用户名: 密码: 验证码:
LCL滤波器的链式STATCOM关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静止同步补偿器(Static Compensator-STATCOM),可以有效解决配电网无功缺失、电压波动与闪变、电网谐波污染等电能质量问题,是一类兼顾无功补偿与谐波治理的重要电力电子变流装置,链式STATCOM相对于变压器多重化STATCOM,具有占用空间小、运行效率高、可实现冗余运行等优点,近年来得到了广泛关注和应用,对其主电路关键参数设计、装置控制策略以及样机研制实现的研究具有重要的理论与工程实践价值。本文针对LCL滤波器的链式STATCOM,对上述关键技术进行研究。
     针对LCL滤波器的链式STATCOM的主电路结构、数学模型进行分析,建立三相静止坐标系和两相同步旋转坐标系下装置的数学模型,由数学模型可以看出LCL滤波器的链式STATCOM是一个高阶、非线性、强耦合的多变量系统,并对装置主电路中关键器件:IGBT功率器件、H桥直流侧电容及其指令电压值、链节H桥单元数量、IGBT关断电压缓冲电容及电路类型作了详细的设计与器件选型。
     LCL滤波器用较小的电感值即可达到与L滤波器同样的滤波性能,不但节省了滤波器成本与体积,而且提高了系统的动态性能,但由于其三阶特性,滤波器的四个关键参数变化对滤波性能、谐振频率、纹波限制、基波电压损失都会造成影响,参数设计比较复杂。目前LCL滤波器应用研究多集中于低压场合,未见中高压,尤其是中高压链式STATCOM应用研究,本文在深入研究LCL滤波器的基本原理与特性的基础上,提出了一种适用于中高压链式STATCOM的LCL滤波器工程设计方法,按照高频开关纹波抑制与电压降、变流器侧电感与网侧电感比值、滤波电容与网侧电感的分流效果、链式STATCOM的补偿带宽与LCL滤波器的谐振频率这四个步骤依次设计与校验,该方法简单易用、物理意义清晰,具有一定的工程应用价值。
     采用人工鱼群智能算法对LCL滤波器的参数进行优化设计。传统的工程设计方法通常在满足性能指标的海量数据组合中选择成本最低的方案,无法保证LCL滤波器在开关频率处的最佳滤波效果。本文用MATLAB语言设计人工鱼群智能算法对LCL滤波器参数进行寻优的程序,将LCL滤波器的变流器侧电感、网侧电感以及滤波电容作为每个人工鱼的三维搜索空间,以开关频率处的谐波电流衰减函数作为寻优函数,结合装置补偿带宽等性能指标限制条件,能快速有效地求取LCL滤波器全局最优参数,具有一定的理论研究价值。
     提出一种基于LCL滤波器网侧电流反馈的以PI控制器、二阶低通滤波器作为电流控制内环,结合重复控制器以及对应校正环节作为电流外环的链式STATCOM电流跟踪控制策略,通过电流控制内环中二阶低通滤波器相位延迟特性以及PI控制器的设计解决LCL滤波器的阻尼稳定控制与基波无功电流的无静差跟踪控制,结合重复控制电流外环完成链式STATCOM对谐波电流的跟踪控制,兼顾了装置对补偿带宽内电流跟踪控制的稳态精度与动态性能。针对特定场合选择性谐波补偿的性能需求,提出一种基于二阶带通数字滤波器与二阶低通数字滤波器配合使用的补偿电流指令检测方法,并对相关数字滤波器的装置参数进行了详细的设计,相对传统的多同步旋转参考坐标系法,可以节省大量FPGA内存资源。
     建立电网电压不平衡时链式STATCOM有功功率交换的数学模型,分析得出电网负序电压以及流过三相换流链的负序电流对装置直流侧电容电压均衡控制均造成影响,针对这种情况提出一种适用于不平衡电网环境下的链式STATCOM直流侧电容电压均衡控制策略,从总体、相内、相间三个层面实现直流侧电容电压的平衡控制。电容电压总体均衡控制借助PI电压外环控制达到装置总体有功功率的平衡;电容电压相内均衡控制利用装置输出电流反馈来叠加误差信号,在每一相内各个H桥单元的调制波上叠加一个与输出电流同相位的电压分量来达到电容电压的相内均衡控制;相间均衡控制采用一种改进的基于负序电压前馈环的直流侧电容电压相间均衡控制策略,在补偿装置并网点的负序电压的同时,通过将每一相电容电压的平均值与指令电压的差值经过PI控制器输出变换为与电网电压同相位的交流量,经过同步旋转变换叠加至电流外环给定值。该方法不但提高了装置在并网点电压不平衡条件下生存能力,而且有效解决了链式STATCOM直流侧电容电压的平衡控制难题。
     根据本文对LCL滤波器的链式STATCOM相关理论与关键技术的研究基础上,成功开发出6KV配电网±2.8Mvar容量LCL滤波器的链式STATCOM的工业样机装置,给出了详细的样机研制过程。针对装置样机基波无功补偿、基波与谐波综合补偿效果进行了并网实验。实验结果表明,本文研制的LCL滤波器的链式STATCOM的控制策略与关键装置参数设计方法正确有效。最后将工业样机用于山东能源枣庄矿业集团某煤矿地面6KV变电所无功补偿与谐波治理,装置并网运行前后的测量数据证明,基于本文装置关键设备参数设计方法与相关控制策略的LCL滤波器的链式STATCOM实现了较为理想的动态无功补偿与谐波治理效果,达到了预期设计目标。
Staic Synchronous Compensatror (STATCOM) is an important power electronicequipment for both reactive compensation and harmonic suppression, which can solvethe problems of power quality, such as lack of reactive power, voltage fluctuation andflicker, harmonic pollution of power grid and so on. Compared with the multiplextransformer structure of STATCOM, Cascaded STATCOM is widely used andconcerned for its following advantages of a small footprint, high efficiency, modulardesign and so no. The design of main circuit parameters and control strategy hasimportant practical value as well as academic value. To solve the above keytechnologies, the research in this dissertation was put forward according to cascadedSTATCOM with LCL filter.
     Based on the analysis of main circuit and mathematicl model of cascadedSTATCOM with LCL filter, the dissertation deduces the mathematical model in thea-b-c and d-q coordinates under the principle of coordinate transformation. From themathematical model, it can be seen that cascaded STATCOM with LCL filter is atypical high-order, nonlinear systems with multiple variables, close coupling anduncertain parameters. The device choices and detailed designs of IGBT powermodules, dc bus capacitor of H-bridge and its reference voltage, number of H-bridgechain link and snuuber circuit of suppression of IGBT turn-off voltage are given inthis dissertation.
     LCL filter can achieve the same filter performance with smller inductance valuescompared with L filter, which not only brings cost savings and smaller size, but alsoraises dynamic performance. For third orders nonlinear characteristic, changes inparameters of LCL filter can affect filter performance, resonant frequency, ripplecurrent suppression performance and voltage loss, which is the reason of complexparameters design. Based on the further study of basic principle and characteristics ofLCL filter, a parameters design method suitable for engineering applications isproposed with the following four design steps. The parameters design methodproposed in this dissertation is simple and the physical meaning is clear, which is alsopractical for engineering application.
     The artificial fish swarm algorithm (AFSA) is adopted to optimize parametersdesign of LCL filter. The traditional parameters design method picks out a plan at thelowest cost on the condition that certain performance indicators and given constraints can be sastisfied, which can not guarantee the best filtering effect. An optimizationparameters design of LCL filter by AFSA is given with Matlab language. By theAFSA, the best filtering performance parameters of LCL filter can be picked outquickly and effectively, which has certain values for theory study and applicationresearch.
     A grid side current feedback control method using PI controller and typicalsecond order low pass filter as inner current loop and repetitive control as outercurrent loop is proposed. The open-loop magnitude margin and close-loop stability isimproved and ensured by inner current loop. Steady-state performance of current loopis improved by the above double-loop control, ensuring both fast dynamic responseand small steady-state error for current track and compensation in the banwidth ofcascaded STATCOM. For the demands of selective harmonic compensation, a methodfor detecting the harmonic command current is proposed with the combination of2-step band pass digital filters and2nd-order digital lowpass filter which can savememory resource of FPGA. Finally the detailed design of the two above filters ispresented.
     The mathematicl model of active power exchange between cascaded STATCOMand the grid is developed, from which capacitive voltage balance control influence ofnegative sequence current is gained. Under this circumusance, the balance control ofcapacitive voltage at the DC side under three-phase unbalanced condition is proposedby three levels: overall balance control, phase inside balance control and phase tophase balance control. The proposed method not only enhances the reliability ofcascaded STATCOM with LCL filter, but also solves the difficult capacitive voltagebalance control problem effectively.
     Based on the further research of related theory and key technique of cascadedSTATCOM with LCL filter in this dissertation, the prototype device is developed withthe capacity of±2.8Mvar and the voltage class of6KV. A detail design procession isgiven. Experiments are carried out to investigate effects of reactive power andharmonic compensation. The results show that the design in this dissertation is correctand effective. Finally, the propotype device is applied in a coal mine of SHANDONGENERGY GROUP CO., LTD. The measuing data before and after compenstationproves that the cascaded STATCOM with LCL filter designed in this dissertation canrealize an ideal dynamic reactive compensation and harmonic suppression effect,which reaches the design target.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2006.
    [2] Kimbark E W. Direct current transmission. Vol. I, Ch8New York: John Wiley&Sons,1971.
    [3]王玉斌.配电系统动态无功补偿技术的研究[D].济南:山东大学博士学位论文,2007.
    [4]中国国家标准GB/T14549-93.电能质量公用电网谐波.北京:中国标准出版社,1994.
    [5]吴景昌,孙树勤,宋文南等.电力系统谐波[M].北京:水利电力出版社,1994.
    [6]王兆安,刘进军.电力电子装置谐波抑制及无功补偿技术的进展.电力电子技术,1997,Vol.31, no.1, pp.100-104.
    [7]刘利成,李鹏,Kurt Schipman.电能质量治理若干问题探讨[J].电气应用,2011.30(7):16-19.
    [8]王正风.无功功率与电力系统运行[M].北京:中国电力出版社,2009.
    [9]何大愚.柔性交流输电系统概念研究的新进展[J].电网技术,1997,21(2):9~14.
    [10] N.G.Hingorani.Introducing Custom Power [J]. IEEE Spectrum,1995,32(6):41~48.
    [11] John Stones, Alan Collinson. Power Quality [J]. Power Engineering Journal,2001,15(2):58-64.
    [12] A Kurita, T Sskurai. The power system failure on July23,1987in Tokyo [C]. Proceedings of27thConference on Decision and Control, Austin, Texas, Dec,1988.
    [13] U.S.-Canada Power System Outage Task Force. Final report on the August14,2003blackoutin the United States and Canada: Causes and recommendations[R].2004.
    [14]何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5.
    [15]刘永齐,谢开.从调度角度分析8.14美加大停电[J].电网技术,2004,28(8):10-15.
    [16]莫斯科5.25大停电事故调查报告—俄罗斯统一电力系统事故调查委员会.2005年6月.华北电力科学院有限责任公司.2005年6月30日译.
    [17]朱桂萍,王树民.电能质量控制技术综述[J].电力系统自动化,2002,26(19):28-34.
    [18] Taylor GA, Burden AB. Wide Area Power Quality-Decision Processes and Options forSensitive Users [M]. CIRED97,1997,2-5.
    [19]夏道止等.高压直流输电系统的谐波分析与滤波[M].北京:水利水电出版社,1994.
    [20]阿里拉加J,布莱德勒DA,伯德格尔PS.电力系统谐波.唐统一等译.徐州:中国矿业大学出版社,1991.
    [21] IEEE Task Force on Harmonic Impacts. Effects of harmonics on equipment. IEEE TransPower Delivery,1993,8(2):672-680.
    [22]王仲鸿,沈斐,吴铁铮.FACTS技术研究现状及其在中国的应用与发展[J].电力系统自动化,2000,24(23):1-5.
    [23] Messina A R, Barocio E, Arroyo J. Analysis of modal interaction in power systems withFACTS controllers using normal forms [J]. IEEE Transactions on Power Systems,2003(3):2111-2117.
    [24] Mithulananthan N, Canizares C A, Reeve J. Tuning performance and interactions of PSS andFACTS Controllers [C]//Power Engineering Society Summer Meeting,2002IEEE,2002,2:981-987.
    [25] Gibbard M J, Vowles D J, Pourbeik P. Interactions between, and effectiveness of powersystem stabilizers and FACTS device stabilizers in multi-machine systems [J]. IEEETransactions on Power Systems,2000,152:748-755.
    [26] Pourbeik P, Gibbard M J. Damping and synchronizing torques induced on generators byFACTS stabilizers in multi-Machine power systems [J]. IEEE Trans on PWRS,1996,11(4).
    [27] Mathur R M, Vama R K. Thyristor-based FACTS controllers for electrical transmissionsystems [M]. IEEE Press,2002.
    [28]曹一家,陶佳,王光增,等.FACTS控制器间交互影响及协调控制研究进展[J].电力系统及其自动化学报,2008,20(1):1-8.
    [29] ABB Semiconductors AG. ABB IGCT5SHY35L4510Data Sheet [M]. Switzerland.2003.p2-30.
    [30] ABB Semiconductors AG. Applying in IGCTs [M]. Switzerland. February2006. P4-12.
    [31]陈坚.电力电子学—电力电子变换和控制技术[M].北京:高等教育出版社,2002.
    [32]姜齐荣,谢小荣,陈建业.电力系统并联补偿—结构、原理、控制与应用[M].北京:机械工业出版社,2004.
    [33] Julio G Mayordomo, Mohamed Lzzeddine, Rafael Asensi. Load and Voltage Balancing InHarmonic Power Flows By Means of Static Var Compensators [J]. IEEE Trans. on PowerDelivery,2002,17(3):761-769.
    [34] Hingorani N G. Flexible ac transmission. IEEE Spectrum,1993,(4):40-45.
    [35] Peng F Z, Lai J S. Dynamic performance and control of a static var generator using cascademultilevel inverters [J]. IEEE Transactions on Industry Applications,1997,33(3):748-755.
    [36] Xiaoming Yuan, BarbiI. Fundamentals of a new diode clamping multilevel inverter [J]. IEEETransactions on Power Electronics,2000,15(4):711-718.
    [37] Srianthumrong S, Fujita H, Akagi H. Stability Analysis of a Series Active Filter Integratedwith a Double-Series Diode Rectifier [J]. IEEE Trans. on Power Electronics,2002,17(1):117-124.
    [38] Srianthumrong S, Akagi H. A Medium-Voltage Transformer-less AC/DC Power ConversionSystem Consisting of a Diode Rectifier and a Shunt Hybrid Filter [J].IEEE Trans. on IndustryApplications,2003,39(3):874-882.
    [39] Perfect Harmony Medium Voltage AC Drives, Rubicon Technical Document,2003.
    [40] J Wen, K M Smedley. Synthesis of multilevel converters based on single-and/or three-phaseconverter building blocks [J]. IEEE Transactions on Power Electronics,2008,23(3):1247-1256.
    [41] Al-Hadidi, H K, Menzies, R W. Investigation of a cascade multilevel inverter as anSTATCOM. Power Engineering Society General Meeting,2003, IEEE, Volume:1,13-17July2003:193-198.
    [42] Fang Zheng Peng, Jih-Sheng Lai, McKeever J W, VanCoevering, J. A multilevelvoltage-source inverter with separate DC source for static var generation [J]. IEEETransactions on Industry Applications,1996,32(5):1130-1138.
    [43] Fang Zheng Peng, McKeever JW, Adams D J. A power line conditioner using cascademultilevel inverters for distribution systems [J]. IEEE Transactions on Industry Applications,1998,34(6):1293-1298.
    [44] Liu Y H, Arrillaga J, Watson N R. A new STATCOM configuration using multi-level DCvoltage re-injection for high power application [J]. IEEE Transactions on Power Delivery,2004,19(4):1828-1834.
    [45]沈斐,王娅岚,刘文华等.大容量STATCOM主电路结构的分析和比较[J].电力系统自动化,2003,27(8):59-65.
    [46]王江,王民,K.M.Tsang.采用主从型逆变器结构的静态同步补偿器[J].中国电机工程学报,2003,23(11):95-99.
    [47] Fukuda S, Dongsheng Li. A static synchronous compensator using hybrid multi-inverters [C].Power Electronics Specialists Conference,2004. PESC04.2004IEEE35th Annual, Volume6,20-25June2004:4644-4648.
    [48] Yiqiao Liang, Nwankpa CO. A new type of STATCOM based on cascading voltage-sourceinverters with phase-shifted unipolar SPWM [J]. IEEE Transactions on Industry Applications,1999,35,(5):1118-1123.
    [49] Arulampalam A, Ekanayake J B, Jenkins N. Application study of a STATCOM with energystorage [J]. IEE Proceedings–Generation, Transmission and Distribution,2003,150(3):373-384.
    [50] Hochgraf C, Lasseter R H. A transformer-less static synchronous compensator employing amulti-level inverter [J]. IEEE Transactions on Power Delivery,1997,12(2):881-887.
    [51] Fedyczak Z, Strzelecki R, Kasperek R, etal. Three-phase self-commutated static varcompensator based on Cuk converter topology [C]. In:2000IEEE31stAnnual PowerElectronics Specialists Conference,2000,6:494-499.
    [52] Sobrink K H, Renz K W, Tyll H K. Operation Experience and Field Tests of the ASVG atRejsby Hede [C]. In: IEEE Powercon'98, Beijing,1998:318-322.
    [53]纪延超,刘庆国,骆济寿,等.新型无功补偿电源(ASVG)的仿真和试验[J].中国电机工程学报,1993,13(2):37-42.
    [54] Rahman M, Ahmed M, Gutman R, etal. UPFC Application on the AEP System PlanningConsiderations [J]. IEEE Trans on Power Systems,1997,12(4):256-262.
    [55] Hanson D J. Transmission SVC for National Grid Company PLC incorporating±75MvarSTATCOM [J]. IEE Colloquium (Digest),1998,500(23):341-346.
    [56]常盘幸生,市川文俊,色川彰一,等.电力系统用自励式SVCの开发[J].日本电气学会论文志D分册,1993,113(1):168-176.
    [57]刘文华,姜齐荣,梁旭,等.采用GTO逆变器的20Mvar STATCOM[J].电力系统自动化,2000,24(23):19-23.
    [58]朱永强,崔文进,胡东辰,等.±50MVar静止补偿器接入系统运行策略仿真研究[J].电力系统自动化,2004,28(21):77-80.
    [59]诸纪新.±50Mvar STATCOM装置在上海电网中的应用[J].电气建设,2006,12:14-17.
    [60]王永源,李旷,张海涛,等.基于载波移相PWM控制策略的±200MVA级链式STATCOM的直流电容电压控制方法[J].电气技术,2011.12:20-23.
    [61]刘文华,刘炳.IEGT-适用于STATCOM的新型大功率开关器件[J].电力电子技术,2001,35(4):45-47.
    [62]刘文华,刘炳,王志泳,等.基于IGBT三电平逆变器的100Kvar DSTATCOM[J].电力系统自动化,2002,26(1):70-75.
    [63] E Twining, D G Holmes. Voltage Compensation in Weak Distribution Networks SuingMultiple Shunt Connected Voltage Sources Inverters[C]. In: IEEE Power Tech ConferenceProceedings,2003,4:116-121.
    [64] Twining, M J Newman, P C LOH. Voltage Compensation in Weak Distribution NetworksUsing a D-STATCOM [C]. In: Power Electronics and Drive Systems,2003,1:178-183.
    [65]黄剑.南方电网±200Mvar静止同步补偿装置工程实践[J].南方电网技术,2012,6(2):14-20.
    [66]高凯,黄华,邹彬,郑斌毅.上海西郊变电站STATCOM的性能测试及试运行情况[J].电力设备,2007,8(7):27-40.
    [67] Wei Liu, Jayakar R, Wenchao Song, Huang A Q. A modular digital controller architecture formulti-node high power converter applications [C]. Industrial Electronics Society,2005.IECON2005.31st Annual Conference of IEEE.
    [68]张茂松,查晓明,孙建军,张赫,查志鹏.链式D-STATCOM的无源性控制[J].中国电机工程学报,2011,31(15):33-39.
    [69]张茂松,李尚盛,查晓明,孙建军,张赫.链式D-STATCOM的鲁棒性能准则设计[J].中国电机工程学报,2011,31(28):71-79.
    [70] T. Thomas, K.Haddad and A. Jaafari. Design and performance of active power filters [J].IEEE Trans. on Industry Application,1998, vol.34, no1, pp.38-46.
    [71]谢运祥,朱立新,唐中琪.有源滤波器输出电感值的选取方法[J].华南理工大学学报(自然科学版),2000,(9):73-76.
    [72] Seung-Ho Song, Shin-il Kang, Nyeon-Kun Hahm. Implementation and Control of GridConnected AC-DC-AC Power Converter for Variable Speed Wind Energy ConversionSystem[C]. Proc. of APEC’03.
    [73]罗承廉,纪勇,刘遵义.静止同步补偿器的原理与实现[M].北京:中国电力出版社,2005.
    [74]孙宜峰,阮新波.级联型多电平逆变器的功率均衡控制策略[J].中国电机工程学报,2006,26(4):126-133.
    [75] J A Barrenal, S Aurtenecheal, J M Canales, etal. Design, Analysis and Comparison ofMultilevel Topologies for DSTATCOM Applications[C]. In:2005European Conference onPower Electronics and applications,2005,9:132-137.
    [76]汪海宁,余世杰,苏建徽,沈玉樑,王飞.30KVA光伏并网逆变器的设计及控制研究[J].太阳能学报,2003,1(4).
    [77]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计[J].电力系统自动化,2004,1.
    [78] Milan Prodanovic, Timothy C. Green. Control and Filter Design of Three-phase Inverters forHigh Power Quality Grid Connection [J]. IEEE Trans. on Power Electronics,2003, Vol.18,no.1, pp.373-380.
    [79] Hyosung Kim, Janghwan Kim, Seung Ksiu. A Design Consideration of Output Filters forDynamic Voltage Restorers[C]. In: IEEE Power Electronics Specialists Conference,2004,6:4268-4272.
    [80] Eric Wu, Peter W Lehn. Digital Current Control of a Voltage Source Converter with ActiveDamping of LCL Resonance [J]. IEEE Transactions on Power Electronics,2006,21(5):1364-1373.
    [81] Bruno Bolsens, Karel De Brabandere, Jeroen Van den Keybus, etal. Model-Based Generationof Low Distortion Currents in Grid-Coupled PWM-Inverters Using an LCL Output Filter [J].IEEE Transactions on Power Electronics,2006,21(4):1032-1040.
    [82] Timothy CY Wang, Zhihong Ye, Gautam Sinha, etal. Output Filter Design for aGrid-interconnected Three-phase Inverter[C]. In: IEEE Power Electronics SpecialistConference,2003,2:779-784.
    [83] Karshenas, H.R., H.Saghafi. Performance Investigation of LCL Filters in Grid ConnectedConverters[C]. Transmission&Distribution Conference and Exposition,2006:1-6.
    [84] Liu F. Design and research on parameter of LCL filter in three-phase grid-connectedinverter[C]. Power Electronics and Motion Control Conference,2009:2174-2177.
    [85] Prodanovic, M., T.C. Green. Control and Filter Design of Three-Phase Inverters for HighPower Quality Grid Connection [J]. IEEE Transactions on Power Electronics,2003,18(1).
    [86]伍家驹,张朝燕,任吉林,杉本英彦.一种基于PWM逆变器的非对称T型滤波器的设计方法[J].中国电机工程学报,2005,25(14):35-40.
    [87] M. Liserre, F. Blaabjerg, S. Hansen. Design and Control of an LCL-filter based Three-phaseActive Rectifier [J]. IEEE Trans. on Industry Applications, Vol.41, Issue.5,2005,pp.1281-1291.
    [88] T. C. Y. Wang, Z. H. Ye, G. Sinha, X. M. Yuan. Output Filter Design for aGrid-interconnected Three-phase Inverter[C]. Proc. of PESC’03,2003, Vol.2, pp.779-784.
    [89]陈允平,丁凯,孙建军.并联型有源电力滤波器与电网连接低通滤波器的设计[J].电力系统自动化,2005,29(3),65-68.
    [90] M. Liserre, A. Dell’Aquila, F. Blaabjerg. Stability Improvements of an LCL-filter BasedThree-phase Active Rectifier[C]. Proc. of PESC’02,2002, Vol.3, pp.1195-1201.
    [91]钱志俊,仇志凌,陈国柱.有源电能质量控制器的LCL滤波器设计与研究[J].电力电子技术,2007,41(3):6-8.
    [92]武健,徐殿国,何娜.并联有源滤波器输出LCL滤波器研究[J].电力自动化设备,2007,27(1):17-20.
    [93]张宪平,李亚西.三相电压型整流器的LCL滤波器分析与设计[J].电气应用,2007,26(5):65-68.
    [94]张强,张崇巍,张兴,谢震.风力发电用大功率并网逆变器研究[J].中国电机工程学报,2007,27(16),54-59.
    [95] Blasko, V., V.Kaura. A Novel Control to Actively Damp Resonance in Input LC Filter of aThree Phase Voltage Source Converter[C]. IEEE Applied Power Electronics Conference andExposition,1996:545-551.
    [96] Liserre, M., F. Blaabjerg, E.Chiarantoni. A stable three-phase LCL-filter based active rectifierwithout damping[C]. IAS Annual Meeting IEEE Industry Applications Society,2003:1552-1557.
    [97] E. Twining and D. G. Holmes. Grid Current Regulation of a Three-Phase Voltage SourceInverter with an LCL Input Filter [J]. IEEE Trans. on Power Electronics, Vol.18, Issue.3,2003, pp.888-895.
    [98] S B Kjar, G K Andersen, etc. Control Aspects of a LCL Grid-Connected Green PowerInverter [J]. Nordic Workshop on Power and Industrial Electronics,12-14August2002.
    [99] Liserre M., Dell Aquila A., Blaabjerg. Genetic Algorithm Based Design of the ActiveDamping for a LCL-filter Three-Phase Active Rectifier [J]. IEEE Trans. on PowerElectronics, Vol.19, Issue1,2004, pp.76-86.
    [100] P.A. Dahono. A control method to damp oscillation in the input LCL filter of AC-DC PWMconverters [J]. Proc.of PESC2002, pp.1630-1635, June2002.
    [101]张宪平,林资旭,李亚西,许洪华. LCL滤波器的PWM整流器新型控制策略[J].电工技术学报,2007,22(2),74-77.
    [102] Malinowski M. Sensor-less Operation of Active Damping Method for Three-phase PWMConverters [J]. Industrial Electronics,2005:775-780.
    [103] Malinowski M. Simple Sensor-less Active Damping solution for Three-Phase PWMRectifier with LCL Filter[C]. The32th Annual Conference of the IEEE IndustrialElectronics Society,2005:5.
    [104]谢小荣,崔文进,唐义良.STATCOM无功电流的鲁棒自适应控制[J].中国电机工程学报,2001,21(4):35-39.
    [105]栗春,姜齐荣,王仲鸿.静止无功补偿器的非线性控制器的设计[J].电网技术,1998,22(6):34-38.
    [106]魏文辉,刘文华,宋强.基于逆系统方法有功-无功解耦PWM控制的链式STATCOM动态控制策略研究[J].中国电机工程学报,2005,25(2):23-28.
    [107] Tavakoli Bina, M.Hamill, D.C. Average circuit model for angle-controlled STATCOM[C].IEE Proceedings-Electric Power Applications,2005,152(3):653-659.
    [108] Min Wanki, Min Joonki, Choi Jaeho. Control of STATCOM Using Cascade MultilevelInverter for High Power Application[C]. PEDS’99, Hong Kong, China,1999:871-876.
    [109] Singhm, B N, Chandra A, AI-Haddad. DSP-based indirect-current-controlled STATCOMPart Ⅰ: Evaluation of current control techniques [J]. IEE Proc-Electr.Power Appl.,2000,147(2):107-112.
    [110] Singhm, B N, Chandra A, AI-Haddad. DSP-based indirect-current-controlled STATCOMPart Ⅱ: Evaluation of current control techniques [J]. IEE Proc-Electr.Power Appl.,2000,147(2):113-118.
    [111] Gerardo Escobar, Aleksandar M.Stankovic, Paolo Mattavelli. An adaptive controller instationary reference frame for D-STATCOM in unbalanced operation [J]. IEEETransactions on Industry Electronic,2004,51(2):401-409.
    [112]张伊洁,莫伊,王正华.一种基于非线性PI的DSTATCOM串级解耦控制策略[J].低压电器,2012,1:56-60.
    [113] Walmir Freitas, Andre Morelato, Wilsun Xu. Impacts of AC generators and DSTATCOMdevices on the dynamic performance of distribution system [J]. IEEE Trans.on PowerDelivery,2005,20(2):1493-1501.
    [114] Peter W Lehn. A benchmark system for simulation of the D-STATCOM[C]. PowerEngineering Society Winter Meeting, IEEE,2002,1:496-498.
    [115] J Sun, D Czarkowski, Z Zabar. Voltage flicker mitigation using PWM based distributionSTATCOM[C]. Power Engineering Society Summer Meeting,2002IEEE,2002,1:616-621.
    [116]罗林,郑宏,白雪飞,杨祥令.STATCOM在稳定节点电压中的新型控制方法[J].电气时代,2008年第2期:70-72.
    [117]梁中华,闫从逊,李巨星.基于STATCOM物理模型的模糊PI控制[J].沈阳工业大学学报,2009,31(2):144-148.
    [118]唐杰,罗安,欧剑波,赵伟,盘宏斌.配电静止同步补偿器的模糊自适应PI控制策略[J].电工技术学报,2008,23(2),120-126.
    [119]刘骥,魏新劳,徐在德,赵东旭,孙冰.源侧电流检测的DSTATCOM控制策略[J].电机与控制学报,2012,16(1),55-62.
    [120]王盛,李立学,郑益慧等.基于多模型PI的STATCOM直接电压控制方法[J].电力自动化设备,2012,32(7):42-46.
    [121]赵亮,刘晓铁,王成.基于粒子群优化PID的D-STATCOM控制研究[J].黑龙江电力,2010,32(6):433-436.
    [122]欧剑波,罗安,唐杰,涂春鸣,姚舜.基于神经元自适应PID的STATCOM直接电压控制方法[J].电力系统自动化,2007,31(12):77-80.
    [123]曾江,焦连伟,倪以信,陈寿孙,张宝霖.有源滤波器定频滞环电流控制新方法[J].电网技术,2000,24(6):1-8.
    [124] Xu Dianguo, Gu Jianjun, Liu Hankui. Improved hysteresis current control for active powerfilter. In: IEEE ISIE.2003,2:836-840.
    [125] A.Kawamura, R. G. Hoft. Instantaneous feedback controlled PWM inverters with adaptivehysteresis [J]. IEEE Trans. on Industry Application,1984, vol.IA-20, pp.769-775.
    [126] B. K. Bose. An adaptive hysteresis-band current control technique of a voltage-fed PWMinverted for machine drive system [J]. IEEE Trans. on Industry Electronics,1990, Vol.37,pp.402-408.
    [127] L. Malesani, P. Tenti. A novel hysteresis control method for current controlled VSI PWMinverters with constant modulation frequency [J]. IEEE Trans. on Industry Application,1990, vol.26, pp.88-92.
    [128] T Kataoka, T Ishizuka, K Nezu, Y Sato, H Yamaguchi. Current control of voltage-typePWM rectifier introducing resonance-based controller [C]. Power Electronics and VariableSpeed Drivers’r23-25,1996, Conference Publication No.429, IEE, pp.519-524.
    [129] D.N. Zmood, D.G. Holmes. Stationary frame current regulation of PWM inverters with zerosteady-state error [J]. IEEE Trans. on Power Electronics,2003, vol.18-3, pp.814-822.
    [130] M. Liserre, R. Teodorescu, F. Blaabjerg. Stability of Photovoltaic and Wind TurbineGrid-Connected Inverters for a Large Set of Grid Impedance Values [J]. IEEE Trans. onPower Electronics,2006, vol.12-1, pp.263-272.
    [131]王恒利,付立军,揭贵生,肖飞,万泽法.采用比例谐振和状态反馈的三相逆变器最优控制[J].西安交通大学学报,2013,47(8):127-132.
    [132]刘红,李贇,徐宗发.应用于三相并网逆变器的PR解耦控制器[J].电力电子技术,2013,4:14-16.
    [133]胡文翠,王明渝,钱坤.LCL型并网逆变器电流控制器设计[J].电力系统保护与控制,2013,41(8):123-128.
    [134]朱俊杰,马伟明,聂子玲.一种用于静止式中频电源的比例谐振控制策略[J].电机与控制学报,2012,16(10):79-85.
    [135]王建伟,胡晓光,陈松松,田思维.具有谐波补偿功能的动态电压恢复期控制策略[J].电网技术,2013,37(6):1700-1705.
    [136] Shoji Fukuda, Takehito Yoda. A novel current-tracking method for active filters based on asinusoidal internal model [J]. IEEE Trans. on Industry Application,2001, vol.37-3,pp.888-895.
    [137] X. Yuan, W. Merk, H. Stemmler, J. Allmeling. Stationary-Frame generalized integrators forcurrent control of active power filters with zero steady-state error for current harmonics ofconcern under unbalanced and distorted operating conditions [J]. IEEE Trans. on IndustryApplication,2002, vol.38-2, pp.523-532.
    [138]刘艳苹.太阳能光伏发电系统并网逆变器的研究[J].电源技术,2013,37(8):1399-1401.
    [139]杨豪,赵军红,朱雁南,刘岳滨.谐波补偿重复控制及其在逆变器控制中的应用[J].电气传动,2013,43(8),44-48.
    [140]慕昆,孟苓辉.光伏并网逆变器复合非线性控制设计[J].电力电子技术,2013,47(8):44-46.
    [141]梁志珊,邱银锋,魏学良.重复控制补偿的有源电力滤波器无源控制[J].电机与控制学报,2013,17(7):87-92.
    [142]杨昆,陈磊,陈国柱.DSTATCOM补偿不平衡负载分序控制策略[J].电力自动化设备,2012,32(7):36-41.
    [143]连建阳,谢川,陈国柱.三相四线级联DSTATCOM高性能控制新策略[J].电力自动化设备,2011,31(1):55-58.
    [144]杨昆,陈国柱.基于重复控制的DSTATCOM补偿电流控制[J].电力系统自动化,2013,37(10):80-85.
    [145]周娟,秦静,王子绩,伍小杰.内置重复控制器无差拍控制在有源滤波器中的应用[J].电工技术学报,2013年第2期,232-238.
    [146]张学广,王瑞,徐殿国.并联型三相PWM变换器环流无差拍控制策略[J].中国电机工程学报,2013,33(6):31-37.
    [147]梁清清,董秀成,颜伟,王强铜,王军霞.具有有源电力滤波功能的风力发电系统并网控制策略[J].可再生能源,2013,31(5):42-45.
    [148]伏祥运,王建赜,纪延超,谭光慧.静止坐标系下D-STATCOM自适应无差拍控制[J].电力系统自动化,2007,31(8):41-46.
    [149]张力,陈建业,王仲鸿,等.系统电压不对称下ASVG的仿真分析[J].清华大学学报,1997,37(7):55-58.
    [150] GB/T15543-2008电能质量:三相电压不平衡[S].北京:中国国家标准化管理委员会,2008.
    [151] Yueqiu Wang, Jie Tang, Xionger Qiu. Analysis and Control of D-STATCOM underunbalanced voltage condition [C]. International Conference on Mechatronic Science,Electric Engineering and Computer, Jilin, China,2011,1623-1625.
    [152]唐杰.配电网静止同步补偿器的理论与技术研究[D].湖南,湖南大学,2007.
    [153]朱永强,王腾飞.应用于DSTATCOM的负序电流优先补偿策略[J].电网技术,2012,36(8):106-110.
    [154]郭源博,周鑫,张晓华,陈宏钧.电网不平衡条件下STATCOM的非线性控制[J].电力自动化设备,2012,32(2):50-55.
    [155]王少杰,罗安.不平衡工况下配电网STATCOM的控制策略[J].2009,29(8):13-17.
    [156]朱永强.D-STATCOM不平衡负荷补偿电流的3种设计家方案[J].2007,31(1):75-79.
    [157]马晓军,刘文华,陈建业.一种抑制系统不对称对STATCOM影响的新方法.清华大学学报(自然科学版),2004,41(1):124-128.
    [158]朱永强,宋强,刘文华,李建国,许树铠.用于不平衡负荷补偿的大容量D-STATCOM主电路选择[J].电力系统自动化,2005,29(7):58-64.
    [159]耿俊成,刘文华,袁志昌.链式STATCOM电容电压不平衡现象研究:(一)仿真和试验[J].电力系统自动化,2003,27(16):53-57.
    [160]耿俊成,刘文华,袁志昌.链式STATCOM电容电压不平衡现象研究:(二)数学模型[J].电力系统自动化,2003,27(17):35-39.
    [161]臧春艳,斐振江,何俊佳,苟锐锋,朱静,孙伟.链式STATCOM直流侧电容电压控制策略研究[J].高压电器,2010,46(1):17-21.
    [162] Liang Yiqiao, Nwankpa C O. A new type of STATCOM based on cascading voltage-sourceinverters with phase-shifted unipolar SPWM [J]. IEEE Trans. on Industry Application,1999,35(5), pp.1118-1123.
    [163] Peng Fangzheng, Lai Jihsheng, Mckeever J W, et al. A multilevel voltage-source inverterwith separate DC sources for static var generation [J]. IEEE Trans. on Industry Application,1996,32(5), pp.1130-1138.
    [164] Bostjan Blazic, Igor Papic. Improved D-STATCOM control for operation with unbalancedcurrents and voltages. IEEE Trans. On Power Delivery,2006,21(1), pp.225-223.
    [165] Li Yidan, Wu Bin. A novel DC voltage detection technique in the CHB inverter-basedSTATCOM [J]. IEEE Trans. on Power Delivery,2008,23(3):, pp.1613-1619.
    [166] HANSON D J. A Transmission SVC for National Grid Company PLC Incorporating a±75Mvar STATCOM Flexible AC Transmission System-The FACTS [J]. IEE Colloquium,1998(5), pp.1-5.
    [167] JON ANDONI BARRENA. Miguel Angel RodrIguez Vidal.Individual Voltage BalancingStrategy for PWM Cascade H-Bridge Converter-Based STATCOM [J]. IEEE Trans. onIndustrial Electronic,2008(1), pp.55-56.
    [168] Woodhouse M L, Donoghue M W, Osbome M M. Type testing of the GTO valves for anovel STATCOM converter [C]. Seventh International Conference on AC-DC PowerTransmission, London, United Kingdom,2001.
    [169]刘文华,宋强,腾乐天,等.基于链式逆变器的60MVA静止同步补偿器的直流电压平衡控制[J].中国电机工程学报,2004,24(4):145-150.
    [170] TOLBERT L M, PENG F Z, Cunnyngham T, et al. Charge Balance Control Schemes forCascade Multilevel Converter in Hybrid Electric Vehicles [J]. IEEE Trans. Ind. Electron.,2002,49(5):1058-1064.
    [171] Taesik Yu, Sewan Choi, Hyosung Kim. Indirect current control algorithm for utilityinteractive inverters for seamless transfer [J]. PESC2006,1-6.
    [172]郭高朋,许留伟,江加福.链式STATCOM直流侧电容电压平衡控制[J].电源技术,2012,36(1):104-107.
    [173]许树楷,宋强,朱永强,等.用于不平衡补偿的变压器隔离型链式D-STATCOM的研究[J].中国电机工程学报,2006,26(9):137-143.
    [174]魏文辉,宋强,腾乐天,等.基于反故障控制的链式STATCOM动态控制策略的研究[J].中国电机工程学报,2005,25(4),19-24.
    [175] Cheng Ying, Yang Zhaoning, Mariesa L C, et al. A comparison of diode-clamped andcascaded multilevel converter for a STATCOM with energy storage [J]. IEEE Trans. onIndustry Electronics,2006,53(5):1512-1521.
    [176] Han Chong, Yang Zhaoning, Chen Bin, et al. Evaluation of cascade multilevel converterbased STATCOM for arc furnace flicker mitigation [J]. IEEE Trans. on IndustryApplications,2007,43(2):378-385.
    [177]夏正龙,史丽萍,陈丽兵,杨晓冬.基于LCL滤波器的中高压链式STATCOM参数设计[J].煤炭学报,2013,38(8):1503-1510.
    [178]汪照,李有明,陈斌,邹婷.基于鱼群算法的OFDMA自适应资源分配[J].物理学报,2013,62(12):128802-1-122802-7
    [179]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
    [180]郭小强,邬伟扬,顾和荣,王立乔,赵清林.并网逆变器LCL接口直接输出电流控制建模及稳定性分析[J].电工技术学报,2010,25(1):102-109.
    [181]陈瑶,金新民,童亦斌.三相电压型PWM整流器网侧LCL滤波器[J].电工技术学报,2007,22(9):124-129.
    [182] Gullvik, W. Active damping of resonance oscillations in LCL-filters based on virtual fluxand virtual resistor[C].2007European Conference on Power Electronics and Applications,2007:1-10.
    [183]伍小杰,孙蔚,戴鹏,周娟.一种虚拟电阻并联电容有源阻尼法[J].电工技术学报,2010,25(10):122-128.
    [184] Salo M, Tuusa H. A new control system with a control delay compensation for acurrent-source active power filter [J]. IEEE Trans. on Industrial Electronics2005, Vol.52,1616-1624.
    [185]夏正龙,史丽萍,杨晓冬,李倩倩.基于LCL滤波器的高压链式STATCOM电流控制策略[J].煤炭学报,2013,38(12):2272-2278.
    [186] Chong Han, Zhaooning Yang, Bin Chen, et al. Evaluation of cascade-multilevel-converter-based STATCOM for arc furnace flicker mitigation [J]. IEEE Trans. on IndustryApplication,2007,43(2):378-385.
    [187] Akagi H, Inoue S, Yoshil T. Control and performance of a transformer less cascade PWMSTATCOM with star configuration [J]. IEEE Trans. on Industry Applications,2007,43(4):1041-1049.
    [188]魏文辉,刘文华,宋强,等.基于逆系统方法有功无功解耦PWM控制的链式STATCOM动态控制策略研究[J].中国电机工程学报,2005,25(3):23-28.
    [189] Song Q, Liu W H, Yuan Z H. Multilevel optimal modulation and dynamic control strategiesfor STATCOMs using cascaded multilevel inverters [J]. IEEE Trans. on Power Delivery,2007,22(3):1937-1946.
    [190] Soto D, Pena R. Nonlinear control strategies for cascaded multilevel STATCOMs [J]. IEEETrans. on Power Delivery,2004,19(4):1919-1927.
    [191]苗长新.中压级联型多电平STATCOM关键技术研究[D].徐州:中国矿业大学博士学位论文,2012.
    [192]许湘莲.基于级联多电平逆变器的STATCOM及其控制策略研究[D].武汉:华中科技大学博士学位论文,2006.
    [193]孙蔚.LCL滤波的PWM整流器控制策略研究[D].徐州:中国矿业大学博士学位论文,2009.
    [194] Guoqiao.S. An Improved Control Strategy for Grid-Connected Voltage Source Inverterswith a LCL Filter [J]. IEEE Trans.on Power Electronics,2008,23(4):7.
    [195] Huerta.F. Control of voltage source converters with LCL filter using state-space techniques
    [C].34thAnnual Conference of IEEE Industrial Electronics,2008:1027-1032.
    [196] Shen Guoqiao, Xu Dehong, Xi Danji. An improved control strategy for grid-connectedvoltage source inverters with a LCL filter [J]. IEEE21th Annual,2006:1067-1073.
    [197]王跃,杨昆,钟晓剑,陈国柱.基于多同步旋转变化的并联型APF补偿策略[J].浙江大学学报(工学版),2013,47(4):705-710.
    [198]刘钊.风力发电系统中链式STATCOM关键技术[D].武汉:华中科技大学博士学位论文,2010.
    [199]张嵩巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [200] Wenchao Song, Alex Q.Huang. Fault-tolerant design and control strategy for cascadedH-bridge multilevel converter-based STATCOM [J]. IEEE TRANSACTIONS ONINDUSTRIAL ELECTRONICS,2010,57(8):2700-2708.
    [201]夏正龙,史丽萍,杨晓冬,苗长新.基于内模原理的链式STATCOM电流控制策略[J].电力电子技术,2013,第47卷,第10期:75-77.
    [202] Xia Zhenglong, Shi Liping, Li Qianqian.Control Strategy of Cascade STATCOM Based onInternal Model Theory[J].TELKOMNIKA Indonesian Journal of Electrical Engineering,Vol.12, No.3, March2014, pp.1687-1694.
    [203]夏正龙,史丽萍,杨晓冬,李倩倩.一种改进的电网电压不平衡环境下链式STATCOM控制策略[J].电网技术,2014,第38卷,第5期:1310-1317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700