用户名: 密码: 验证码:
创新抗癌药物20(S)-人参皂苷Rg3的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对具有很强抗癌生物活性的20(S)-人参皂苷Rg3进行了深入开发研究,按照《新药审评办法》分别进行了部分药效学试验、长期毒性试验和Ⅰ期临床研究,取得了以下创新性成果:
     (1)首次对国内外三萜类化合物抗癌研究进展进行了综述。
     (2)首次进行了20(S)-人参皂苷Rg3体内、体外抗癌活性的研究
     1)首次研究了20(S)-人参皂苷Rg3对人前列腺癌PC-3M细胞生长的抑制作用。结果表明20(S)-人参皂苷Rg3可明显抑制PC-3M细胞的生长[IC50=(248.5±0.58)mg.L-1];细胞生长周期中S期细胞数增加,G2/M期细胞数明显减少,在G1峰前出现明显的凋亡峰;20(S)-人参皂苷Rg3作用后PC-3M细胞呈现明显的凋亡改变,细胞caspase-8 mRNA含量增加、表达明显增强。说明20(S)- Rg3能诱导PC-3M细胞发生凋亡,机制可能与其活化caspase-8作用有关。
     2)首次进行了20(S)-人参皂苷Rg3对非小细胞肺癌的抑制作用的研究
     选取人非小细胞肺癌瘤株(NCI-H460人大细胞肺癌、A549人肺腺癌及LTEP-78人肺鳞癌)荷瘤裸鼠模型,分别给与环磷酰胺(40mg/kg)、20(S)-人参皂苷Rg3(3.0mg/kg、1.0mg/kg、0.3mg/kg)及联合用药[环磷酰胺20mg/kg + 20(S)-人参皂苷Rg3 0.5mg/kg]。结果表明20(S)-人参皂苷Rg3具有明显抑制人非小细胞肺癌肿瘤生长的作用,其作用与其抑制血管生成和促进细胞凋亡有关。
     (3)首次应用Wistar大鼠对20(S)-人参皂苷Rg3进行二十六周肌肉注射给药的长期毒性试验,该受试药品对Wistar大鼠无延迟性毒性反应。
     (4)首次对20(S)-人参皂苷Rg3进行Ⅰ期临床研究。
     在中国健康受试者中进行的20(S)-人参皂苷Rg3注射液的单剂药代动力学研究,结果表明各剂量组AUC0-t、AUC0-inf和Cmax在不同性别受试者间不具有显著性差异;受试者在单次肌肉注射20(S)-Rg3注射液的情况下,安全性良好。
20(S)-ginsenoside Rg3 is a kind of effective anti-cancer triterpene compound. Further investigations on the pharmacodynamic action, long-term toxicity tests and phaseⅠclinical trial of 20(S)-ginsenoside Rg3 were reported in this thesis. The innovative results were as follows:
     First, a review about triterpenes compound anti-cancer activities researches in all over the world were reported for the first time.
     Second, the anti-cancer activities of 20(S)-ginsendoside Rg3 were studied in vitro and in vivo. The apoptosis effect of 20(S)-ginsendoside Rg3 on human prostate carcinoma PC-3M cell and the possible mechanism were studied for the first time. MTT assay method was adopted to observe the inhibition of PC-3M cell by 20(S)-ginsendoside Rg3 and the IC50 was calculated. The change of cell phase was determined by flow cytometry. The apoptosis of cell in morphology was observed by AO/EB fluorescence double dye technology. The apoptosis was investigated by immuno cellular chemistry and the changes of apoptotic gene caspase-8 were investigated by RT-PCR. The results showed that 20(S)-ginsendoside Rg3 inhibited the proliferation of PC-3M cell IC50 was 248·5±0·58 mg/L, significantly lower than that of the control group. Cell number increased in S phase and decreased in G2/M phase in treatment group. Meanwhile, there was an apoptotic apex before G1 apex. 20(S)-Rg3 promoted PC-3M cell apoptosis and the caspase-8 mRNA level was significantly increased. So it can supposed that 20(S)-ginsenoside Rg3 can induce PC-3M cell apoptosis, which may be closely related to the activation of caspase-8.
     At the same time, growth-inhibitory effect of 20(S)-ginsenoside Rg3 on BALB/C-nu mice bearing human non-small cell lung cancer were studied. BALB/C-nu mice bearing human non-small cell lung cancer (NCI-H460, A549 and LTEP-78) were randomized into six groups: control group, cyclophosphamide (CTX) group intraperitoneal injection administered at dose of 40mg/kg once a day for 5 days, 20(S)-ginsenoside Rg3 groups intraperitoneal injection administered at doses of 3.0mg/kg, 1.0mg/kg and 0.3mg/kg to the animals once a day for 4 or 5 weeks and CTX combined with ginsenoside Rg3 group (20mg/kg+ 0.5mg/kg). Results showed 20(S)-ginsenoside Rg3 significantly inhibited tumor grew, tumor inhibition rate higher than 30% respectively (A549: 62.80%, 59.53%, 48.41%; NCI-H460: 74.61%, 62.32%, 51.27%; LTEP-78: 69.20%, 65.19%, 50.62%). In addition, the 20(S)-ginsenoside Rg3 groups tumor microvascular density (MVD) lower than the control group, while the apoptosis rate was significantly higher than control group. There were no significant different anti-tumor effects between 20(S)-ginsenoside Rg3 combined with CTX group and the CTX group. The synergies effect of 20(S)-ginsenoside Rg3 and CTX was not obvious. In conclusion, 20(S)-ginsenoside Rg3 significantly inhibited the growth of non-small cell lung cancer tumor. These effects might be partially attributed to it could inhibit angiogenesis and promote apoptosis.
     Third, the Wistar rats long time toxicity test of 20(S)-ginsenoside Rg3 intramuscular administrated for 26 weeks were performed for the first time.
     20(S)-Ginsenoside Rg3 at the doses of 4.2 mg/(kg?d) (11.6-fold of clinical human body surface area equivalent daily dose), 10mg/(kg?d) (27.6-fold of clinical human body surface area equivalent daily dose) and 20mg/(kg?d) (55.5-fold of clinical human body surface area equivalent daily dose). Two control groups were injection water control group and injection solvent control group respectively. The test doses were designed base on the mice MTD of intramuscular injection and intraperitoneal injection, mice pharmacodynamic dose, clinical human daily dose, clinic dosage regimen, human body surface area equivalent dosage conversion method.
     Test results were as follows: in 4.2mg/(kg?d) dose group and two control groups, the injection site of the rats become indurascent. The phenomenon gradually release and recovered after drug withdrawal. There were no other abnormal changes about blood and biochemical indexes, organ coefficient and organ pathology. In 10mg/(kg?d) dose group, the injection site of the rats became indurascent. The phenomenon gradually release and recovered after drug withdrawal. The quantity of heterophil granulocyte increased and achroacyte decrease in male rats. There were no other abnormal changes about blood and biochemical indexes, organ coefficient and organ pathology. In 20mg/(kg?d) dose group, the injection site of the rats became indurascent obviously. The phenomenon gradually release after drug withdrawal but there were little induration after 8 weeks. The quantity of total white blood cells, heterophil granulocyte, neutrophilic myelocyte, eosinophilic granulocyte band form, eosinophilic granulocyte segmented form, the ratio of granular cell to rhodocyt were increased. And achroacyte, early erythroblast, ntermediate erythroblast and late erythroblast were decreased. There were no other abnormal changes about blood and biochemical indexes, organ coefficient and organ pathology.
     Therefore, the changes induced by 20(S)-ginsenoside Rg3 intramuscular administrated 4.2 mg/(kg?d), 10.0 mg/(kg?d) and 20.0 mg/(kg?d) for 26 weeks were caused by the drug concentration higher than absorbability and induced inflammation, not caused by 20(S)-ginsenoside Rg3 toxic reaction. There were no target organ and sensitive blood index of 20(S)-ginsenoside Rg3 on Wistar rats. And also no tardive toxic reaction could be observed.
     Fourth, PhaseⅠclinical trial on 20(S)-ginsenoside Rg3 were performed for the first time.
     Pharmacokinetic parameters of intramuscular injection 20(S)-Ginsenoside Rg3 in single-dose 10 mg, 30mg and 60mg were calculated by WinNonlin(Pharsight 4.0.1) process standards for non-compartmental model, the data were as follows: Tmax for 2 h, 4 h and 4 h (median) respectively, Cmax were 135.4±35.3, 162.1±47.2 and 399.8±217.0 ng/Ml, AUC0 -t were 3297.4±1318.1, 7694.9±1908.9 and 23798.6±9007.8 h?ng/mL, AUC0-inf were 3474.1±1312.3, 8156.5±1782.7 and 25666.8±9401.1 h? ng/mL, t1/2 were 32.0±26.7, 51.7±15.4 and 53.9±25.7 h, Cl/F were 3176.3±939.4, 3812.1±713.1 and 2719.4±1267.7 mL/h, Vd/F were 152369.0±155966.4, 290811.4±121121.1 and 230322.2±196756.8 mL; Excretion72h% were 0.53±0.14%, 0.44±0.09% and 0.37±0.17% respectively.
     The pharmacokinetic parameters were analyzed by SPSS (v11.0) statistical analysis software. Coefficients correlation between doses and pharmacokinetic parameters (AUC0-t, AUC0-inf, Cmax) were 0.851, 0.859 and 0.665, P<0.05, indicated that AUC0-t, AUC0-inf and Cmax of 20(S)-ginsenoside Rg3 were dose-dependent pharmacokinetic parameters. No signifcant difference were showed between t1/2 and Cl/F by one-factor analysis of variance on three groups (P>0.05). t1/2 were signifcant difference between male and female (P<0.05). No signifcant difference in Cl/F, AUC0-t, AUC0-inf and Cmax between male and female (P>0.05).
     No serious adverse events happened during the trial, and no subject withdrawn before the trial finished. Only one adverse event (head trauma, midrange) on Day-1 was not concerned with the test drug.
引文
[1] Kitagawa I, Kobayashi M, Akedo H, et al. Inhibition of tumor cell invasion and metastasis by ginsenoside Rg-3 [J]. Ginseng Review, 1995, 20: 41-6.
    [2]陈迪,崔俊生,刘学峡,等. 20(S)-人参皂甙Rg3诱导宫颈癌Hela细胞凋亡的研究[J].中国实验诊断学, 2008, 12(4): 463-466.
    [3]许天敏,崔满华,谷丽萍,等. 20(S)-人参皂苷Rg3对卵巢癌生长抑制作用的实验研究[J].中国实用妇科与产科杂志, 2007, 23(2): 108-110.
    [4]王英,熊杰.人参皂甙Rg3诱导卵巢癌HO8910细胞凋亡的形态学研究[J].牡丹江医学院学报, 2008, 29(6): 11-13.
    [5]华海清,沈小昆,秦叔逵,等.人参皂苷Rg3抗人肝癌细胞株侵袭和转移的实验研究[J].中国癌症杂志, 2005, 15(4): 326-330.
    [6] Mochizuki M, YooYC, MatsuzawaK, et al. Inhibition by Ginsennoside Rg3 of bombesin-enhanced peritoneal metastasis of intstinal adencarcinom as induced by azoxymethane in Winstar rats [J]. Clin Exp Metastasis,1997,15(6):603-611.
    [7]赵文杰,陈迪,倪劲松,等. 20(S)-人参皂苷Rg3对前列腺癌PC-3M细胞的诱导凋亡作用[J].中国药理学通报, 2009, 25(2):235-238.
    [8]陈俊霞,彭惠民,蒲淑萍,等.人参皂苷Rg3诱导膀胱癌细胞系EJ的凋亡作用[J].中国中药杂志, 2007, 32(16): 1680-1684.
    [9]温焕连,曾文铤,何芳,等.人参皂甙Rg3对肝癌细胞移植瘤模型的作用研究[J].现代医院, 2008, 8(4): 14-16.
    [10] Djavaheri-Mergny M, Amelotti M, Mathieu J, et al. NF-kappaB activation represses tumornecrosis factor-alpha-induced autophagy[J]. J BiolChem, 2006, 281(41): 30373-3038.
    [11] Keum YS, Han SS, Chun KS, et al. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion [J]. Mutat Res, 2003, 523-524:75-85.
    [12] Patrick Y.K. Yue, Daisy Y.L. Wong, P.K. Wu, et al. The angiosuppressive effects of 20(R)- ginsenoside Rg3 [J]. Biochemical Pharmacology, 2006, 72 (4): 437-445.
    [13]何芳,曾文铤,朱科伦,等.人参皂甙Rg3抑制肝癌移植瘤新生血管形成的研究[J].河南科技大学学报(医学版), 2005, 23(4): 245-247.
    [14]陈大富,赵扬冰,白绍槐,等.人参皂甙Rg3对裸鼠原位种植人乳腺浸润性导管癌的抗癌作用及其机制的研究[J].华西医学, 2002, 17(3): 297-299.
    [15] Zhang QH, Wu CF, Duan L, et al. Protective effects of ginsenoside Rg(3) against cyclophosphamide-induced DNA damage and cell apoptosis in mice[J]. Arch Toxicol. 2008 , 82(2): 117-123.
    [16]康欣梅,张清媛,佟丹丹,等.低剂量环磷酰胺联合人参皂甙Rg3抑制小鼠肺癌肿瘤血管生成的实验研究[J].中国中西医结合杂志, 2005, 25(8): 730-733.
    [17]陈大富.人参皂甙Rg3单用及与化疗药物合用对裸鼠原位种植人乳腺浸润性导管癌抗癌作用及对肿瘤新生血管抑制作用的研究[J].四川大学硕士学位论文, 2002: 3-17.
    [18] Zhang QY, Kang XM, Zhao WH. Antiangiogenic effect of low-dose cyclophosphamide combined with ginsenoside Rg3 on Lewis lung carcinoma[J]. Biochemical and Biophysical Research Communications, 2006, 342(3): 824-828.
    [19]何芳,曾文铤,沈浩贤,等.人参皂甙Rg3联合三氧化二砷对人肝癌细胞增殖性的影响[J].疑难病杂志, 2007, 6(12): 724-726.
    [20]何芳,曾文铤,沈浩贤,等.人参皂甙Rg3联合三氧化二砷对人肝癌裸鼠MVD和PCNA的影响[J].河南科技大学学报(医学版), 2007, 25(3): 167-169.
    [21]张金华.人参皂甙Rg3联合5-氟尿嘧啶对小鼠移植性肝癌细胞凋亡、血管形成作用的研究[J].河北医科大学硕士学位论文, 2008: 9-14.
    [22]周桂华,孟艳,李扬,等.人参单体皂甙Rh-2对体外培养的前列腺癌细胞株PC-3M抑制效应的研究[J].白求恩医科大学学报, 2001, 27(6): 595-597.
    [23]李丽,齐凤英,刘俊茹,等.人参皂苷Rh-2对食管癌细胞Eca-109细胞周期的影响[J].中国中药杂志, 2005, 30(20): 1617-1621.
    [24] Kim SY, Kim DH, Han SJ, et al. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells[J]. Biochemical Pharmacology, 2007, 74(11): 1642-1651.
    [25] Kim HE, Oh JH, Lee SK, et al. Ginsenoside RH-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen- and caspase-dependent but Bcl-X(L)-independent pathway[J]. Life Sci, 1999, 65(3): PL33-40.
    [26] Kikuchi Y, Sasa H, Kita T, et al. Inhibition of human ovarian cancer cell proliferation in vivo by ginsenoside Rh-2 and adjuvant effects to cisplatin in vitro[J].Anti-cancer Drugs, 1991, 2: 63-7.
    [27] Kim HE, Oh JH, Lee SK, et al. Ginsenoside Rh-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen- and caspase-dependent but Bcl-XL-independent pathway[J]. Life Sciences, 1999, 65(3): 33- 40.
    [28] Wang Z, Zheng Q, Liu K, et al. Ginsenoside Rh2 enhances antitumour activity and decreases genotoxic effect of cyclophosphamide[J]. Basic Clin Pharmacol Toxicol. 2006, 98(4): 411-5.
    [29] Yun TK. Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds[J]. Mutation Research, 2003, 523–524: 63–74.
    [30] Azuma I, Mochizuki M. Inhibition of tumor cell invasion and metastasis by ginsenosides[J]. Ginseng Review, 1994; 18: 37-9.
    [31] Li QF, Shi SL, Liu QR, et al. Anticancer effects of ginsenoside Rg1, cinnamic acid, and tanshinone IIA in osteosarcoma MG-63 cells: Nuclear matrix downregulation and cytoplasmic trafficking of nucleophosmin[J]. The International Journal of Biochemistry & Cell Biology, 2008, 40(9): 1918-1929.
    [32] Wang W, Rayburn ER., Hang J, et al. Anti-lung cancer effects of novel ginsenoside 25-OCH3-PPD[J]. Lung Cancer, 2009, In Press, Corrected Proof, Available online 7 January.
    [33] Wang W, Zhao Y, Rayburn ER, et al. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng [J]. Cancer Chemother Pharmacol. 2007, 59(5): 589-601.
    [34] Chen YJ, Wang HY, Xu SX, et al. Study on the chemical constituents of Panax ginseng and their structure–function relationship anti-arrythmia and anti-tumor[J]. Science Foundation China, 1995, 9: 46–48.
    [35] Konopa, J., Matuszkiewicz, A., Hrabowska, M., et al. Cucurbitacins, cytotoxic and antitumor substances from Bryonia alba.II [J]. Biological studies.Arzneimi ttel-Forschung, 1974, 24, 1741–1743.
    [36] Ryu, SY, Lee, SH, Choi, SU, et al. Antitumor activity of Trichosanthes kirilowii[J]. Archives of Pharmacal Research, 1994, 17, 348–353.
    [37] Kim DK, Choi SH, Lee JO, et al. Cytotoxic constituents of Sorbaria sorbifolia var. stellipila[J]. Archives of Pharmacal Research, 1997, 20, 85–87.
    [38] Takahashi N, Yoshida Y, Sugiura T, et al. Cucurbitacin D isolated from Trichosanthes kirilowii induces apoptosis in human hepatocellular carcinoma cells invitro[J]. International Immunopharmacology, 2009, 4 (9): 508-513.
    [39] Chen WL, Tang WD, Lou LG, et al. Pregnane, coumarin and lupane derivatives and cytotoxic constituents from Helicteres angustifolia[J]. Phytochemistry, 2006, 67(Issue 10): 1041-1047.
    [40] Duncan MD, Duncan KLK. Cucurbitacin E Targets Proliferating Endothelia[J]. Journal of Surgical Research, 1997, 69(1): 55-60.
    [41] Fang X, Phoebe J, Pezzuto CH, et al. Plant anticancer agents, XXXIV. Cucurbitacins from Elaeocarpus dolichostylus[J]. Journal of Natural Products, 1984, 47, 988–993.
    [42] Mata R, Calzada F, Díaz E, et al. Chemical studies of Mexican plants used in traditional medicine. Part X.Cytotoxic constituents of Exostema mexicanum[J]. Planta Medica, 1990, 56: 241.
    [43] Liu TY, Zhang MX, Zhang HL, et al. Combined antitumor activity of cucurbitacin B and docetaxel in laryngeal cancer[J]. European Journal of Pharmacology, 2008, 587(1-3): 78-84.
    [44] Gao JJ, Min BS, Ahn EM, et al. New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells[J]. Chem. Pharm. Bull., 2002, 50(6): 837-840.
    [45] Tang W, Liu JW, Zhao WM, et al. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells[J]. Life Sci, 2006, 80(3):205-211.
    [46] Chen NH, Zhong JJ. Ganoderic acid T from a traditional Chinese medicinal herb induces cell cycle arrest and P53 expression, down-regulates MMP2/9, and inhibits tumor cell invasion and metastasis[J]. Journal of Biotechnology, 2008, 136(Supplement 1): S97-S98.
    [47] Wang G, Zhao J, Liu JW, et al. Enhancement of IL-2 and IFN-γexpression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo[J]. International Immunopharmacology, 2007, 7(6): 864-870.
    [48]陆易,翁新楚.赤芝中脂溶性化合物的体外抗肿瘤活性[J].精细化工, 2007, 24(8), 772-777.
    [49] Zeng l, Gu ZM, Chang CJ, et al. Mefiavolkenin, a New Bioactive Triterpenoid from Melia [J]. Bioorganic & Medicinal Chemistry, 1995, 3 (4): 383-390.
    [50]陈子,吴秋玲,陈燕,等.白桦脂酸对人Raji淋巴瘤细胞增殖、凋亡及细胞周期的影响[J].中草药, 2008, 39(4): 556-559.
    [51] D.V. Raghuvar Gopal, Archana A. Narkar, Y. Badrinath, et al. Betulinic acid induces apoptosis in human chronic myelogenous leukemia (CML) cell line K-562 without altering the levels of Bcr-Abl [J]. Toxicology Letters, 2005, 155(3): 343-351.
    [52] Jan H. Kessler, Franziska B. Mullauer, Guido M. de Roo, et al. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types [J]. Cancer Letters, 2007, 251 (1) : 132-145.
    [53] Arai MA, Tateno C, Hosoya T, et al. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana[J]. Bioorganic & Medicinal Chemistry, 2008, 16(21): 9420-9424.
    [54] Fernandes J, Castilho RO, da Costa MR, et al. Pentacyclic triterpenes from Chrysobalanaceae species: cytotoxicity on multidrug resistant and sensitive leukemia cell lines [J]. Cancer Letters, 2003, 190: 165–169.
    [55] Mukherjee R, Jaggi M, Rajendran P, et al. Betulinic acid and its derivatives as anti-angiogenic agent [J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14( 9): 2181-2184.
    [56] Liu WK, Ho JC, Cheung FW, et al. Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line [J]. European Journal of Pharmacology, 2004, 498: 71-78.
    [57]钟长斌,李祥,陈建伟. 23-羟基白桦酸体内抗肿瘤作用实验研究[J].实用中医内科杂志, 2003, 17(2): 80.
    [58] Pisha, E, Chai, H, Lee, IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanomathat functions by induction of apoptosis[J]. Nat. Med, 1995, 1: 1046– 1051.
    [59] Wick W, Grimmel C, WagenknechtB, et al. Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new protein synthesis, formation of reactiveoxygen species, and caspase processing[J]. J. Pharmacol. Exp. Ther. 1999, 289, 1306– 1312.
    [60] Fulda S, Debatin KM. Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors[J]. Med. Pediatr.Oncol, 2000, 35, 616– 618.
    [61] Fulda S, Jeremias I, Pietsch T, et al. Betulinic acid: a new chemotherapeutic agent in the treatment of neuroectodermal tumors [J]. Klin. Padiatr. 1999, 211: 319–322.
    [62] T Ju, Sun HX, Ye YP. Immunomodulatory and antitumor activity of triterpenoidfractions from the rhizomes of Astilbe chinensis[J]. Journal of Ethnopharmacology, 2008, 119 (2): 266-271.
    [63] Sun HX, Peng XY. Protective effect of triterpenoid fractions from the rhizomes of Astilbe chinensis on cyclophosphamide-induced toxicity in tumor-bearing mice[J]. Journal of Ethnopharmacology, 2008, 119(2): 312-317.
    [64] Sun HX, Zheng QF, Tu J. Induction of apoptosis in HeLa cells by 3β-hydroxy-12-oleanen-27-oic acid from the rhizomes of Astilbe chinensis [J]. Bioorganic & Medicinal Chemistry, 2006, 14(4): 1189-1198.
    [65] Fukuda Y, Sakai Y, Matsunaga S, et al. Cancer chemopreventive effect of orally administrated lupane-type triterpenoid on ultraviolet light B induced photocarcinogenesis of hairless mouse[J]. Cancer Letters, 2006, 240(2): 94-101.
    [66] Ngassapa O, Soejarto DD, Pezzuto JM, et al. Quinone-methide triterpenes and salaspermic acid from Kokoona ochracea[J]. J Nat Prod, 1994, 57(1): 1-8.
    [67] Chang FR, Hayashi K, Chen IH, et al. Antitumor agents. 228. five new agarofurans, Reissantins A-E, and cytotoxic principles from Reissantia buchananii[J]. J Nat Prod, 2003, 66(11): 1416-1420.
    [68] Nagase M, Oto J, Sugiyama S, et al. Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol[J]. Biosci Biotechnol iochem, 2003, 67(9): 1883-1887.
    [69] Zhang T, Hamza A, Cao X, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells [J]. Cancer Ther, 2008, 7: 162–170.
    [70] Idris A, Libouban H, Nyangoga H, et al. P52. The IKK inhibitors celastrol and parthenolide inhibit breast cancer cell proliferation and migration in vitro and osteolytic bone metastasis in vivo[J]. Cancer Treatment Reviews, 2008, 34 (1): 75.
    [71]张丽娟,朱润庆,费雁,等.南蛇藤素对肿瘤血管的抑制作用[J].肿瘤防治研究, 2005, 32(11): 719-720.
    [72] Huang YL, Zhou Y, Fan Y, et al. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression[J]. Cancer Letters, 2008, 264(1): 101-106.
    [73] He MF, Liu L, Ge W, et al. Antiangiogenic activity of Tripterygium wilfordii and its terpenoids[J]. Journal of Ethnopharmacology, 2009, 121( 1): 61-68.
    [74]黄煜伦,周幽心,姜华,等.雷公藤红素抑制可移植性人脑胶质瘤生长相关分子[J].江苏医药, 2007, 33(1): 37-39
    [75]周幽心,姜华,陈学彬,等.雷公藤红素对荷SHG44胶质瘤裸鼠的抑瘤试验[J].中国神经肿瘤杂志, 2005, 3 (4): 262-266.
    [76]周幽心,黄煜伦,许期年,等.雷公藤单体体外抑制胶质瘤细胞的实验研究[J]。癌症, 2002, 21(10): 1106-1108.
    [77]周幽心,孙成法,许期年,等.雷公藤红素体外抑制血管内皮细胞增殖的研究[J].中国神经肿瘤杂志, 2003, 1(2): 82-85.
    [78]黄煜伦,周幽心,周岱,等.雷公藤红素抑制血管生成的实验研究[J].中华肿瘤杂志, 2003, 25(5): 429-432.
    [79]陈长瑞,李文广,吴勇杰,等.扁蒴藤素的抗氧化与抗肿瘤作用中药药理与临床[J]. 2002, 18(5): 20-21.
    [80]徐银海.雷公藤红素诱导人急性髓系白血病HB-60细胞凋亡及其机制研究[D].浙江:浙江大学医学院,硕士学位论文, 2007.
    [81]鲍一笑,余润泉,张登海,等.雷公藤红素对人肥大细胞白血病细胞系HMC-1作用的实验研究[J].中华血液学杂志, 1999, 20(3): 146-148.
    [82] Morita H, Hirasawa Yu, Muto A, et al. Antimitotic quinoid triterpenes from Maytenus chuchuhuasca [J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18(3): 1050-1052.
    [83] Costa PM, Ferreira PM, Bolzani Vda S, et al. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells[J]. Toxicology in Vitro, 2008, 22(4): 854-863.
    [84] Kuo YH, Kuo LM. Antitumour and anti-AIDS triterpenes from Celastrus hindsii[J]. Phytochemistry, 1997, 44(7):1275-81.
    [85] Reyes FJ, Centelles JJ, Lupiá?ez JA, et al. (2α,3β)-2,3-Dihydroxyolean- 12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells[J]. FEBS Letters, 2006, 580(27): 6302-6310.
    [86] Chan PK. Acylation with diangeloyl groups at C21–22 positions in triterpenoid saponins is essential for cytotoxcity towards tumor cells[J]. Biochemical Pharmacology, 2007, 73(3): 341-350.
    [87] Rabi T, Banerjee S. Novel semisynthetic triterpenoid AMR-Me inhibits telomerase activity in human leukemic CEM cells and exhibits in vivo antitumor activity against Dalton’s lymphoma ascites tumor[J]. Cancer Letters, 2009, In Press, Corrected Proof,Available online 6 February.
    [88] Zheng L, Zheng J, Zhao YY, et al. Three anti-tumor saponins from Albizia julibrissin[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(10): 2765-2768.
    [89] Huang HC, Liaw CC, Zhang LJ, et al. Triterpenoidal saponins from Hydrocotyle sibthorpioides[J]. Phytochemistry, 2008, 69(7): 1597-1603.
    [90] Yamaguchi C, Wanibuchi H, Kakehashi A, et al. Chemopreventive effects of a serratane-type triterpenoid, 3α-methoxyserrat-14-en-21β-ol (PJ-1), against rat lung carcinogenesis[J]. Food and Chemical Toxicology, 2008, 46(6): 1882-1888.
    [91] Tanaka R, Minami T, Tsujimoto K, et al. Cancer chemopreventive agents, serratane-type triterpenoids from Picea jezoensis[J]. Cancer Letters, 2001, 172: 119-126.
    [92] Tanaka R, Minami T, Ishikawa Y, et al. Cancer chemopreventive activity of serratane-type triterpenoids on two-stage mouse skin carcinogenesis[J]. Cancer Letters, 2003, 196(Issue 2): 121-126.
    [93] Tanaka R, Shanmugasundaram K, Yamaguchi C, et al. Cancer chemopreventive activity of 3β-methoxyserrat-14-en-21β-ol and several serratane analogs on two-stage mouse skin carcinogenesis[J]. Cancer Letters, 2004, 214(Issue 2): 149-156.
    [94] Fukuda Y, Sakai Y, Matsunaga S, et al. Cancer chemopreventive effect of orally administrated lupane-type triterpenoid on ultraviolet light B induced photocarcinogenesis of hairless mouse[J]. Cancer Letters, 2006, 240(2): 94-101.
    [95] Bonaccorsi I, Altieri F, Sciamanna I, et al. Endogenous reverse transcriptase as a mediator of ursolic acid’s anti-proliferative and differentiating effects in human cancer cell lines [J]. Cancer Letters, 2008, 263( 2 ): 130-139.
    [96] Gao XM, Pu JX, Xiao WL, et al. Kadcoccilactones K–R, triterpenoids from Kadsura coccinea [J]. Tetrahedron, 2008, 64: 11673-11679.
    [97]刘基巍,赵翌,富力.人参皂苷Rg3在小鼠肝癌淋巴结转移模型中诱导细胞凋亡的作用[J].中国肿瘤临床, 2004, 31(19): 1120-22.
    [98]高船舟,杨佩满,吕广艳. 20 (R)-人参皂苷Rg3逆转K562 /ADM细胞MDR及诱导其凋亡的研究[J].解剖科学进展, 2002, 8(1): 31-35.
    [99]陈俊霞,夏俊,刘基巍.人参皂苷Rg3诱导乳腺癌细胞系MCF-7凋亡的实验研究[J].癌变畸变突变, 2005, 17(4): 0213-16.
    [100] Yancopoulos GD, Klagsbrun M, Folkman J. Vasculogenesis, Angiogenesis, and growth factors: ephrins enter the frag at the border [J]. Cell, 1998, 93(5): 661-4.
    [101] Nohara K, Yokoyama Y, Kano K. The important role of caspase-10 in sodiumbutyrate-induced apoptosis[J]. Kobe J Med Sci, 2007, 53(5): 265-73.
    [102] Nakayama J, Ohtsuki M, Oda T. Caspase-independent cell death by Fas ligation in human thymus-derived T cell line, HPB-ALL cells[J]. Microbiol Immunol, 2007, 52(10): 1029-37.
    [103]王贞丽,李金莲,王春波.肿瘤坏死因子相关凋亡诱导配体及扇贝多肽在UVA诱导HaCaT细胞凋亡中的作用[J].中国药理学通报, 2007, 23(10): 1375-79.
    [104] Shin HY, Park JH, Paik HD, et al. Acacetin-induced apoptosis of human breast cancer PC-3M cells involves caspase cascade,mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation[J]. Mol Cells, 2007, 24 (1): 95-104.
    [105] Lombardi L, Casani S, Ceccarrlli N, et al. Programmed cell death of the nucellus during Sechium edule Sw.seed development is associated with activation of caspase-like proteases[J]. J Exp Bot,2007,58 (11): 2949-2958.
    [106]倪劲松,辛颖,王心蕊,等. 20(S)-人参皂苷Rg3对Lewis肺癌生长及转移的抑制作用,肿瘤防治研究, 2006, 33(5): 311-313.
    [107]辛颖,倪劲松,姜新,等. 20(S)-人参皂苷Rg3抑制肿瘤生长的作用,吉林大学学报(医学版), 2006, 32(1): 61-63.
    [108]倪劲松,辛颖,王心蕊,等. 20(S)-人参皂苷Rg3与化疗药物联合应用对S180肉瘤的影响,吉林大学学报(医学版)2005, 31(5): 705-708.
    [109]辛颖,倪劲松,王心蕊,等. 20(S)-人参皂苷Rg3对B16黑色素瘤生长的抑制作用,临床肿瘤学杂志2004, 9(6): 604-607.
    [110]辛颖,倪劲松,王心蕊,等. 20(S)-人参皂苷Rg3抗B16黑色素瘤转移的作用,吉林大学学报(医学版), 2004, 30(4): 540-54.
    [111]韩锐主编.抗癌药物研究与实验技术,北京:北京医科大学,中国协合医科大学联合出版社, 1997年4月.
    [112] Sawaoka H, Tsuji S, Tsujii M, et al. Cyclooxygenase inhibitors sup- press angiogenesis and reduce tumor growth in vivo[J]. Lab Invest, 1999, 79(12): 1469-77.
    [113]刘建国,江敏,徐琳娜,等.二甲胺四环素增强博安霉素的抗肿瘤转移作用,药学学报,1995;30(9):668-673.
    [114] Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma [J]. New Eng J Med, 1991, 324(1): 1-8.
    [115] 20(S)-人参皂苷Rg3临床研究申报资料——动物药代动力学试验资料及文献资料[R].2003.
    [116] 20(S)-人参皂苷Rg3临床研究申报资料——临床研究者手册[R]. 2003.
    [117]庞涣,汪海林,富力,等. 20(R)-人参皂苷Rg3人体药代动力学研究[J].药学学报, 2001, 36(3): 170-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700