用户名: 密码: 验证码:
膨胀—芯体型坚强内固定器材相关临床前研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坚固内固定术(rigid internal fixation,RIF)是近20年来发展起来的颌骨骨折内固定新技术。目前临床上主要采用多种坚强内固定系统,其固位力产生主要为螺旋型固位体的螺纹产生固位力,达到固定接骨板的目的,并固定骨折。
     本文主要讨论用一种新的内固定器材(膨胀-芯体型坚强内固定钉),其固位原理依靠固位体末端的膨开铆合产生固位力;通过离体实验,考察了膨胀-芯体型坚强内固定钉为应用于临床急需解决的问题:膨胀-芯体型坚强内固定钉长度对其固位力的影响。为膨胀-芯体型坚强内固定器材的临床应用解决部分问题,对膨胀-芯体型骨坚强内固定器材应用于临床起到指导性作用。
     本研究共分为三部分:
     第一部分:羊胫骨骨皮质厚度的测量研究
     实验目的:通过游标卡尺,骨皮质厚度测量尺、X线配合电子测量尺等三种方法进行准确度的比较,寻找一种或几种临床上操作简便、易用的骨皮质厚度测量方法。方法:取成年羊胫骨,保留中部长度的规则部分约12cm;使用微型电钻(¢1.5mm)垂直于胫骨表面钻孔,使用骨皮质厚度测量尺测量该位置骨皮质的厚度;将钻孔后的胫骨骨块于钻孔处植入5mm中邦钛固位钉作为测量标记点,将直径为7.938mm标准尺寸钢珠用橡皮泥或蜡块固定于胫骨骨块一端作为长度标尺,拍摄切线位X线片,投射方向垂直于中邦钛固位钉固定方向;X线翻拍取的数字影像,将直径7.938mm标准钢珠作为长度标尺,在X线片上使用电子测量尺于中邦钛固位钉两侧分别测量骨皮质的厚度;将拍摄X线后的羊胫骨骨块去除中邦钛固位钉,在钻孔处使用小型电锯垂直于骨块长轴方向锯开骨块;使用游标卡尺分别测量钻孔处左右皮质骨厚度,测量两次,取均值作为该点的骨皮质厚度游标卡尺的测量值。
     结果、结论:游标卡尺测量骨皮质厚度为2.9533±0.17872mm;X线辅助电子测量尺骨皮质厚度值为2.9603±0.18487mm;骨皮质厚度测量尺测量骨皮质厚度值为2.9567±0.18134mm。通过SPSS11.0随机区组设计方差分析,P=0.989,P>0.05,因此,三种测量方法均是准确的,结果之间无统计学差异。
     第二部分:钛膨胀-芯体型坚强内固定钉的膨开位置研究
     目的:通过X线片、大体观察、硬组织学切片方法,确定钛膨胀-芯体型坚强内固定器材的末端膨开位置是否与设计位置相同,以便准确确定固位钉的长度。方法:1、X线及大体观察方法:取成年羊胫骨,使用微型电钻(¢2.0mm)垂直于胫骨骨块表面中段钻孔,孔距约为1cm,使用骨皮质厚度测量尺测量钻孔处的骨皮质厚度;于每个孔内分别植入2mm、3mm、4mm、5mm、6mm、7mm长度的膨胀-芯体型内固定针,要求固定针末端膨开方向与羊胫骨长轴方向相同;拍摄羊胫骨X切线位片,观察X线平片上膨胀-芯体型内固定针末端膨开的位置。于每个膨胀-芯体型坚强内固定针位置垂直于骨块长轴方向锯开骨块,直接观察不同长度膨胀-芯体型骨坚强内固定针末端膨开情况。2、硬组织切片方法:取2根成年羊胫骨,保留中部的规则部分;使用微型电钻(¢2.0mm)垂直于胫骨骨块表面中段钻孔,每个孔方向垂直于胫骨骨面并保持平行;使用骨皮质厚度测量尺测量该处的骨皮质厚度,于每个孔内分别植入2mm、4mm、6mm、8mm长度的膨胀-芯体型坚强内固定针植入到钻孔处,要求固定器材末端膨开方向与羊胫骨长轴方向相同;取硬组织切片,观察膨胀-芯体型坚强内固定针膨开情况及固位体与周围骨组织结合情况。
     结果、结论:膨胀-芯体型坚强内固定针其设计膨开位置为其末端1mm,两种方法均显示其膨开位置与设计位置相同。有效长度大于或等于骨皮质厚度的膨胀-芯体型坚强内固定针膨开效果良好;有效长度小于骨皮质厚度的膨胀-芯体型坚强内固定针未能完全膨开或不能膨开。
     第三部分:膨胀-芯体型坚强内固定器材的固定力学检测
     实验目的:通过不同长度的膨胀-芯体型坚强内固定器材对骨折模型进行固定,将固定后的骨块做为一个整体进行力学检测,明确膨胀位置对膨胀-芯体型坚强内固定器材固定效果的影响。方法:取成年羊胫骨,保留中部长约12cm规则部分,使用微型电锯将羊胫骨中间锯开,造成骨折模型;取长四孔小型钛板塑形,并垂直于胫骨骨块表面钻孔;使用骨皮质厚度测量尺测量骨皮质厚度。依照骨皮质厚度分别采用不同有效长度的膨胀-芯体型坚强内固定针和4孔小型钛板固定骨折;测试分为三组:膨胀-芯体型坚强内固定针有效长度<骨皮质厚度+小型钛板厚度;膨胀-芯体型坚强内固定针有效长度=骨皮质厚度+小型钛板厚度;膨胀-芯体型坚强内固定针有效长度>骨皮质厚度+小型钛板厚度;三点弯曲力学检测:将制得的羊胫骨骨折模型置于电脑伺控制材料实验机上进行正向下压三点弯曲实验,参数:跨距6cm;加力速度0.2mm/s;停止加力条件,力量≤50%最大力量;取得三组上方压力的力量-位移曲线;依照同样的方法取得三组的反向压的?力量-位移曲线。
     结果、结论:经过生物力学实验,骨皮质内侧实验组、最适长度实验组、超过骨皮质厚度试验组垂直向MAS分别为100.8±59.95N、141.5±23.97N、55.8±25.36N ,反向MAS分别为397.2±112.19N、847.5±86.65N、686.58±237.79N。最适长度实验组各项生物力学实验结果均优于其余两组组。最适长度(即有效长度与骨皮质厚度加小型钛板厚度相同)的膨胀-芯体型坚强内固定器材产生的固位力最大。
Rigid internal fixation, RIF is a new technique to treat the bone fracture in the later 20 years. Until now, lots of the rigid internal fixation equipments are in use in clinic. Spiral rigid internal fixation is mainly used to treat the bone fracture.
     Now, I will introduce a new kind of rigid internal fixation, with dilatation force to treat the bone fracture; we did experiments in vitro to research the clinical problems of the new kind of rigid internal fixation: the dilatation position; the effect of the rigid internal fixation equipment length. Our aim is to solve the problems of the new kind of rigid internal to use.
     This research has three parts:
     Part one: measurement of the cortical bone thickness
     Aim: Vernier caliper, cortical bone measurer, X-ray electronic measurements are used to compare the accuracy. We want to find the most suitable method to measure the cortical bone. Method: Caprine tibiaes are chosen randomly. We use micro electric drill to perforate in the caprine tibiaes; then we use 5mm retention pins as measure points, and we use 7.938mm steel bean fixing at the end of caprine tibiaes as a standard. We take X-ray.We get out of the retention pins, then use the Vernier caliper to measure the length of cortical bone.
     Conclusion: Vernier caliper group: 2.9533±0. 17872mm; X-ray electronic measurement group: 2.9603±0. 18487mm ; cortical bone measure: 2.9567±0.18134mm.We use SPSS11.0 to analysis of variance , P=0.989,P〉0.05;there is no statistical difference between the results.
     Part two: Part two: The expanding position of the bulge core type rigid internal fixation device
     Aim: X-ray, macroscopic observation and sclerous tissues sections are used to ensure the expanding position of the bulge core type rigid internal fixation device. Method: X-ray, macroscopic observation group: Caprine tibiaes are chosen randomly. We used micro electric drill(¢2.0mm) to perforate in the caprine tibiaes; we put 2mm、3m 5mm、6mm、7mm the bulge core type rigid internal fixation device pins into the holes. X-ray pictures are taken to ensure the expanding position of the bulge core type rigid internal fixation device, and then we saw asunder the bone blocks to observe the expanding position of the bulge core type rigid internal fixation device. Slerous tissue section group: Caprine tibiaes are chosen randomly. We used micro electric drill(¢2.0mm) to perforate in the caprine tibiaes; we put 2mm、4mm、6mm、8mm the bulge core type rigid internal fixation device pins into the holes. Slerous tissues sections are taken to ensure the expanding position of the bulge core type rigid internal fixation device.
     Conclusion: Two groups show that the expanding position of the bulge core type rigid internal fixation device is 1mm to the end. If effective length is the same or thicker than the cortical bone, the expanding effectiveness of the bulge core type rigid internal fixation device is good; and if effective length is thinner than the cortical bone, the expanding effectiveness of the bulge core type rigid internal fixation device is bad.
     Part three: The mechanic test of the bulge core type rigid internal fixation device
     Aim: Bone fracture moulds are fixed by the bulge core type rigid internal fixation device in different length to ensure the length’s effectiveness to the fixing. Method: Caprine tibiaes are chosen randomly. We use micro electric drill to see asunder the caprine tibiaes; then we measure the cortical bone thickness with cortical bone thickness measuring scale. We fixed the bone fractures with four group devices: effective length< cortical bone thickness+ Ti-plate thickness; effective length= cortical bone thickness+ Ti-plate thickness; effective length> cortical bone thickness+ Ti-plate thickness.
     Conclusion: Biomechanical test: effective length< cortical bone thickness+ Ti-plate thickness; effective length= cortical bone thickness+ Ti-plate thickness; effective length> cortical bone thickness+ Ti-plate thickness. The biomechanical stability in three groups was evaluated by testing MBS、MBS and MPS. The bulge core type rigid internal fixation device in optimal length can produce max retention force. In the effective length< cortical bone thickness+ Ti-plate thickness group, the vertical MBS、MAS were100.8±59.95 N、397.2±112.19 N, the effective length= cortical bone thickness+ Ti-plate thickness group MBS、MAS were 141.5±23.97 N、847.5±86.65 N . In the effective length> cortical bone thickness+ Ti-plate thickness group, the vertical MBS、MAS were 55.8±25.36 N、686.58±237.79. So the bulge core type rigid internal fixation device in optimal length can produce max retention force.
引文
1.郭天文,刘彦普,宋应亮.口腔科特色治疗技术.北京,科学技术文献出版社,2004.265-268 .
    2.李开宗,易声禹.外科学..北京,高等医学教育出版社,2001.
    3. Kirschner M.Technique of open reduction of fractures.Surg Gynecolobstet, 1927,66:514-516.
    4.刘振东,马保安.AO学派的历史启示.实用骨科杂志,1997,3,261.
    5. J Prein,LA Assael,DW Klotch,et al.Manual of Internal Fixation in the Cranio-facial Skeleton.Springer-Verlag Berlin Heidelberg, 1998.95-13249 .
    6. Perren SM Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation:choosing a new balance between stabikity and biology. J Bone Joint Surg(Br),2002,84:1093-1110.
    7.王亦璁. BO与AO的不同之处.骨与关节损伤杂志,2002,17:3-5.
    8.王军强,王满宜.骨折的生物学固定.中华外科杂志,2002,40:543-546.
    9. Ilizarov GA.The tension-stress effect on the genesis and growth of tissues:PartⅡ.The influence of stability of fixation and soft tissue preservation.Clin Orthop,1998,(238):249-281.
    10. McKibbin B. The biology of fracture healing in long bone.J Bone Joint Surg(Br).198,60:150-162.
    11. Frost HM.Skeletal structural adaptation to mechanical usage:1.Redefining wolffs law: the bone modeling problem. Ana Rec,1990,(226):403-413.
    12.徐莘香.第三种骨折愈合方式的生物力学与生物学基础,中华外科杂志,1992,30:308-319.
    13. Klaue K,Fengels L,Perren SM.Long-term effects of plate osteosythsis:comparison of four different plates.Injury,2000,31(2 Suppl):51-62.
    14.中国中医研究院望京医院.尚天裕教授生平.中华骨科杂,2002,22:534.
    15. Ssrmiento A. Functional bracing of tibial and femoral shaft fractures.Clin Orthop, 1972.(82):2-13.
    16. Sarmiento A. Zagorsk JB,Zych GA,Latta LL,Capps CA.Functional bracing for the treatment of fractures of the humerl diaphysis. J Bone Joint Surg(Am),2000,82:478-486.
    17. Sarmiento A. On the behavior of closed tibial fractures: clinical/radiological correlations. J Orthop Trauma. 2000.14:199-205.
    18. Trias A. Fery A. Cortical circulation of long bones. J bone Joint Sury(Am). 1979,61:1052-1059.
    19. Rand JA, AN KN, Chao EY, Kelly PJ. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and and fracture union. J Bone Joint Surg(Am),1981,63:427-440.
    20.刘振东,范清宇,马保安等.成年狗股骨微波高温灭活后的再血管化研究.中华骨科杂志,1998,18:682-685.
    21. Anderson JR, Detlie T, Griffths HJ. The radiology of bone allografts. Rad Clin North Am, 1995,33: 391-400.
    22.刘振东,范清宇,骨折愈合的基本概念,中国矫形外科杂志,1998,5:459-460.
    23.刘振东,范清宇,应力遮挡效应—寻找丢失的钥匙.中华创伤骨科杂志,2003,4:62-64.
    24.周树夏.颌面颈部创伤.长春:吉林科学技术出版社1999.84 .
    25. Hosein M, Motamedi K.An Assessment of Maxillofacial Fractures: A 5-Year Study of 237 Patients.J Oral Maxillofac Surg, 2003, 61: 61-64 .
    26. Ferre JC.The application of modern engineering methods to anatomical research.Anat Clin,1982,4(8):189-195.
    27.林野.下颌骨骨折的小型钛板坚强内固定技术.中华口腔医学杂志,2000,35(1):85-86.
    28. Williams JG, Cawood JI.Effects of intermaxillary fixation on pulmonary function.Int J Oral Maxillofac Surg,1990,19:76-78.
    29. Cawood JI. Small plate osteosynthesis of mandibular fractures. Br J Oral Maxillofac Surg. 1985,23(2):77.
    30. Kennady MC, TuckerMR, Lester GEet al.Histomorphometric evaluation of stress shielding in mandibular continuity defects treated with rigid fixation plates and bone grafts. Int J OralMaxillofac Surg,1989,18(3):170.
    31. Kennady MC, Tucker MR, Lester GE, Buckley MJ. Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation. Int J Oral Maxillofac Surg,1989,18(5):307.
    32. Dechow PC,Ellis E 3rd,Throckmorton GS.Structural properties of mandibular bone following application of a bone plate. Joral Maxillofac Surg,1995,53(9):1 044.
    33. Thaller SR,Huang V,Tesluk H.Use of biodegradable plates and screws in a rabbit model.J Craniofac Surg,1992,2(4):168.
    34. Weingart D,Steinemann S,Schilli W,Strub JR,Hellerich U,Assenmacher J,Simpson J.Titaniumdeposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region.Int J Oral Maxillofac Surg,1994,23(6 Pt 2):450.
    35. Matthew IR, Frame JW. Policy of consultant oral and maxillofacial surgeons towards removal of miniplate components after jaw fracture fixation: pilot study. Br J Oral Maxillofac Surg,1999,37(2):110.
    36.李心天.医学心理学.北京:北京医科大学中国协和医科大学联合出版社,1998·331.
    37. Alpert B, Seligson D. Removal of asymptomatic bone plates used for orthognathic surgery and facial fractures. J Oral Maxillofac Surg,1996,54(5):618.
    38.卢军,斯方杰,李明等.下颌骨坚固内固定应力遮挡作用的有限元分析.中华口腔医学杂志,1995,5(1):23.
    39.吴湘卿,陈秀华,吴江汗.颌面部固定钛板取出原因分析(附11例报告).中国医师杂志,2004,10,(5)686.
    40.沈海平,周建国,沈燕等·颌骨骨折内固定术后钛板拆除的原因分析.上海口腔医学,2003,12(3)227.
    41.郑永红,张益,孙勇等·颌骨骨折坚强内固定术后取钛板原因分析.口腔颌面外科杂志,2001,11(1):72.
    42. Islamoglu K, Coskunfirat OK, Tetik Get al. Complications and removal rates of miniplates and screws used for maxillofacial fractures Ann Plast Surg.2002 Mar,48(3):265.
    43. B.D.Ratner,LL. Hench. Perspectives on Biomaterials CurrentOpinion in Solid State and Science.Biomaterials Science,2002.4:379-380.
    44.周树夏.手术学-口腔颌面外科卷.北京:人民军医出版社1994.104-105.
    45. Field JR, HearnTC, CaldwellCB, eta.l Bone plate fixation: an evaluation of interface contact area and force of the dynamic compressionplate (DCP) and the limited contact-dynamic compression plate (LC-DCP) applied to cadaveric bone [J]. JOrthop Trauma, 1997, 11(5):368-373.
    46. Jain R, PodwornyN. A biomechanical evaluation ofdifferentplates fofixation ofcanine radialosteotomies [J]. JTrauma, 1998, 44(1): 193-197.
    47. McKeeMD, Seiler JG, Jupiter JB, et a.l The application of the limited contactdynamic compression plate in the upper extremity: an analysis of 114 consecutive cases[J]. Injury, 1995, 26(10): 661-666.
    48. BorgT, Larsson S, LindsjoU. Percutaneousplating ofdistal tibial fracuresPreliminary results in 21 patients [J]. Injury, 2004, 35(6): 608
    49. Bresina SJ,Tepic S. Finite elementanalysis (FEA) for thePointcontactfixator screw drive, plate design, overcuts [J]. Injury, 1995, 26 (Suppl2): B20-B23.
    50. EijerH,Hauke C,Arens S, et a1. PC-Fix and local infection resistanceinfluence of implantdesign on postoperative infection development, clinical and experimental results[J]. Injury, 2001, 32 (Suppl2): 38-43.
    51. HaasN, Hauke C, SchutzM, et a.l Treatment of diaphyseal fracturesof the forearm using the PointContactFixator (PC-Fix): results of 387 fractures of a prospectivemulticentric study (PC-Fix II) [J]. Injury,2001, 32 (Suppl2): 51-62.
    52. Frigg R. Locking Compression Plate(LCP). An osteosynthesis plate based on the Dynamic Compression Plate and the PointContactFixator(PC-Fix) [J]. Injury, 2001, 32(Suppl2): 63-66.
    53. SchutzM, SudkampNP. Revolution in plate osteosynthesis: new internal fixator systems[J]. JOrthop Sc,i 2003, 8(2): 252-258.
    54. FriggR,AppenzellerA,Christense NR, et a1.The development of the distal femur less invasive stabilization system (LISS) [ J]. Injury,2001, 32( Suppl3): 24 -31.
    55. MartiA, FankhauserC, FrenkA, eta1. Biomechanicalevaluation of the less invasive stabilization system for the intemal fixation ofdistal femurfractures[J]. JOrthop Trauma, 2001, 15(7): 482 -487.
    56. GoslingT, SchandelmaierP, MartiA, et a.l Less invasive stabilization of complex tibial plateau fractures: a biomechanical evaluation of a unilateral locked screw plate and double plating[J]. JOrthopTrauma, 2004, 8(8): 546-551.
    57. Schiutz M,Muller M, Krettek C, et a1. Minimally invasive fracture stabilization of distal femoml flractures with the LISS: a prospectivemulticenter study results of a clinical study with special emphasis on difficult cases[J]. Injury, 2001, 32(Suppl3): 48-54.
    58.周树夏.手术学-口腔颌面外科卷.北京:人民军医出版社1994.106-108.
    59. Ang K.The Use of Titanium for Medical Application in the USA Mater Sci Eng,1996,A213:134-137.
    60.俞耀庭,张兴栋.生物医用材料.大津大学出版社,2000.1-2
    61. Hayter JP,Cawood JI.The functional case for miniplates in maxillofacialsurgery. Int J Oral Maxillofac Surg,1993,22:91-96.
    62. Thomann U I,Uggowitzer P J.Wear-corrosion Behavior of Biocompatible Austenitic Stainless Steels .Wear,2000, 239 (1):48-58.
    63.任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展.材料导报,2002,16(2):12-15.
    64. Marc Long, H. J. Rack. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials,1998,19(18):1621-1639.
    65. Hirata T, Nakamura T, Takashima F,et al. Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. Journal of Oral Rehabilitation, 2001,28 (8): 773-77.
    66.全大萍,廖凯荣.可吸收骨折内固定材料[J].现代医学仪器与应用, 2007,1,(01).
    67. Mstsusue Y,Yamamuro T,Oka M,et al.In vitro and in vivo studies on bioabsorbable ultra-high-strength poly-L-lactide rods[J].J Biomed Mater Res,1992,13:1553-1567.
    68.白一冰,马远征,胡明,等.可吸收内固定物治疗胫腓骨骨折12例[J].中华创伤杂志,2000,16(9):534.
    69.周惠琼,姚如愚,RK Will.绝经后女性类风湿关节炎患者骨密度变化影响因素分析,中日友好医院学报2007,21(3):131-134.
    70.祝丽玲,李景新,王明富等.早潮与晚潮女性骨发育对比探讨.黑龙江医药科学, 2004,8(24):56.
    71.牛丽萍;王英.青少年肩关节X线片的骨龄研究法医学杂志,2002,11(18)204-206.
    72.阙玉玲,黄东,游坤等.广西224名壮族女童手腕骨发育状况分析.中国学校卫生, 2007,5(28)462-463.
    73.冯英选,张生军.骨密度测量在职业性氟中毒诊断中的应用.中国地方病学杂志, 2003,9(22)463-464.
    74.李永刚,陈辉,孔翔飞等.不锈钢接骨板下加入不同组合垫圈对受压局部骨质结构的影响:与传统加压钢板比较.中国组织工程研究与临床康复, 2008,1(12)148-152.
    75.马嘉,卢利,宋丛笑.下颌前突患者下颌支厚度的CT测量.上海口腔医学, 2007,12(16)607-610.
    76.高雨仁,王玉海,陈克文.股骨尺骨骨髓腔的应用解剖研究.解剖学杂志, 1984,4(16)67-70.
    77.刘延青,刘岩,张克,金仁权,田华,娄思权.非骨水泥近端固定股骨柄和远端固定股骨柄中期随访时骨丢失的X线片表现[J].中国修复重建外科杂志,2007, 21(8 ):805-809.
    78.王宁.肺心病人100例的锁骨皮质厚度分析[J].四川医学. 2004, 25( 9):1034.
    79.余粤海.两种藻酸盐印模材料印模准确性的研究[J].中山医科大学学报,2002,23(5S):S53-S54.
    80.王珂;裴国献;陈滨等.中国青山羊胫骨骨缺损模型的研究[J].中华创伤骨科杂志, 2001, 3(3 ):228-230.
    81.杨涛;刘彦普;李凯;司徒镇强.犬下颌骨骨折小钛板坚强内固定的组织学观察[J].中国口腔颌面外科杂志. 2006, 4( 6):457-460.
    82. Champy M,Lodde JP,Jaeger JH,et al.Mandibular osteosynthesis according to the Michelet technic.Justification of new material[J].RevStomatol Chir Maxillofac,1976,77(1):252-255.
    83. Champy M,Pape H,Gerlach K,et al.The Strasburg miniplateosteo- synthesis[A].In Kruger E,Schilli W.Oral and maxillofacial traumatology[M].Vol 2,Chicago,IL:Quintessence,1986:19-45.
    84.李凯,刘彦普,李璇等.犬下颌骨骨折小型钛板坚强内固定的生物力学分析.中国美容医学,2007,4(16):488-491.
    85.刘彦普,周树夏,斯方杰等.下颌骨骨折加压与非加压固定的评价[J].实用口腔医学杂志,2002,18(3):201.
    86. Kwok AWL,Finkelstein JA,Woodside T,et a1.Insertional torqueand pull-out strengths of conical and culindrical pedicle screwsin cadaveric bone[J].Spine,1996,21:2429-2434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700