用户名: 密码: 验证码:
直驱永磁风力发电系统并网技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术和永磁材料的快速发展,基于变速运行、变桨距调节的直驱永磁风力发电系统因其在效率、可靠性、并网控制灵活等方面的优势显示了较大的发展潜力。本文主要围绕直驱永磁风力发电系统并网技术展开理论研究,对永磁同步电机无传感器控制、并网变流器建模与控制和低电压穿越(LVRT)等技术进行分析探讨,并通过仿真和实验验证了理论研究成果的正确性。
     第一,围绕直驱永磁风力发电机数学模型展开分析。阐述了永磁同步电机在不同坐标系下数学模型;研究了永磁同步电机结构和饱和凸极性;简要介绍了零d轴电流控制(ZDAC)原理和特点;为后续章节的研究工作提供理论基础。
     第二,围绕直驱永磁风力发电机无传感器控制的相关技术磁链位置观测与初始位置检测展开研究。在磁链位置观测方面,首先分析了基于坐标变换的饱和反馈双积分器(SFDICT)和低通滤波补偿积分器(LPFCI)两种磁链位置积分器的工作原理和性能。针对SFDICT,为寻求限幅值设置方法,首次对其在不同限幅值、不同谐波含量下工作特性进行了理论分析和仿真研究;提出了SFDICT在各限幅值下的误差公式;并基于此提出小限幅值加角度补偿法进行磁链位置估算,可同时达到较好的位置精度和谐波效果。针对LPFCI,给出了LPFCI在不同谐波含量下的误差特点。其次,比较了基于两种磁链位置积分器的无传感器控制应用于兆瓦级直驱永磁风力发电系统优缺点。最后,对两种无传感器控制相关技术进行了仿真研究。在初始位置检测方面,针对现有转子初始位置检测方法存在的问题,并结合直驱永磁风力发电机负载特性,提出了一种低成本、易实施的三相两相混合导通法来进行转子初始位置检测。阐述了该方法的实现原理和工作特性,并给出了其理论分析及仿真结果。
     第三,围绕并网变流器建模与控制展开研究。针对不同坐标系下实施的电流调节器,提出采用复矢量法进行评估比较。首先,建立了三相并网变流器的复矢量模型,给出了静止PI、静止PR、同步PI在不同坐标系间的等效关系。其次,基于复矢量模型应用经典控制理论对静止PI、静止PR、同步PI和解耦同步PI从解耦控制、阶跃跟踪性能、抗电网电压扰动性能等方面进行了分析比较和仿真研究。针对并网变流器并联振荡问题,在建立了n台并网变流器并联等效模型的基础上用复矢量法进行了分析,得出了系统振荡原因。提出采用低次前馈法来防止振荡,并将其应用于风电场现场实验中,解决了振荡问题。
     第四,围绕直驱永磁风力发电系统LVRT建模和控制展开研究。首先,给出了直驱风力发电系统功率关系;对电网电压跌落期间直驱永磁风力发电系统行为特性进行了分析。其次,针对能耗型卸荷电路的LVRT方案缺点以及改进算法目前存在的难点,提出了机侧网侧协调控制与小卸荷支路相结合或机侧网侧协调控制与电容储能相结合两种LVRT方案。介绍了两种方案的实现原理:在网侧变流器方面,重点阐述了应对不对称跌落的控制策略;在机侧变流器方面,重点分析了机侧变流器不同控制策略下,电网电压跌落初期直驱风力发电系统的响应特点,进而给出小卸荷支路和电容量的选取公式。最后,搭建了仿真模型,仿真结果表明了所提方案有效性。
     作为对理论分析结果的实验验证,给出了25kW直驱永磁风力发电机对拖实验平台、2MW直驱永磁风力发电机对拖实验平台和风电场现场实验的主要实验结果,对包括SFDICT在各限幅值下的误差公式、两种无传感器控制技术、初始位置检测方案、低次前馈法消除并联振荡等方面研究成果进行了验证。
With the rapid development of power electronics technology and permanent magnet materials, direct-drive permanent magnet wind power generation systems based on variable pitch control, variable speed operation have become a promising research direction in wind generation technology area due to their superiorities of high reliability, high efficiency, flexible power control ability, etc. This dissertation gives theoretical research on grid-connected technology for direct-drive permanent magnet wind power generation systems. Sensorless control of direct-drive permanent magnet wind generators, modeling and control of grid-connected converters and low voltage ride through (LVRT) are discussed comprehensively. Simulations and experiments demonstrate the correctness of the research results. The main research works are introduced as follows.
     Firstly, mathematical models of direct-drive permanent magnet wind generators are discussed, which provide theoretical basis for the subsequent chapters. In this section, mathematical models of permanent magnet synchronous machines (PMSMs) in different frames are given; structural and saturation saliencies of PMSMs are studied in detail; principles and characteristics of zero d-axis current control are briefly introduced.
     Secondly, sensorless related technologies rotor flux linkage position observation and initial position detection of PMSMs are discussed. As to rotor flux linkage position observation aspect, working principle and characteristics of saturation feedback double integrator based on coordinate transform (SFDICT), low pass filter compensation integrator (LPFCI) are analyzed in detail. For SFDICT, performance of SFDICT under different harmonic components and different amplitude limits is firstly presented; error expressions under different amplitude limits are proposed; based on them, small amplitude limit with angle compensation is proposed, which can get better accuracy and quality. For LPFCI, operation characteristics and error features under different harmonic components are presented. Furthermore, advantages and disadvantages of two sensorless methods used in direct-drive permanent magnet wind generators are analyzed and compared. The related simulation results are also given. As to initial position detection aspect, rotor initial position detection methods are studied. Given advantages and disadvantages of the existing methods and load characteristics of direct-drive permanent magnet wind generators, a low-cost easy-implementation rotor initial position detection method is proposed. Its principle and implementation procedures are introduced in detail. Simulation results indicate feasibility and simplicity of the proposed method.
     Thirdly, modeling and control of grid-connected converters are discussed. Many current regulators implemented in many frames exist in grid-connected converters. An evaluation method using complex vectors is proposed. Complex vector model of grid-side converter is given. Equivalent relationship of stationary PI regulators, stationary PR regulators and synchronous PI regulators among different frames are presented. Using complex vectors, stationary PI regulators, stationary PR regulators, synchronous PI regulators and decoupled synchronous PI regulators are comparative analyzed and evaluated from three aspects of decouple control, reference tracking performance, voltage disturbance rejection performance. The related simulation results are also given. To solve oscillation problem in the parallel of grid-connected converters, the model of n-paralleled grid-connected converters is built. Based on it, oscillation mechanism is studied using complex vectors. To suppress oscillation, a method using low order grid-voltage feed-forward is proposed, feasibility of which is demonstrated by experimental results in wind farm.
     Fourthly, modeling and control of LVRT are discussed. Based on instantaneous power theory, power relationship among main parts in direct-drive permanent magnet wind power generation systems are given in detail. Furthermore, their behavior during voltage sags is presented. Given the disadvantages of tradition un-loading branches and difficulties of modified algorithms, two LVRT control strategies are proposed. One is the combination of coordinate control of generator-side and grid-side converters and small un-loading branch. The other is the combination of coordinate control of generator-side and grid-side converters and energy storage capacitor. Their principle and implementation procedures are introduced in detail. As to control aspect of grid-side converters, the control method under un-balanced voltage sags is introduced in detail. As to control aspect of generator-side converters, system response properties at the beginning of voltage sags under different generator-side control goals are analyzed comprehensively. Based on the analysis, selection criteria of small un-loading branch and electrolytic capacitor are presented. The related simulation results are also given. Simulation results indicate feasibility of the proposed methods.
     As to experiment demonstration aspect, main experimental results in the25kW direct-drive permanent magnet wind generator experimental platform, the2MW direct-drive permanent magnet wind generator experimental platform, wind farm experiments are given, which demonstrate the correctness of theoretical research results including error expressions under different amplitude limits for SFDICT, the conclusion of two sensorless control strategies based on SFDICT and LPFCI, the proposed rotor initial position detection method, the proposed low order grid-voltage feed-forward.
引文
[1]Global Wind Energy Council (GWEC). Global Wind Report Annual Market Update 2011. Brussels, Belgium:2012.
    [2]李俊峰,蔡丰波,唐文倩等.风光无限2011中国风电发展报告.北京:中国环境科学出版社,2011.
    [3]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计.2012.
    [4]F. Blaabjerg, F. Iov, Z. Chen, et al. Power electronics and controls for wind turbine systems. IEEE international energy conference and exhibition,2010:333-344.
    [5]H. Polinder, S. W. R. de Haan, M. R. Dubois, et al. Basic operation principles and electrical conversion systems of wind turbines. Energy and Power Engineering,2005,15(4):43-50.
    [6]T. Ackermann. Wind Power in Power Systems. England:John Wiley & Sons,2005.
    [7]谢宝昌.兆瓦级风力发电机综述.电机与控制应用.2007,34(2):1-4,15.
    [8]H. Li, Z. Chen. Overview of different wind generator systems and their comparisons. IET Renewable Power Generation,2008,2(2):123-138.
    [9]M. Liserre, R. Cardenas, M. Molinas, et al. Overview of Multi-MW Wind Turbines and Wind Parks. IEEE Transactions on Industrial Electronics,2011,58(4):1081-1095.
    [10]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景.电机与控制应用,2008,35(4):1-5,21.
    [11]C. Jauch. Stability and control of wind farms in power systems[PhD dissertation]. Riso National Laboratory, Aalborg University, Denmark,2006.
    [12]迟永宁.大型风电场接入电网的稳定性问题研究[博士学位论文].北京:中国电力科学研究院,2006.
    [13]J. Kabouris, F. D. Kanellos, Impacts of Large-Scale Wind Penetration on Designing and Operation of Electric Power Systems. IEEE Transactions on Sustainable Energy,2010,1(2): 107-114.
    [14]邓恩思.大型风电场运行的特点及并网运行的问题.电源技术应用,2010,11:57-59.
    [15]L. Xie, P. M. S. Carvalho, L. A. F. M. Ferreira, et al. Wind Integration in Power Systems: Operational Challenges and Possible Solutions. Proceedings of the IEEE,2011,99(1): 214-232.
    [16]M. M. Chowdhury, M. E. Haque, M. Aktarujjaman, et al. Grid integration impacts and energy storage systems for wind energy applications -A review. IEEE Power and Energy Society General Meeting,2011:1-8.
    [17]Wind turbines connected to grids with voltages above 100 kV, Regulation TF 3.2.5. Eltra/Elkraft, Denmark, December,2004.
    [18]Wind turbines connected to grids with voltages below 100 kV, Regulation TF 3.2.6. Eltra/Elkraft, Denmark, May,2004.
    [19]Interconnection for wind energy, Final Rule. Federal Energy Regulatory Commission, USA, June,2005.
    [20]Grid Code-High and extra high voltage. E.ON Netz GmbH, Bayreuth, Germany, April,2006.
    [21]Nordic Grid Code. Nordel, January,2007.
    [22]The grid code. Issue 4, Revision 6. National Grid Electricity Transmission plc.2011, UK.
    [23]全国电力监管标准化技术委员会.GB/T 19963-2011.风电场接入电力系统技术规定.国家标准化管理委员会.2011,12.
    [24]M. Tsili, S. Papathanassiou. A review of grid code technical requirements for wind farms. IET Renewable Power Generation,2009,3(3):308-332.
    [25]雷亚洲,G. Lightbody.国外风力发电导则及动态模型简介.电网技术,2005,25(12):27-32.
    [26]W. Christiansen, D. T. Johnsen. Analysis of requirements in selected grid codes. Project Report, Orsted DTU, Section of Electric Power Engineering, Technical University of Denmark,2006.
    [27]J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, et al. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources:A Survey. IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [28]胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析.电力自动化设备,2008,28(4):77-81.
    [29]刘万平,赵祥,任修明等.不同整流系统对直驱永磁风力发电机的性能影响及选型评估.电机与控制应用,2009,36(12):17-21.
    [30]李建林,胡春生.变速恒频直驱型风电系统变流器拓扑结构研究.电网与清洁能源,2009,25(12):62-69.
    [31]P. Vas. Sensorless vector and direct torque control. Oxford, U.S.:Oxford University Press, 1998.
    [32]D. Montesinos, S. Galceran, F. Blaabjerg, et al. Sensorless control of PM synchronous motors and brushless DC motore-an overview and evaluation. European Conference on Power Electronics and Applications,2005:1-10.
    [33]J. Holtz. Sensorless Control of Induction Machines-With or Without Signal Injection?. IEEE Transactions on Industrial Electronics,2005,53(1):7-30.
    [34]贾洪平PMSM DTC无传感器运行及传感器集成研究[博士学位论文].杭州:浙江大学,2006.
    [35]李永东,朱昊.永磁同步电机无速度传感器控制综述.电气传动,2009,39(9):3-10.
    [36]S. Kim, S. K. Sul. Sensorless control of AC motor-Where are we now?. International Conference on Electrical Machines and Systems (ICEMS),2011:1-6.
    [37]O. Benjak, D. Gerling. Review of position estimation methods for IPMSM drives without a position sensor part I:Nonadaptive methods. XIX International Conference on Electrical Machines (ICEM),2010:1-6.
    [38]M. A. Jabbar, M. A. Hoque, M. A. Rahman. Sensorless permanent magnet synchronous motor drives. IEEE 1997 Canadian Conference on Electrical and Computer Engineering,1997,2: 878-883.
    [39]J. S. Kim, S. K. Sul. New approach for the low-speed operation of PMSM drives without rotational position sensors IEEE Transactions on Power Electronics,1996,11(3):512-519.
    [40]M. Tursini, C. Olivieri, L. Di Leonardo. Analysis of phase-detection algorithms for back-EMF-based sensorless strategies through real-time simulations.2011 Symposium on Sensorless Control for Electrical Drives (SLED),2011:129-137.
    [41]S. Morimoto, K. Kawamoto, M. Sanada, et al. Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame. IEEE Transactions on Industry Applications,2002,38(4):1054-1061.
    [42]J. Liu, H. Nian, J. W. Li, et al. Sensorless control of PMSG for wind turbines based on the on-line parameter identification. International Conference on Electrical Machines and Systems,2009:1-6.
    [43]齐放,邓智泉.基于MARS的永磁同步电机无速度传感器.电工技术学报,2000,22(4):53-58.
    [44]林平,胡长生,李明峰等.基于模型参考自适应系统算法的速度估算核的研制.中国电机工程学报,2004,24(1):119-123.
    [45]李永东,张猛,肖曦等.永磁同步电机模型参考自适应无速度传感器控制方法.电气传动,2004,34(z1):302-306.
    [46]H. M. Kojabadi, M. Ghribi. MRAS-based adaptive speed estimator in PMSM drives.9th IEEE International Workshop on Advanced Motion Control,2006:569-572.
    [47]S. Bolognani, L. Tubiana, M. Zigliotto. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications,2003,39(6):1741-1747.
    [48]江俊,沈艳霞,纪志成.基于EKF的永磁同步电机转子位置和速度估计.系统仿真学报,2005,17(7):1704-1707.
    [49]张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器.中国电机工程学报,2007,27(36):36-40.
    [50]陈振,刘向东,靳永强等.采用扩展卡尔曼滤波磁链观测器的永磁同步电机直接转矩控制.中国电机工程学报,2008,28(33):75-81.
    [51]Z. Van, V. Utkin. Sliding mode observers for electric machines-an overview. Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society(IECON),2002,3: 1842-1847.
    [52]祝晓辉,李颖晖.基于扰动滑模观测器的永磁同步电机矢量控制.电机与控制学报.2007,11(5):456-461.
    [53]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制.中国电机工程学报,2007,27(9):59-63.
    [54]C. Lascu, I. Boldea, F. Blaabjerg. A Class of Speed-Sensorless Sliding-Mode Observers for High-Performance Induction Motor Drives. IEEE Transactions on Industrial Electronics,2009, 56(9):3394-3403.
    [55]H. Kim, J. Son, J. Lee. High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM. IEEE Transactions on Industrial Electronics,2011,58(9):4069-4077.
    [56]王颢雄,肖飞,马伟明等.基于滑模观测器与SPLL的PMSG无传感器控制.电机与控制学报,2011,15(1):49-54.
    [57]汪令祥,张兴,张崇巍等.基于位置观测的直驱系统无速度传感器技术.电力系统自动化,2008,32(12):78-82.
    [58]胡书举,王剑飞,赵栋利等.无速度传感器控制永磁直驱风电变流器的研制.电机与控制学报,2009,13(1):67-72.
    [59]S. J. Hu, H. H. Xu. Research on Sensorless Control Based Back-to-Back Converter for Direct-Driven WECS. Asia-Pacific Power and Energy Engineering Conference,2009:1-4.
    [60]S. W. Fan, P. Wang, C. X. Wen. A new sensorless control strategy used in direct-drive PMSG wind power system.2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG),2010:611-615.
    [61]汪令祥,张兴,张崇巍等.兆瓦级永磁同步风力发电机无速度传感器矢量控制方法研究.电工电能新技术,2009,28(4):19-22,41.
    [62]R. Li, G. Z. Zhao. Position sensorless control for PMSM using sliding mode observer and phase-locked loop. IEEE 6th International Power Electronics and Motion Control Conference, 2009:1867-1870.
    [63]陈明亮,肖飞,王颢雄等.直驱型永磁同步风力发电机无传感器控制.电机与控制学报.2009,13(6):792-797.
    [64]F. Briz, M. W. Degner, P. Garcia, et al. Comparison of saliency-based sensorless control techniques for AC machines. IEEE Transactions on Industry Applications,2004,40(4): 1107-1115.
    [65]O. Benjak, D. Gerling. Review of position estimation methods for PMSM drives without a position sensor, part Ⅲ:Methods based on saliency and signal injection. International Conference on Electrical Machines and Systems (ICEMS),2010:873-878.
    [66]S. Ogasawara, H. Akagi. An approach to real-time position estimation at zero and low speed for a PM motor based on saliency. IEEE Transactions on Industry Application,1998,34(1): 163-168.
    [67]M. A. Vogelsberger, S. Grubic, T. G. Habetler, et al. Using PWM-induced transient excitation and advanced signal processing for zero-speed sensorless control of AC machines. IEEE Transactions on Industrial Electronics,2010,57(1):365-374.
    [68]L. A. S. Ribeiro, M.W. Degner, F. Briz, et al. Comparison of carrier signal voltage and current injection for the estimation of flux angle or rotor position. Conference Record of the 1998 IEEE Industry Applications Conference,1998,1:452-459.
    [69]O. B. H. B. Kechiche, H. S. Attia, H. Sammoud, et al. Continuous HFSI techniques applied to rotor position estimation of IPMSM at standstill and low speed - A survey.8th International Multi-Conference on Systems, Signals and Devices (SSD),2011:1-10.
    [70]秦峰,贺益康,刘毅.永磁同步电机转子位置的无传感器自检测.浙江大学学报(工学版),2004,38(4):465-469.
    [71]刘毅,贺益康,秦峰等.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究.中国电机工程学报,2005,25(17):121-126.
    [72]秦峰,贺益康,刘毅等.两种高频信号注入法的无传感器运行研究.中国电机工程学报,2005,25(3):116-120.
    [73]D. Raca, P. Garcia, D. Reigosa, et al. A comparative analysis of pulsating vs. rotating vector carrier signal injection-based sensorless control. Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition,2008:879-885.
    [74]D. Raca, P. Garcia, D. D. Reigosa, et al. Carrier-Signal Selection for Sensorless Control of PM Synchronous Machines at Zero and Very Low Speeds. IEEE Transactions on Industry Applications,2010,46(1):167-178.
    [75]胡家兵,贺益康,年珩等.基于磁饱和凸极效应的面贴式PMSM零速下无传感器技术. 中国电机工程学报,2006,26(10):152-157.
    [76]R. D. Lorenz. Practical issues and research opportunities when implementing zero speed sensorless control. Proceedings of the fifth International Conference on Electrical Machines and Systems,2001,1:1-10.
    [77]J. H. Jang, S. K. Sul, Y. C. Son. Current measurement issues in sensorless control algorithm using high frequency signal injection methods. Conference Record of the 2003 IEEE Industry Applications Conference,2003,2:1134-1141.
    [78]C. H. Choi, J. K. Seok. Compensation of Zero-Current Clamping Effects in High-Frequency-Signal-Injection-Based Sensorless PM Motor Drives. IEEE Transactions on Industry Applications,2007,43(5):1258-1265.
    [79]P. Garcia, F. Briz, M. W. Degner, et al. Accuracy, Bandwidth, and Stability Limits of Carrier-Signal-Injection-Based Sensorless Control Methods. IEEE Transactions on Industry Applications,2007,43(4):990-1000.
    [80]R. Raute, C. Caruana, C. S. Staines, et al. Analysis and Compensation of Inverter Nonlinearity Effect on a Sensorless PMSM Drive at Very Low and Zero Speed Operation. IEEE Transactions on Industrial Electronics,2010,57(12):4065-4074.
    [81]T. Kereszty, V. M. Leppanen, J. Luomi. Sensorless control of surface magnet synchronous motors at low speeds using low-frequency signal injection. The 29th Annual Conference of the IEEE Industrial Electronics Society(IECON),2003,2:1239-1243.
    [82]M. Eskola, H. Tuusa. Sensorless control of salient pole PMSM using a low-frequency signal injection. European Conference on Power Electronics and Applications,2005,1-10.
    [83]S. S. Wu, Y. D. Li, X. J. Miao. Comparison of signal injection methods for sensorless control of PMSM at very low speeds. European Conference on Power Electronics and Applications, 2007:1-6.
    [84]D. Basic, F. Malrait, P. Rouchon. Current Controller for Low-Frequency Signal Injection and Rotor Flux Position Tracking at Low Speeds. IEEE Transactions on Industrial Electronics, 2011,58(9):4010-4022.
    [85]李鸿孺,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计.中国电机工程学报,2002,22(12):32-35.
    [86]孙丹,贺益康.基于转子磁链观测的无速度传感器PMSM DTC浙江大学学报(工学版),2006,40(7):1276-1280.
    [87]祝晓辉,李颖晖,陈玉峰.永磁同步电机转子位置及速度提取灰色预测法.电机与控制学报,2009,13(2):184-189.
    [88]J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, et al. PWM regenerative rectifiers:state of the art. IEEE Transactions on Industrial Electronics,2005,52(1):5-22.
    [89]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [90]M. Liserre, F. Blaabjerg, A. Dell'Aquila. Step-by-step design procedure for a grid-connected three-phase PWM voltage source converter. International Journal of Electronics,2004,91(8): 445-460.
    [91]M. Liserre, F. Blaabjerg, S. Hansen. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Transactions on Industry Applications,2005,41(5):1281-1291.
    [92]Y. B. Tong, F. Tang, Y. Chen, et al. Design algorithm of grid-side LCL-filter for three-phase voltage source PWM rectifier, IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008:1-6.
    [93]M. Liserre, A. Dell'Aquila, F. Blaabjerg. Stability improvements of an LCL-filter based three-phase active rectifier.2002 IEEE 33rd Annual Power Electronics Specialists Conference, 2002,3:1195-1201.
    [94]W. Sun, X. J. Wu, P. Dai, et al. An over view of damping methods for three-phase PWM rectifier. IEEE International Conference on Industrial Technology,2008:1-5.
    [95]K. H. Ahmed, S. J. Finney, B. W. Williams. Passive Filter Design for Three-Phase Inverter Interfacing in Distributed Generation. Electrical Power Quality and Utilization,2007, ⅩⅢ(2): 49-58.
    [96]赵仁德,赵强,李芳等.LCL滤波的并网变换器中阻尼电阻影响分析.电力系统及其自动化学报,2009,21(6):112-116.
    [97]王要强,吴凤江,孙力等.阻尼损耗最小化的LCL滤波器参数优化设计.中国电机工程学报.2010,30(27):90-95.
    [98]P. A. Dahono. A control method to damp oscillation in the input LC filter of AC-DC PWM converters.2002 IEEE 33rd Annual Power Electronics Specialists Conference,2002,4: 1630-1635.
    [99]张宪平,李亚西,林资旭等.LCL滤波的电压型PWM整流器的有源阻尼控制.电气传动,2007,37(11):22-25,60.
    [100]V. Blasko, V. Kaura. A novel control to actively damp resonance in input LC filter of a three phase voltage source converter. IEEE Transactions on Industry Applications,1997,33(2): 542-550.
    [101]M. Malinowski, M. P. Kazmierkowski, W. Szczygiel, et al. Simple sensorless active damping solution for three-phase PWM rectifier with LCL filter.31st Annual Conference of IEEE Industrial Electronics Society(IECON),2005:987-991.
    [102]M. Liserre, A. Dell'Aquila, F. Blaabjerg. Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier. IEEE Transactions on Power Electronics,2004,19(1):76-86.
    [103]J. L. Agorreta, M. Borrega, J. Lopez, et al. Modeling and Control of N-Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants, IEEE Transactions on Power Electronics,2011,26(3):770-785.
    [104]M. P. Kazmierkowski, L. Malesani. Current control techniques for three-phase voltage-source PWM converters:a survey. IEEE Transactions on Industrial Electronics,1998,45(5): 691-703.
    [105]J. W. Dixon, B. T. Ooi. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Transactions on Industrial Electronics,1988,35(4): 508-515.
    [106]张纯江,郭忠南,王芹等.基于新型相位幅值控制的三相PWM整流器双向工作状态分析.中国电机工程学报.2006,26(11):167-171.
    [107]T. M. Rowan, R. J. Kerkman. A new synchronous current regulator and an analysis of current regulated PWM inverters. IEEE Transactions on Industry Applications,1986, IA-22(4): 678-690.
    [108]N. R. Zargari, G Joos. Performance investigation of a current-controlled voltage-regulated PWM rectifier in rotating and stationary frames. IEEE Transactions on Industrial Electronics, 1995,42(4):396-401.
    [109]A. Draou, Y. Sato, T. Kataoka. A new state feedback based transient control of PWM AC to DC voltage type converters. IEEE Transactions on Power Electronics,1995,10(6):716-724.
    [110]邓卫华,张波,丘东元.三相电压型PWM整流器状态反馈精确线性化解耦控制研究.中国电机工程学报,2005,25(7):97-103.
    [111]R. Wu, S. B. Dewan, G R. Slemon. Analysis of a PWM AC to DC voltage source converter under the predicted current control with a fixed switching frequency. IEEE Transactions on Industry Applications,1991,27(4):756-764.
    [112]杨勇,阮毅,叶斌英等.三相并网逆变器无差拍预测电流控制方法.电机工程学报,2009,29(33):40-46.
    [113]刘春海,梁晖.风力发电并网逆变器预测电流控制方法研究.电力电子技术,2010,44(10):6-8.
    [114]魏德冰,石春新,李枝玖等.并网逆变器的预测偏差电流无差拍控制策略.电力电子技术,2011,45(1):57-58,67.
    [115]孔雪娟,王荆江,彭力等.基于内模原理的三相电压源逆变电源的波形控制技术.中国电机工程学报,2003,23(7):67-70.
    [116]刘飞,查晓明,周彦等.基于极点配置与重复控制相结合的三相光伏发电系统的并网策略.电工技术学报,2008,23(4):130-136.
    [117]王斯然,吕征宇.LCL型并网逆变器中重复控制方法研究.中国电机工程学报.2010,30(27):69-75.
    [118]W. McMurray. Modulation of the chopping frequency in DC choppers and PWM inverters having current-hysteresis controllers. IEEE Transactions on Industry Applications,1984, IA-20(4):763-768.
    [119]L. Malesani, P. Tenti. A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency. IEEE Transactions on Industry Applications,1990,26(1):88-92.
    [120]I. Nagy. Novel adaptive tolerance band based PWM for field oriented control of induction machines, IEEE Transactions on Industrial Electronics,1994,41(4):406-417.
    [121]C. Cecati, A. Dell'Aquila, M. Liserre, et al. A Fuzzy-Logic-Based Controller for Active Rectifier. IEEE Transactions on Industry Applications,2003,39(1):105-112.
    [122]S. Saetieo, D. A. Torrey. Fuzzy logic control of a space-vector PWM current regulator for three-phase power converters. IEEE Transactions on Power Electronics,1998,13(3): 419-426.
    [123]王宝诚,梅强,邬伟扬等.三相变流器的模糊PI神经网络控制研究.电工技术学报,2005,20(8):68-73.
    [124]D. N. Zmood, D. G Holmes, G. H. Bode. Frequency domain analysis of three phase linear current regulators. IEEE Transactions on Industry Applications,2001,37(2):601-610.
    [125]D. H. Nguyen, M. Negnevitsky. A review of fault ride through strategies for different wind turbine systems.20th Australasian Universities Power Engineering Conference,2010:1-5.
    [126]曹娜,李岩春,赵海翔等.不同风电机组对电网暂态稳定性的影响.电网技术,2007, 31(9):53-57.
    [127]李建林,许洪华,胡书举等.风力发电系统低电压运行技术.北京:机械工业出版社,2008.12.
    [128]张兴,张龙云,杨淑英等.风力发电低电压穿越技术综述.电力系统及其自动化学报.2008,20(2):1-8.
    [129]霍新长,肖湘宁.永磁直驱风电系统低电压穿越技术综述.中国高等学校电力系统及其自动化专业第二十六届学术年会暨中国电机工程学会电力系统专业委员会2010年年会.
    [130]C. Abbey, G. Joos. Effect of low voltage ride through(LVRT) characteristic on voltage stability. IEEE Power Engineering Society General Meeting,2005,2:1901-1907.
    [131]A. D. Hansen, G. Michalke. Multi-pole permanent magnet synchronous generator wind turbines'grid support capability in uninterrupted operation during grid faults. IET Renewable Power Generation,2009,3(3):333-348.
    [132]S. Heier. Grid integration of wind energy conversion systems. England:John Wiley&Sons, 2006.
    [133]J. F. Conroy, R. Watson. Low voltage ride-through of a full converter wind turbine with permanent magnet generator. IET Renewable Power Generation,2007,1(3):182-189.
    [134]T. Senjyu, N. Nakasone, A. Yona, et al. Operation strategies for stability of gearless wind power generation systems. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008:1-7.
    [135]胡书举,李建林,许洪华.直驱式VSCF风电系统直流侧Crowbar电路的仿真分析.电力系统及其自动化学报,2008,20(3):118-123.
    [136]张宪平.直驱式变速恒频风力发电系统低电压穿越研究.大功率变流技术.2010,(4):28-31.
    [137]C. Abbey, G. Joos. Supercapacitor Energy Storage for Wind Energy Applications. IEEE Transactions on Industry Applications,2007,43(3):769-776.
    [138]侯世英,房勇,曾建兴等.应用超级电容提高风电系统低电压穿越能力.电机与控制学报.2010,14(5):26-31.
    [139]王文亮,葛宝明,毕大强.储能型直驱永磁同步风力发电控制系统.电力系统保护与控制,2010,38(14):43-48,78.
    [140]姜久春,唐挺,陈瑶.风力发电机组并网变流器低电压穿越控制方法.中国发明专利,H02J3/38(2006.01)I,200810057554.X,2009.
    [141]李戈,宋新甫,常喜强.直驱永磁风力发电系统低电压穿越改进控制策略研究.电力系统保护与控制,2011,39(12).
    [142]杨晓萍,段先锋,钟彦儒.直驱永磁同步风电机组不对称故障穿越的研究.电机与控制学报,2010,14(2):7-12,19.
    [143]S. W. Liu, G. Q. Bao. A novel LVRT of Permanent Magnet Direct-driven wind turbine. Asia-Pacific Power and Energy Engineering Conference (APPEEC),2011:1-4.
    [144]T. H. Nguyen, D. C. Lee, S. H. Song, et al. Improvement of power quality for PMSG wind turbine systems. IEEE Energy Conversion Congress and Exposition(ECCE),2010: 2763-2770.
    [145]J. Li, D. J. Li, L. Hong, et al. A novel power-flow balance LVRT control strategy for low-speed direct-drive PMSG wind generation system.36th Annual Conference on IEEE Industrial Electronics Society(IECON),2010:748-753.
    [146]徐金榜,何顶新,赵金等.电压不平衡情况下PWM整流器功率分析方法.中国电机工程学报.2006,26(16):80-85.
    [147]A. V. Timbus, P. Rodriguez, R. Teodorescu, et al. Control strategies for distributed power generation systems operating on faulty grid. IEEE international symposium on industrial electronics,2006:1601-1607.
    [148]A. D. Hansen, P. Sorensen, F. Iov, F. Blaabjerg Hasen. Control of variable speed wind turbines with double-fed induction generators. Wind Engineering,2004,28(4):411-434.
    [149]P. Rodriguez, A. V. Timbus, R. Teodorescu, et al. Independent PQ Control for Distributed Power Generation Systems under Grid Faults.32nd Annual Conference on IEEE Industrial Electronics(IECON),2006:5185-5190.
    [150]P. Rodriguez, A. Luna, R. Teodoresc, et al. Fault Ride-through Capability Implementation in Wind Turbine Converters Using a Decoupled Double Synchronous Reference Frame PLL. European Conference on Power Electronics and Applications.2007:1-10.
    [151]P. Rioual, H. Pouliquen, J. P. Louis. Regulation of a PWM rectifier in the unbalanced network state using a generalized mode. IEEE Transactions on Power Electronics,1996,11(3): 495-502.
    [152]G Saccomando, J. Svensson. Transient operation of grid-connected voltage source converter under unbalanced voltage conditions. Conference Record of the 2001 IEEE Industry Application Conference,2001,4:2419-2424.
    [153]M. Bongiorno, J. Svensson, A. Sannino. Dynamic performance of vector current controllers for grid-connected VSC under voltage dips. Conference Record of the 2005 IEEE Industry Applications Conference,2005,2:904-909.
    [154]H. S. Song, K. Nam. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transaction on Industrial Electronics,1999,46(5):953-959.
    [155]Y. Suh, V. Tijeras, T. A. Lipo. A nonlinear control of the instantaneous power in dq synchronous frame for PWM AC/DC converter under generalized unbalanced operating conditions. Conference Record of the 2002 IEEE Industry Applications Conference,2002,2: 1189-1196.
    [156]F. A. Magueed, A. Sannino, J. Svensson. Transient performance of voltage source converter under unbalanced voltage dips.2004 IEEE 35th Annual Power Electronics Specialists Conference,2004,2:1163-1168.
    [157]P. N. Lan, V. Mueller, L. H. Viet. High dynamic control a PWM rectifier under unbalanced voltage supply with deadbeat current controllers.2005 European Conference on Power Electronics and Applications,2005:1-11.
    [158]Y. Suh, T. A. Lipo. A control scheme in hybrid synchronous-stationary frame for PWM AC/DC converter under generalized unbalanced operating conditions. IEEE Transactions on Industry Applications,2006,42(3):825-835.
    [159]朱琳,徐殿国,马洪飞.电网不平衡跌落时直驱风电系统网侧变换器控制.电工技术学报.2007,22(增刊1):101-106.
    [160]何鸣明,贺益康,潘再平.不对称电网故障下PWM整流器的控制.电力系统及其自动化学报.2007,19(4):13-17.
    [161]蒋卫宏.不对称电网故障下PWM整流器的控制策略研究.系统仿真学报.2007,19(15):3527-3530,3576.
    [162]B. Yin, R. Oruganti, S. K. Panda, et al, An output-power-control strategy for a three-phase PWM rectifier under unbalanced supply conditions. IEEE Transactions on Industrial Electronics,2008,55(5):2140-2151.
    [163]X. M. Yuan, W. Merk, H. Stemmler, et al. Stationary-Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern under Unbalanced and Distorted Operating Conditions. IEEE Transactions on Industry Application,2002,38(2):523-532.
    [164]J. B. Hu, Y. K. He. Modeling and control of grid-connected voltage-sourced converters under generalized unbalanced operation conditions. IEEE Transactions on Energy Conversion,2008, 23(3):903-913.
    [165]张兴,季建强,张崇巍等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究.中国电机工程学报,2005,25(13):51-56.
    [166]T. Burton, D. Sharpe, N. Jenkins, et al. Wind energy handbook. England:John Wiley&Sons, 2001.
    [167]芮晓明,柳亦兵,马志勇.风力发电机组设计.北京:机械工业出版社,2010.2.
    [168]I. Munteanu, A. I. Bratcu, N. A. Cutululis, et al. Optimal control of wind energy systems: Towards a global approach. London:Springer,2008.
    [169]汤蕴璆,张奕黄,范瑜.交流电机动态分析.北京,机械工业出版社,2004.
    [170]A. Eilenberger, M. Schroedl, J. Heissenberger. Comparison of outer rotor PMSM with single-and double-layer windings at same machine geometry with respect to the sensorless control capability.13th European Conference on Power Electronics and Applications,2009:1-7.
    [171]任雷,崔芮华,王宗培等.永磁同步电机绕组电感的饱和效应.电工技术学报,2000,15(1):21-25.
    [172]王爱元.基于磁场饱和的IPM电动机的磁路仿真.微特电机,2007,35(5):23-25.
    [173]B. K. Bose. Modern Power Electronics and AC Drives. Pearson Education North Asia Limited and China Machine Press,2002.
    [174]王成元,夏加宽,杨俊友等.电机现代控制技术.北京:机械工业出版社,2006.
    [175]姚骏,廖勇,李辉等.直驱永磁同步风力发电机单位功率因数控制.电机与控制学报,2010,14(6):13-20.
    [176]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究.中国电机工程学报,2005,25(21):169-174.
    [177]L. Ma, J. C. Jiang, F. Tang, et al. Analysis of flux control for the IPMSM used in the power generation, Proceedings of the 11th International Conference on Electrical Machines and Systems(ICEMS),2008:3197-3201.
    [178]B. Sneyers, D. W. Novotny, T. A. Lipo. Field-Weakening In Buried Permanent Magnet AC Motor Drives. IEEE Transactions on Industry Applications,1985, IA-21(2):398-407.
    [179]A. O. Di Tommaso, R. Miceli, G. Ricco Galluzzo, et al. Efficiency Maximization of Permanent Magnet Synchronous Generators Coupled to Wind Turbines. IEEE Power Electronics Specialists Conference,2007:1267-1272.
    [180]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[博士学位论文].北京:北京交 通大学,2008.
    [181]J. Hu, B. Wu. New integration algorithms for estimating motor flux over a wide speed range. IEEE Transaction on Power Electronics,1998,13(5):969-977.
    [182]刘军锋,李叶松,万淑芸.基于U-I模型的感应电机定子磁链观测方法研究.电气传动,2008,38(4):20-24.
    [183]N. R. N. Idris, A. H. M. Yatim. An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Transactions on Industry Applications, 2002,38(1):110-116.
    [184]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进.中国电机工程学报,2008,28(18):61-65.
    [185]M. Schroedl. Sensorless control of AC machines at low speed and standstill based on the "INFORM" method. Conference Record of the 1996 IEEE Industry Applications Conference, 1996,1:270-277.
    [186]P. B. Schmidt, M. L. Gasperi, G. Ray, et al. Initial Rotor Angle Detection of a Non-Salient Pole Permanent Magnet Synchronous Machine. Conference Record of the 1997 IEEE Industry Applications Conference,1997,1:459-463.
    [187]梁艳,李永东.无传感器永磁同步电机矢量控制中转子初始位置的估算方法.电工技术杂志,2003,(2):10-13.
    [188]韦鲲,金辛海.表面式永磁同步电机初始转子位置估计技术.中国电机工程学报,2006,26(22):104-109.
    [189]F. B. del Blanco, M. W. Degner, R. D. Lorenz. Dynamic analysis of current regulators for AC motors using complex vectors. IEEE Transactions on Industry Applications,1999,35(6): 1424-1432.
    [190]H. Kim R. D. Lorenz. A virtual translation technique to improve current regulator for salient-pole AC machines.2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004,1:487-493.
    [191]H. Kim, R. D. Lorenz. Synchronous frame PI current regulators in a virtually translated system. Conference Record of the 2004 IEEE Industry Applications Conference,2004,2: 856-863.
    [192]C. Sao, P. W. Lehn. A block diagram approach to reference frame transformation of converter dynamic models.2006 Canadian Conference on Electrical and Computer Engineering,2006: 2270-2274.
    [193]黄宇淇,姜新建,邱阿瑞.LCL滤波器在三相PWM整流器中的应用.电力自动化设备,2008,28(12):110-113.
    [194]杨淑英,张兴,张崇巍等.基于自适应谐振调节器的变速恒频风力发电双馈驱动研究.中国电机工程学报,2007,27(14):96-101.
    [195]X. M. Yuan, W. Merk. The nonideal generalized amplitude integrator(NGAI):interpretation, implementation and applications.2001 IEEE 32nd Annual Power Electronics Specialists Conference,2001,4:1857-1861.
    [196]H. Akagi, E. H. Watanabe, M. Aredes. Instantaneous power theory and applications to power conditioning. New Jersey:John Wiley & Sons,2007.
    [197]T. M. Roman, R. J. Kerkman. A new synchronous current regulator and an analysis of current-regulated PWM inverter. IEEE Transactions on Industry Applications,1986, IA-22(4): 678-690.
    [198]K. Dai, P. G Liu, J. Xiong, et al. Comparative study on current control for three phase SVPWM voltage source converter in synchronous rotating frame using complex vector method.2003 IEEE 34th Annual Power Electronics Specialists Conference,2003,2:695-700.
    [199]P. Rodriguez, A. Luna, M. Ciobotaru, et al. Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions.32nd Annual Conference on IEEE Industrial Electronics,2006:5173-5178.
    [200]肖湘宁,韩民晓,徐永海等.电能质量分析与控制.北京:中国电力出版社,2004.
    [201]A. Baggini. Handbook of power quality. England:John Wiley & Sons,2008.
    [202]韩冬,宁慧钦,陈琛.供电系统中的电压暂降.自动化信息,2009,3:29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700