Control in Asia, Pergamon Press, 1988:313-320.
    [35] Wentzel M.C., Lotter L.H., Ekama G.A., et al. Evaluation of biochemical models for biological excess phosphorus removal[J]. Wat. Sci. Tech., 1991, 23:567-576.
    [36] Satoh H., Mino T. and Matsuo T. Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal process[J]. Wat. Sci. Tech., 1992, 26(5/6):933-942.
    [37] Satoh H., Ramey W.D., Koch F.A., et al. Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage[J]. Wat. Sci. Tech., 1996, 34(1):8-15.
    [38] Smolders G.J.E, Van Loosdrecht M.C.M. and Heijnen J.J. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influencet~~. Biotech. Bioeng., 1994, 43:461-470.
    [39] Bordacs K. and Chiesa S.C. Carbon flow patterns in enhanced biological phosphorus accumulating activated sludge culture[J]. Wat. Sci. Tech., 1989, 21:387-396.
    [40] Smolders G.J.F., van Loosdrecht M.C.M. and Heijnen J.J. pH as a key factor in the biological phosphorus removal process[J]. Wat. Sci. Tech., 1994, 29(7):71-74.
    [41] Pereira H., Lemos P.C., Reis M.A., et al. Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labeling experiments[J]. Wat. Res., 1996, 30(9):2128-2138.
    [42] Maurer M. Intracellular carbon flow in phosphorus-accumulating organisms from activated sludge systems[J]. Wat. Res., 1997, 31(4):907-917.
    [43] Liu W.T., Mino T., Nakamura K., et al. Role of glycogen in acetate uptake and polyhydroxyalk-anoate synthesis in anaerobic/aerobic activated sludge with minimized polyphosphate content[J]. Ferment. Bioeng., 1994, 77(5):535-540.
    [44] Mino T., Satoh H. and Matsuo T. Metabolism of different bacterial populations in enhanced biological phosphate removal processes[J]. Wat. Sci. Tech., 1994, 29(7):67-70.
    [45] Kuba T., van Loosdrecht M.C.M. and Heijnen J.J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Wat. Res., 1996, 30(7):1702-1710.
    [46] Kuba T., Murnleitner E., van Loosdrecht MCM., et al. A metabolic model for the biological phosphorus removal by denitrifying organisms[J]. Biotech. Bioeng., 1996, 52(6):685-695.
    [47] Brdjanovic D., van Loosdrecht M.C.M., Hooijmans C.M., et al. Temperature effects on physiology of biological phosphorus removal[J]. J. Environ. Eng., 1997, 123(2):144-154.
    [48] Smaurer M., Gujer W., Hany R.,et al. Intraccllular carbon flow in phosphorus accumulating organism from activated sludge systems[J]. Wat. Res., 1997, 31:907-917.
    [49] Rao Y. Surampalli R.D. Tyagi O.K., et al. Nitrification, denitrification and phosphorus removal in sequential batch reactors[J]. Bioresource Technology, 1997, 61:151-157.
    [50] Petersen B., Temmink H., Henze M., et al. Phosphorus uptake kinetics in relation to PHB under aerobic conditions[J]. Wat. Res., 1998, 32(1):91-100.
    [51] Okunuki S., Kawaharasaki M., Tanaka H., et al. Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor[J]. Wat. Res., 2004, 38(9):2432-2438.
    [52] Meinhold J., Pedersen H., Arnold E., et al. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal[J]. Wat. Sci. Tech., 1998, 38(1):97-105.
    [53] Cech J.S. and Hartman P. Glucose induced breakdown of enhanced biological phosphorus removal[J]. Environ. Technol., 1990, 11:651-656.
    [54] Cech J.S. and Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphorus removal systems[J]. Wat. Res., 1993, 27:1219-1225.
    [55] Carucci A., Majone M., Ramadori M., et al. Dynamics of phosphorus and organic substrates in anaerobic and aerobic phases of a sequencing batch reactor[J]. Wat. Sci. Tech., 1994, 30:237-246.
    [56] Nakamura K. and Dazai M. Growth characteristics of batch-cultured activated sludge and its phosphate elimination capacity[J]. Ferment. Technol., 1986, 64:433-439.
    [57] Sudiana, I.M., Mino T. and Satoh H. Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source[J]. Wat. Sci. Tech., 1999, 39:29-35.
    [58] Jeon C.O. and Park J.M. Enhanced biological phosphorus removal in a sequencing batch reactor fed with glucose as sole carbon source[J]. Wat. Res., 2000, 34:2160-2170.
    [59] Wang N., Peng J., and Hill G. Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition[J]. Wat. Res., 2002, 36(1):49-58.
    [60] Satoh H., Mino T. and Matsuo T. Biochemical mechanism of anaerobic glutamate uptake in the enhanced biological phosphorus removal process. IAWPRC Biennial Conf., 1990:531-534.
    [61] Satoh H., Mino T., and Matsuo T. Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge[J]. Wat. Sci. Tech., 1998, 37(4-5):579-582.
    [62] Vlekke M., Comeau Y. and Oldham W.K. Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactors[J]. Environ. Technol. Lett., 1988, 9:791-796.
    [63] Kerrn-Jespersen J. P. and Henze M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Wat. Res., 1993, 27(4): 617-624.
    [64] Kuba T., Smolders G.J.E, van Loosdrecht M.C.M., et al. Biological phosphorus removal from wastewater by anaerobic anoxic sequencing batch reactor[J]. Wat. Sci. Tech., 1993, 27(5-6):241-252.
    [65] Kuba T., Van Loosdrecht M.C.M., Brandse F.A., et al. Occurrence of denitrifying phosphorus-removing bacteria in modified UCT-type wastewater treatment plants[J]. Wat. Res., 1997,31(4):777-786
    [66] Kuba T., Van Loosdrecht M.C.M. and Heijnen J.J. Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria[J]. Wat. Sci. Tech, 1996, 34(1-2):33-40.
    [67] Bortone G., Malaspina E, Stante L., et al. Biological nitrogen and phosphorus removal in an anaerobic/aerobic SBR with separated biofilm nitrification[J]. Wat. Sci. Tech., 1994, 30:303-313.
    [68] Chuang S.H., Ouyang C.F. and Wang Y.B. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition[J]. Wat. Res., 1997, 30(12):2961-2968.
    [69] Ahn J., Daidou T., Tsuneda S., et al. Characterization of denitrifying phosphate-accumulating organism cultivated under different electron acceptor conditions using polymerase reaction-denaturing gradient gel electrophoresis assay[J]. Wat. Res., 2002, 36(2):403-412.
    [70] Meinhold J., Arnold E. and Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Wat. Res., 1998, 41(10):56-65.
    [71] Dae Sung Lee, Che Ok Jeon and Jong Moon Park. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Wat Res., 2001, 35(6):3968-3976.
    [72] Mino T., Van Loosdrecht M.C.M. and Heijnen J.J. Microbiology and biochemistry of the enhanced biological phosphorus removal process[J]. Wat. Res., 1998, 32(11):3193-3207.
    [73] Stgaard K., Christensson M., Lie E., et al. Anoxic biological phosphorus removal in a full-scale UCT process[J]. Wat. Res., 1997, 31(11):2719-2726.
    [74] Murnleitner E., Kuba T., van Loosdrecht M.C.M., et al. Modification to metabolic model of denitrifying phosphorus removal[J]. J. Environ. Eng., 1997, 6:45-57.
    [75] 田淑媛,杨睿,王景峰等.生物除磷及其生化机理研究[J].中国给水排水,2001,17(1):71-73.
    [76] 罗固源,吉芳英,罗宁.硝酸盐电子受体反硝化除磷试验分析[J].环境工程,2004,22(1):32-35.
    [77] 吴海林,杨开,王弘宇.废水除磷技术的研究与发展[J].环境污染治理技术与设备,2003,4(1):53-57.
    [78] 李勇智,彭永臻,张艳萍.硝酸盐浓度及投加方式对反硝化除磷的影响[J].环境污染与防治,2003,25(6):323-325.
    [79] 罗固源,吉芳英,罗宁.硝酸盐电子受体反硝化同时除磷试验分析[J].环境工程,2004,24(1):32-35.
    [80] 阮文权,邹华,陈坚.乙酸钠为碳源时进水COD和总磷对生物除磷的影响[J].环境科 学,2002,23(3):49-52.
    [81] 邹华,阮文权,陈坚.硝酸盐作为生物除磷电子受体的研究[J].环境科学研究,2002,15(3):38-41.
    [82] 朱淑琴.间歇式活性污泥除磷的试验研究[J].环境工程,1997,15(6):13-16.
    [83] 李勇智,王淑滢,吴凡松等.强化生物除磷体系中反硝化聚磷菌的选择与富集[J].环境科学学报,2004,24(1):45-49.
    [84] 王亚宜,彭永臻,王淑莹等.反硝化除磷理论工艺及影响因素[J].中国给水排水,2003,19(1):33-36.
    [85] 赵庆,袁林江,王志盈等.反硝化除磷的影响特性试验[J].环境污染治理技术与设备,2005,6(9):20-24.
    [86] Smolders G.J.E, van Loosdrecht M.C.M. and Heijnen J.J. A metabolic model for the biological phosphorus removal process[J]. Wat. Sci.Tech., 1995, 31(2):79-93.
    [87] Smolders G.J.F., van der Meij J., van Loosdrecht M.C.M., et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotech. Bioeng., 1994, 44(7):837-848.
    [88] Smolders G.J.E, van der Meij J., van Loosdrecht M.C.M., et al. A structured metabolic model for the anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process[J]. Biotech. Bioeng., 1995, 47(3): 277-287.
    [89] Smolders G.J.F., Klop J.M., van Loosdreeht M.C.M., et al. A metabolic model of the biological phosphorus removal process: effect of the sludge retention time[J]. Biotech. Bioeng., 1995, 48(3):222-233.
    [90] Smolders G.J.F., van Loosdrecht M.C.M. aud Heijnen J.J. Steady state analysis to evaluate the phosphate removal capacity and acetate requirement of biological phosphate removing mainstream and side-stream process configuration[J]. Wat. Res., 1996, 30(11):2748-2760.
    [91] Mumleitner E., Kuba T., Van Loosdrecht M.C.M., et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal process[J]. Biotech. Bioeng., 1997, 54(5):434-450.
    [92] 张自杰主编.《排水工程》下册(第四版)[M].北京:中国建筑工业出版社,2000.
    [93] 钱易,米详友主编.现代废水处理新技术[M].北京:中国科学技术出版社,1993.
    [94] 顾夏声.废水生物处理数学模式[M].北京:清华大学出版社,1992.
    [95] 张自杰,周帆.活性污泥生物学与反应动力学[M].北京:中国环境科学出版社,1989.
    [96] Henze M., Gujer W., Mino T., et al. Activated sludge model No.1, IAWPRC Scientific and Technical Reports No.1, 1986.
    [97] Gujer W., Henze M., Mino T., et al. The activated sludge model no2: biological phosphorus removal[J]. Wat. Sci. Tech., 1995, 31(2):183-193.
    [98] Henze M., Gujer W., Mino T., et al. Activated sludge model no2d[J]. Wat. Sci. Tech., 1999, 39(1):165-182.
    [99] Gujer W., Henze M., Mino T., et al. Activated sludge model no3[J]. Wat. Sci. Tech., 1999, 39(1):183-193.
    [100] 赵振,林卫青.活性污泥数学模型在污水处理中的研究进展[J].上海环境科学,2003,22(8):580-584.
    [101] 张亚雷,李咏梅译.活性污泥数学模型[M].上海:同济大学出版社,2002.
    [102] 吴俊奇,汪慧贞.活性污泥2号模型的简介[J].给水排水,1998,24(6):13-18.
    [103] 孙德荣,吴星五.活性污泥数学模型的发展及应用[J].中国给水排水,2002,19(2):40-42.
    [104] Veldhuizen H.M.V., van Loosdrccht M.C.M. and 'Heijncn J.J. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process[J]. Wat. Res., 1999, 33(16):3459~3468.
    [105] Brdjanovic D., van Loosdrecht M.C.M., and Heijnen J.J. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder[J]. Wat. Res., 2000, 34(3):846-858.
    [106] Meijer S.C.F., van Loosdrecht M.C.M., and Heijnen J.J. Metabolic modeling of full scale biological nitrogen and phosphorus removing WWTP's[J]. Wat. Res., 2001,35(11):2711-2723.
    [107] Larrea L., Irizar L. and Hidalgo M.E. Improving the predictions of ASM2d through modeling in practice[J]. Wat. Sci. Tech., 2002, 45(6): 199-208.
    [108] 汪慧贞,曹秀芹.活性污泥模型No.1及“SSSP”程序在中国污水处理厂适应性的初步探讨[J].北京建筑工程学院学报,1996,12(3):66-74.
    [109] 周雪飞.活性污泥1号模型(ASM1)水质特性参数研究[博士后出站报告].上海:同济大学环境科学与工程学院,2003.
    [110] 甘立军.活性污泥1号模型(ASM1)水质特性参数测定研究[硕士学位论文].上海:同济大学环境科学与工程学院,2003.
    [111] 郭亚萍.活性污泥法处理城市生活污水的ASM2d模型研究[博士学位论文].上海:同济大学环境科学与工程学院,2005.
    [112] 王闯.活性污泥数学模型研究[博士学位论文].上海:同济大学环境科学与工程学院,2003.
    [113] 刘芳.城市污水厂活性污泥数学模型的参数测定及模拟研究[博士学位论文].上海:同济大学环境科学与工程学院,2004.
    [114] 陈晓龙,杨海真,顾国维.活性污泥2号模型的应用与校正[J].工业用水与废水,2003,34(1):1-4.
    [115] 张代钧,卢培利,严晨敏等.活性污泥2号模型用于城市污水处理厂脱氮除磷改造的研究[J].环境科学学报,2003,23(3):332-337.
    [116] 张自杰主编.环境工程手册——水污染防治卷[M].北京:高等教育出版社,1996.
    [117] 肖凡.SBR和AAO工艺强化生物除磷特性研究[硕士学位论文].上海:同济大学环境科学与工程学院,2005.
    [118] 国家环境保护总局《水和废水监测分析方法》委员会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [119] 陈若暾,陈青萍,李振滨等.环境监测实验[M].上海:同济大学出版社,1999.
    [120] Chen Y.G, Chen Y.S., Xu Q., et al. Comparison between acclimated and unacclimated biomass affecting anaerobic-aerobic transformations in the biological removal of phosphorus[J]. Process Biochemistry, 2005, 40(4):723-732.
    [121] Jenkins D., Richard M.G. and Daigger G.T. Manual on the causes and control of activated sludge bulking and foaming-2nd edition[M]. Florida: Lewis Publishers, 1993.
    [122] Wentzel M.C. and Ekama G.A. Principles in the design of single-sludge activated-sludge systems for biological removal of carbon, nitrogen and phosphorus[J]. Wat. Environ. Res., 1997, 69(7):1222-1231.
    [123] 国家环境保护总局,国家质量监督检查检疫总局发布.城镇污水处理厂污染物排放标准(GB18918-2002)[M].北京:中国环境出版社,2003.
    [124] Silverstein J. and Schroeder E.D. Performance of SBR activated sludge processes with nitrification/denitrification[J]. J. WPCF, 1983, 55(4):377-384.
    [125] Her J.J. and Huang J.S. Influences of carbon source and ratio on nitrate/nitrate denitrification and carbon breakthrough[J]. Bioresource Technology, 1995, 54(1):45-51.
    [126] Gómez M.A., González-López J. and Hontoria-Garc E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter[J]. Journal of Hazardous Materials, 2000, 80(1-3):69-80.
    [127] Nyberg U., Aspegren H., Andersson B., et al. Full-scale applications of nitrogen removal with methanol as carbon source[J]. Wat. Sci. Tech., 1992, 26(5-6):1077-1086.
    [128] 林荣忱.城市污水生物法除磷[J].中国给水排水,1989,5(4):36-39.
    [129] 娄金生,谢水波.提高A~2O工艺总体处理效果的措施[J].中国给水排水,1998,14(3):27-30.
    [130] Chuang S.H., Ouyang C.F., Yuang H.C., et al. Evaluation of phosphorus removal in anaerobic-anoxic-aerobic system-via phoyhydroxylakonoates measurements[J]. Wat. Sci. Tech., 1998, 38(1):107-114.
    [131] Rensink J.H., Donker H.J. and Simons S.J. Phosphorus removal at low sludge loadings[J]. Wat. Sci. Tech., 1985, 17(1-2):177-186.
    [132] Kujawa K. and Klapwijk B. A method to estimate denitrification potential for pre-denitrification systems using NUR batch test[J]. Wat. Res., 1999, 33(10):2291-2300.
    [133] Ekama G.A., Dold P.L. and Marais G.V.R. Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge system[J]. Wat. Sci. Tech., 1986, 18(8):91-114
    [134] Mamais D., Jenkins D. and Pitt P. A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater[J]. Wat. Res., 1993, 27(1): 195-197.
    [135] Barker P.S. and Dold P.L. COD and nitrogen mass balances in activated sludge systems[J]. Wat. Res., 1994, 29 (2):633-643.
    [136] Wentzel M.C., Ubisi M.F. and Ekama G.A. Heterotrophic active biomass component of activated sludge mixed liquor[J]. Wat. Sci. Tech., 1998, 37(4-5):79-87.
    [137] Chuang S.H. and Ouyang C.F. The biomass fractions of heterotrophs and phosphorus-accumulating organisms in a nitrogen and phosphorus removal system[J]. Wat. Res., 2000, 34(8):2283-2290.
    [138] Wachtmeister A., Kuba T., van Loosdrecht M.C.M., et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Wat. Res.,1997, 31(3):471-478.
    [139] Meinhold J., Filipe C.D.M., Daigger GT., et al. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal[J]. Wat. Sci. Tech, 1999, 39(1):31-42.
    [140] Comeau Y., Oldham W.K. and Hall K.J. Dynamics of carbon reserves in biological dephosphatation of wastewater. In Advances in Water Pollution Control: Biological Phosphate Removal From Wastewaters, 1987, 39-55. Pergamon Press, Oxford.
    [141] Malnou D., Meganck M., Faup GM, et al. Biological phosphorus removal: study of the main parameters[J]. Wat. Sci. Tech, 1984, 16(10/11): 173-185.
    [142] Hascoet M.C. and Florentz M. Influence of Nitrate on Acetic Acid Induced Biological Phosphate Removal from Wastewater[J]. Wat. S.A,1985, 11:1-8.
    [143] Filipe C.D.M, Daigger GT, Leslie C.P, et al. Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus accumulating organisms at different pHs[J]. Biotech. Bioeng, 2001,76(1):32-43.
    [144] Ann J, Daidou T, Tsuneda S, et al. Transformation of phosphorus and relevant intracellular compounds by a phosphorus-accumulating enrichment culture in the presence of both electron acceptor and electron donor[J]. Biotech. Bioeng, 2002,79(1):83-93.
    [145] Yagci N.O, Tasli R, Artan N, et al. The effect of nitrate and different substrates on enhanced biological phosphorus removal in sequencing batch reactors[J]. J. Environ. Sci. Health A, 2003, 38(8): 1489-1497.
    [146] Ma Y, Peng Y.Z, Wang X.L, et al. Nutrient removal performance of an anaerobic-anoxic-aerobic process as a function of influent C/P ratio[J]. J. Chem. Technol. Biotech, 2005, 80(10):1118-1124.
    [147] Chuang S.H, Ouyang C.F, Yuang H.C, et al Effects of SRT and DO on nutrient removal in a combined As-biofilm process[J]. Wat. Sci. Tech, 1997, 36(12):19-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700