用户名: 密码: 验证码:
棘突间稳定装置Coflex~(TM)的生物力学和临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     腰椎间盘退行性疾病(Degenerative disc disease,DDD)是脊柱外科最常见的疾病之一,是成年人腰痛和伤残的主要原因。流行病学调查表明,约80%以上的人一生中有过腰痛的症状,位居病人求医原因第二位,仅次于普通感冒。由于DDD的改变导致椎间失稳,从而产生下腰痛(Low back pain,LBP)。临床上根据病情不同,分别采用保守、单纯髓核摘除及椎间融合和内固定等方法治疗DDD。椎间融合通过固定不稳定椎而达到椎间融合从而缓解疼痛,成为传统脊柱外科的最后手段,内固定的优点包括重塑生理前凸、提供内在的稳定性,并且理论上更容易融合而被誉为“金标准”。
     但是,尽管采用了环状cage的融合术,椎间融合率已达到95%以上,临床上“极好”的结果大概也只有30%。然而,相关的并发症有报道达33%,植入物失败引起的假关节形成占患者中的7%~10%。此外,坚强固定融合术后期还能导致椎间关节炎和邻近节段退变(Adjacent segment degeneration,ASD)的发生,其发生率高达52.5%。因此,需要一个侵入性较小并能提供安全有效平衡的策略,即动态固定(Dynamic stabilization,DS)。Sengupta等认为动态固定是指在不植骨融合的情况下,通过控制脊柱节段异常活动,保证脊柱的稳定性,最大限度地恢复椎间节段间的正常活动度,并允许更多的生理性负荷传递以缓解疼痛并预防或减缓邻近节段退变。椎间盘也可能在动态系统的保护下得到自身修复。
     脊柱的稳定包括静态稳定和动态稳定,而动态稳定是脊柱发挥生理功能的基础。坚强内固定可使脊柱达到静态稳定,而动态内固定可重建脊柱动态稳定,符合脊柱的生理要求,成为目前脊柱外科研究的热点之一。理想的动态固定应能保证正常的脊柱稳定性,并且最大限度地恢复节段间的活动度,改变运动节段负荷传递的方式。理想的后路稳定系统应满足以下条件:①微创;②保留和再建脊柱正常运动;③防止固定系统疲劳失败;④保持脊柱正常的生理屈度;⑤防止不正常负重;⑥失败后易于翻修。
     棘突间撑开装置是一种非融合的动态性固定。其作用原理是撑开病变节段棘突,维持了椎间的高度;吸收振荡,分担椎间盘及关节突关节负荷,并使运动节段处于轻度屈曲状态,牵张弯曲的黄韧带,缓解椎管和神经根管的狭窄,减轻椎管内压力,从而减轻神经源性腰痛。
     棘突间稳定装置Coflex~(TM)是一种棘突间撑开装置,主要应用于治疗退行性腰椎管狭窄症、腰椎间盘源性疼痛、腰椎小关节面综合症、腰椎间盘突出症及腰椎体间轻度失稳及开窗减压、髓核组织摘除术后的固定,也可以用于器械融合的两端,作为坚强融合到非融合的过渡区(Transition zone,TZ)。但是棘突间Coflex~(TM)植入对于手术节段和邻近节段腰椎生物力学稳定性的影响未见报道;Coflex~(TM)作为坚强融合到非融合的过渡区,对腰椎生物力学稳定性的影响也未见报道;棘突间稳定装置Coflex~(TM)治疗腰椎管狭窄症和/或腰椎间盘突出症的初期临床疗效、并发症、对腰椎活动度的影响及对椎间隙的撑开效果如何国内未见报道。本课题旨在探讨上述问题,为Coflex~(TM(植入后腰椎稳定性提供实验数据;前瞻性的评估Coflex~(TM)内固定术治疗腰椎退行性疾病的早期疗效,为Coflex~(TM)的临床应用提供临床研究资料。
     目的
     1.测量腰椎标本单节段棘突间Coflex~(TM)植入后腰椎手术节段和上下邻近一个节段活动度的变化,探讨腰椎单节段棘突间Coflex~(TM)固定对脊柱三维运动的影响。
     2.测量坚强固定或/和棘突间Coflex~(TM)单节段植入后腰椎活动度的变化,探讨Coflex~(TM)和椎弓根钉棒系统联合应用对腰椎三维运动的影响。
     3.探讨棘突间稳定装置Coflex~(TM)治疗腰椎管狭窄症和/或腰椎间盘突出症的初期临床疗效,初步评价Coflex~(TM)植入术的临床应用价值。
     方法
     1.选取6具新鲜成人尸体脊柱标本(L_1~S_1段),在三维运动测试仪上进行前屈/后伸、左/右侧弯和左/右旋转6个运动方向的稳定性测试,加载力矩为8Nm,计算L_(2/3),L_(3╱4)和L_(4/5)的三维运动范围(Range of motion,ROM)和中性区(Neutralzone,NZ),分别比较完整标本(状态a);Coflex~(TM)固定L_(3/4)(状态b);L_(3╱4)双侧部分失稳(状态c);L_(3╱4)双侧部分失稳+Coflex~(TM)固定(状态d)4种状态下3个节段的活动度。
     2选取6具新鲜成人尸体脊柱标本(L_1~S_1段),测试方法同3.1,分别比较完整腰椎标本(状态a);L_(4/5)节段坚强固定(状态b);L_(4/5)节段坚强固定+L_(3╱4)节段Coflex~(TM)棘突间固定(状态c)3种状态下标本3个节段活动度。
     3.收集自2007年8月到2008年12月间在南方医院脊柱骨病外科行棘突间稳定装置Coflex~(TM)植入术的病例资料并进行随访,共14例。统计各个病例手术时间、失血量、和并发症情况。术前和随访时分别按Oswestry功能评分和VAS疼痛评分评价临床疗效;分别摄腰椎正侧位片、腰椎动力位片以测量手术节段和上一邻近节段活动度,并将病例分成髓核组织摘除组和髓核组织未摘除组2组,比较2组手术节段腰椎活动度,评价腰椎活动功能;在术前和随访时腰椎侧位片上测量手术节段椎间隙前高、中高和后高以及相应椎间孔高度和宽度,对比手术后Coflex~(TM)撑开椎间隙和椎间孔的效果。
     结果
     1.腰椎单节段棘突间Coflex~(TM)植入腰椎3个节段活动度:状态a,b,c和dROM值分别以ROMa,ROMb,ROMc和ROMd表示。L_(3/4)节段:前屈时ROMa,ROMb,ROMd<ROMc(P<0.01);后伸时:ROMb,ROMd<ROMa,ROMc(P<0.01);旋转时,ROMb<ROMa,ROMd(P<0.05),ROMa,ROMd<ROMc(P<0.05)。L_(2╱3)和L_(4/5)节段:后伸时ROMb,ROMd>ROMa,ROMc(P<0.05);前屈及旋转时4种状态ROM值无差别(P>0.05)。侧弯时3个节段ROM值在4种状态下均无显著性差异(P>0.05)。
     2.联合坚强内固定时腰椎单节段棘突间Coflex~(TM)植入腰椎3个节段活动度:状态a,b和cROM值分别以ROMa,ROMb和ROMc表示。L_(4/5)节段6个方向上ROMb、ROMc<ROMa(P<0.01);L_(3/4)节段后伸时ROMa、ROMc<ROMb(P<0.01),左右侧弯时ROMa<ROMb、ROMc(P<0.01),前屈和左右旋转时ROMa<ROMc<ROMb(尸<0.01);L2/3节段后伸时ROMa、ROMb<ROMc(P<0.01),其他运动方向上3种状态ROM值无显著性差别(P>0.05)。
     3.1一般资料:14例病例,1例因资料不全被本研究排除,纳入13例,男7例,女6例;年龄41岁~81岁,平均59岁。手术部位:L_(2/3)间隙3例,L_(3/4)间隙1例,L_(4/5)间隙9例,均为单节段Coflex~(TM)植入。诊断:单纯腰椎间盘突出症2例;腰椎管狭窄症11例,其中合并腰椎单节段失稳2例,合并腰椎间盘突出症4例。腰椎管节段性减压+棘突间Coflex~(TM)内固定10例,腰椎管减压、邻近节段植骨融合内固定+棘突间Coflex~(TM)内固定3例。6例摘除髓核组织,7例未摘除髓核组织。术后随访3~19个月,平均9.6个月。手术时间为69~163min,平均108min,除联合坚强固定的病例外手术时间为69~100min,平均76min;术中失血50~450ml,平均约146.9 ml,除联合坚强固定的病例外术中失血50~100ml,平均约81 ml。13例患者中,均采用单枚Coflex~(TM)植入。术后病人疼痛症状均消失,生活质量显著提高。2例仍残留部分下肢麻木症状。随访时未发现内固定物脱落、断裂、棘突或椎弓根骨折等并发症。
     3.2患者入院时Oswestry功能障碍指数术前64.27%±17.14%(36%~77.78%),随访期末18.63%±11.72%(4%~44.44%),较术前降低(P=0.000)。VAS疼痛评分术前8.24±1.28(5.8~10),随访期末2.18±1.02(0.5~4.5),较术前降低(P=0.000)。
     3.3患者术前手术节段活动度7.27°±2.59°(3.74°~12.49°),随访期末5.23°±1.56°(1.56°~6.98°),手术节段活动度较术前减少(P=0.004)。患者上一邻近节段活动度术前5.75±3.59(5.14°~13.86°),随访期末6.42±2.30(4.31°~11.58°),活动度与术前比较无显著性差异(P=0.456)。髓核组织摘除组和髓核组织未摘除组术前和随访时手术节段活动度均无显著性差异(P=0.452,P=0.377)。
     3.4随访时手术节段椎间隙前高与术前比较无显著性差异(P=0.120);椎间隙中高较术前增加(P=0.001);椎间隙后高较术前增加(P=0.001);椎间孔高度较术前增加(P=0.002);椎间孔宽度较术前增加(P=0.001)。
     结论
     1.Coflex~(TM)可以限制固定节段的前屈、后伸和旋转运动,使上下各一个邻近节段后伸活动度增加,前屈和旋转活动度无变化;对侧弯活动度均无影响。
     2.采用椎弓根钉坚强固定后其上一邻近节段活动度增大,而采用Coflex~(TM)棘突间稳定装置固定邻近节段后此节段活动度减少。
     3.Coflex~(TM)治疗腰椎管狭窄症和/或腰椎间盘突出症的初期临床疗效肯定;Coflex~(TM)植入后手术节段腰椎活动度明显下降,对上一邻近节段活动度无影响,Coflex~(TM)植入时髓核组织摘除与否对腰椎手术节段活动度无影响;Coflex~(TM)植入后手术节段椎间隙中高、后高和椎间孔高度及宽度增加,椎间隙前高无明显变化。
Background:
     Degenerative disc disease(DDD) is one of the most common diseases in spinal surgery field,it is the main reason for the backache and disability of the adult,which have caused enormous economic loss and social burden.Epidemiologic survey has manifested that there are as many as eighty percent of people who have suffered low back pain(LBP) in their whole life,just less than common cold.LBP is also the secondary reason which made people to see doctor.DDD caused interverteberal instability,and instability then caused LBP.According to different conditions,the treatment of DDD have conservative,simple discectomy and decompression,fusion and fixation methods.Fusion became the last management in the spinal surgery, which was called "golden standard".
     However,The excellent results in clinic was only approximately 30%even though the rate of interbody fusion has reached more than 95%using cage ring fusion. But,it had been reported that related complications were up to 33%,and the formation of pseudoarthrosis caused by failure of implants patients accounted for 7% to 10%.In addition,firm fusion can cause the occurrence of arthritis and adjacent segment disc degeneration(ASD) at late stage,and the incidence of adjacent segment degeneration was up to 52.5%.Therefore,we need for a strategy what is less invasive and can provide safe and effective balance,that is dynamic fixation(DS).Sengupta defined dynamic stabilization as a series of systems that could control the abnormal movement,maintain the stability of the spine,retrieve the normal ROM;permit more psychological load transmission utmostly to alleviate the LBP and prevent the ASD. The intraverteberal disc can recover under the protection of the DS systems then. Ideal dynamic systems should be able to recover the ROM and assure the stability of the spine meanwhile.
     The stability of the spine includes static stability and dynamic stability,and dynamic stability is the basic of physiological functions of the spine.Firm fixation can achieve static stability,but dynamic fixation enables the reconstruction of spinal dynamic stability,corresponds with the spinal physiological requirements,has become one hot research of the spinal surgery.The idealsof dynamic fixation are what should be able to guarantee the stability of the normal spine,restore maximum activity between segments,change load transfer approach in motion segment.The ideal posterior stability system should satisfy the conditions at follow:①minimally invasive;②retain and reconstruct to build a normal spine;③prevent fatigue failure of fixed system;④maintain normal physiological spinal flexion degrees;⑤prevent abnormal weight-bearing;⑥renovation easyly aider failure.
     Interspinous distraction device is a dynamic stabilization,the principle is that it can distract spinous process,maintain the disc height,absorb shocks,share the load on disc and zygapophysial joints,maintain the motion segment in mild flexion, stretch the bending yellow ligament,mitigate spinal and nerve root canal stenosis, alleviate spinal canal stress,thus reduce neuropathic pain.
     Interspinous stabilition device Coflex~(TM) is a kind of interspinous process distraction device.At present,Coflex~(TM) is mainly used to treatment the degenerative lumbar spinal stenosis,lumbar discogenic pain,lumbar facet joint syndrome,lumbar disc herniation and lumbar spine instability,and also used to fixation after fenestration decompression and discectomy,can also be used at both ends of equipment integration as the transitional zone from strong integration to non-integration.However,what the clinical efficacy and complications of Coflex~(TM) treatmenting on lumbar spinal stenosis and/or lubar intervertebral disc protrusion,degree of activity of the lumbar spine and the effect of distraction of lumbar intervertebral space were not yet reported in china. It was not reported in china that the effect on stability of the implanted and adjacent segments of lumbar spine 3D motions after single Coflex~(TM) interspinous stabilition implanted or as the transitional zone from strong integration to non-integration。This study was to study these questions with a view to provide clinical research data on clinical application of Coflex~(TM) and provide laboratory data on the lumbar spine stability after Coflex~(TM) implanted.
     Objectives
     1.Determine the effect on stability of the lumbar spine 3D motions with or without single Coflex~(TM) interspinous stabilition implanted through measuring ROM of implanted and adjacent segments of lumbar spine in intact and partial destabilization conditions.
     2.Determine the effect on stability of lumbar spine 3D motions after vertebral arch pedicle screw implanted associated with Coflex~(TM) interspinous stabilition through measuring ROM of implanted and adjacent segments of lumbar spine firm fixed with or without single Coflex~(TM) interspinous stabilition implanted.
     3.Evaluate the early clinical results of Coflex~(TM) treatmenting on lumbar spinal stenosis and/or lubar intervertebral disc protrusion.
     Methods:
     1.6 fresh adult human cadaver lumbar spine specimen(L_1~S_1) were biomechanieally tested under pure moment of 8Nm loading with spinal 3D motion test machine.The ranges of motion of the spinal specimen from forward flexion/extention stretch,left/right lateral bending and left/right axial rotation were tested.The range of motion(ROM) and neutral zone(NZ) of segment L_(2/3),L_(3/4),L_(4/5) were measured and compared at four conditions:a)intact;b) segment L_(3/4) stabilized with Coflex~(TM) device;c)partial destabilization;d) partial destabilization + segment L_(3/4) stabilized with Coflex~(TM) device.
     2.The ranges of motion of 6 fresh adult human cadaver lumbar spine specimen (L_1~S_1) were biomechanically tested.The testing methods were same with 3.2.The range of motion(ROM) and neutral zone(NZ) of segment L_(2/3),L_(3/4),L_(4/5) were measured and compared at three conditions:a)intact;b) segment L_(4/5) firm fixed with vertebral arch pedicle screw;c) segment L_(4/5) firm fixed with vertebral arch pedicle screw+segment L_(4/5) stabilized with Coflex~(TM) device.
     3.Case data of patients treatmented with one single Coflex~(TM) implanted from August 2007 to December 2008 were collected.Operative time,blood loss and complications of all cases were statisticsed.Oswestry functional scores and VAS pain score were used to assessment clinical efficacy.Preoperative and follow-up neutral, flexion-extension lateral plain films were taken separately and ROM of operative segment and adjacent segment was measured.ROM of operative segment and adjacent segment was compared between patients received discectomy and not received discectomy.The anterior disc height,middle disc height,posterior disc height,foramen intervertebrale height and width of operative segment were measured and compared on the preoperative and follow-up neutral lateral plain films.
     Results:
     1.The ROM of segment L_(3/4):condition a,b,d was less than condition c(P<0.01) in forward flexion,condition b and d were less than condition a and c(P<0.01) in extention stretch,condition b was less than condition a and d,condition a and d were less than condition c(P<0.05) in left/right axial rotation.The ROM of segment L_(2/3) and L_(4/5):condition b and d were more than condition a and c(P<0.05) in extention stretch,but had no difference(P>0.05) in forward flexion and left/right axial rotation. The ROM of three segments of four conditions had no difference(P>0.05) in left/fight lateral bending.
     2.The ROM of segment L_(4/5) of condition b and c was less than condition a in all directions(P<0.01).The ROM of segment L_(3/4) of condition a and c were less than that of condition b(P<0.01),but the ROM of segment L_(3/4) of condition a were less than that of condition b and c left/right lateral bending(P<0.01).In forward flexion stretch and left/right axial rotation the ROM of segment L_(3/4) of condition a was less than condition c(P<0.01).The ROM of segment L_(2/3) of condition a and b was less than condition c in extention stretch(P<0.01),but that of three conditions had no difference(P>0.05) in other directions.
     3.1 14 patients were recorded but lpatient was exclusded.13 patients come to the clinical,including 7 male cases and 6 female cases,whose age ranged from 41~81 years(average 59 years).Thay were all accepted treatment in only one level,3 cases in L2/3,1 cases in L3/4 and 9 cases in L4/5.2 patients were diagnosed with lumbar intervertebral disk protrusion.11 patients were diagnosed with degenerative lumbar scoliosis,including 4 cases associated with segmental instability and 2 cases ssociated with lumbar intervertebral disk protrusion.10 cases were treated with Coflex~(TM) interspinous stabilition and 3 cases with Coflex~(TM) and vertebral arch pedicle screw.6 cases were received discectomy,but 7 cases not.
     The follow-up times of this group ranged from 3 to 19 months(average 9.6 mouths).The operation times were from 69 mins to 163mins(average 108 mins).The volumes of blood loss were from 50ml to 450ml(average 146.9ml).Excluding cases associated with vertebral arch pedicle screw,the operation times were from 69 mins to 100mins(average 76 mins) and the volumes of blood loss were from 50ml to 100ml (average 81ml).Postoperatively pain disappeared in all patients,quality of life improved significantly.2 cases still have some residual symptoms of lower extremity numbness.There was no complication appeared such as fixture off,segmentation, spinous process or pedicle fracture at follow-up..
     3.2.Compared with preoperation,Oswestry and VAS scales decreased at follow-up(separately from 64.27%±17.14%(36%~77.78%) to 18.63%±11.72% (4%~44.44%),from 8.24±1.28(5.8~10) to 2.18±1.02(0.5~4.5))(P=0.000).
     3.3.Compared with preoperation,ROM at the instrumented level decreased at follow-up(from7.27°±2.59°(3.74°~12.49°) to 15.23°±1.56°(1.56°~6.98°)) (P=0.004) but there was no difference in ROM at the upper adjacent level(from 5.75±3.59(5.14°~13.86°) to 16.42±2.30(4.31°~11.58°))(P=0.456)。There was no difference in ROM at the upper adjacent level and the instrumented level between groups with or without discectomy(P=0.452,P=0.377).
     3.4.Compared with preoperation,at follow-up,the height of middle disc, posterior disc and forarnen intervertebrale height and width of instrumented level were significantly increased(P=0.001),there was no diffrence in anterior disc height(P=0.120).
     Conclusions:
     1.The implanted segment of lumbar spine specimen can be stabilized by the Coflex~(TM) device in forward flexion/extention stretch and left/fight axial rotation.The motion of superior and inferior segments were increased in extention stretch but had no change in forward flexion and left/right axial rotation after middle segment implanted with the Coflex~(TM) device.The Coflex~(TM) device had no effect on implanted and superior and inferior segments in left/fight lateral bending.
     2.The motion of segment superior to firm fixed segment of lumbar spine specimen were increased in in all directions.,which can be released with Coflex~(TM) device implanted in superior segment.
     3.The clinical effect is certainly preferred of which lumbar spinal stenosis and/ or lumbar intervertebral disc protrusion were treatmented with Coflex~(TM).ROM at the instrumented level was significantly decreased,but it showed no change of ROM at the upper adjacent segment at follow-up.there was no difference in ROM at the instrumented level in patients with or without discectomy.The height of middle disc, posterior disc and foramen intervertebrale height and width of instrumented level were effectively increased after Coflex~(TM) implanted.There was no change in anterior disc height.
引文
[1]Gibson JN,Grant IC,Waddell G.The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis[J].Spine.1999;24(17):1820-32.
    [2]Mulholland RC,Sengupta DK.Rationale,principles and experimental evaluation of the concept of soft stabilization[J].Eur Spine J.2002;11(Suppl 2):198-205.
    [3]Mayer HM,Korge A.Non-fusion technology in degenerative lumbar spinal disorders:facts,questions,challenges[J].Eur Spine J.2002;11(Suppl 2):85-91.
    [4]Korovessis P,Papazisis Z,Koureas G,et al.Rigid,semirigid versus dyna- mic instrumentation for degenerative lumbar spinal stenosis:a correlative radiolog- ical and clinical analysis of short-term results[J].Spine.2004;29(7):735-42.
    [5]Kumar MN,Baklanov A,Chopin D.Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion[J].Eur Spine J.2001;10(4):314-9.
    [6]Gunzburg R,Szpalski M.The conservative surgical treatment of lumbar spinal stenosis in the elderly[J].Eur Spine J.2003;12(Suppl 2):S176-80.
    [7]Lee J,Hida K,Seki T,et al.An interspinous process distractor(X STOP) for lumbar spinal stenosis in elderly patients:preliminary experiences in 10 consecutive cases[J].J Spinal Disord Tech.2004;17(1):72-7
    [8]Oda T,Panjabi MM,Crisco TJ.Three-dimensional movements of the upper cervical spine[J].Spinal Disorder,1991,4:414-9.
    [9]朱青安.颈椎纵向撞击性损伤机制及对颈椎三维运动稳定性和动力学响应特性的实验研究[D].1995,第一军医大学博士论文.
    [10]Tsai KJ,Murakami H,Lowery GL,et al.A biomechanical evaluation of an interspinous device(Coflex) used to stabilize the lumbar spine[J].J Surg Orthop Adv.2006;15(3):167-72.
    [11]Wilke HJ,Drumm J,H(a|¨)ussler K,Mack C,Steudel WI,Kettler A.Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure[J].Eur Spine J.2008;17(8):1049-56.
    [12]周跃,梅芳瑞,张峡,等.保留脊柱后韧带复合结构多椎板切除术的生物力学研究[J].中华实验外科杂志,1994,11(5):267.
    [13]胥少汀等.实用骨科学第3版[M].北京:人民军医出版社,2005:1712-3.
    [14]Etebar S,Cahill DW.Risk factors for adjacent-segnent failure following lumbar fixation with rigid instrumention for degenerative instability[J].J Neurosurg.1999;90(2 suppl):163-9.
    [1]Minns RJ,Walsh WK.Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine[J].Spine.1999;22(16):1819-1825.
    [2]Bono CM,Vaccaro AR.Interspinous process devices in the lumbar spine[J].J Spinal Disord Tech.2007;20(3):255-61.
    [3]Etebar S,Cahill DW.Risk factors for adjacent-segnent failure following lumbar fixation with rigid instrumention for degenerative instability[J].J Neurosurg.1999;90(2 suppl):163-9.
    [4]陈君生;包健;朱大成;孙磊脊柱融合术后邻近节段的加速退变(附107例报告)[J].中国矫形外科杂志,2002,10(14)1437-8.
    [5]Chen WJ,Lai PL,Niu CC,et al.Surgical tratment of adjacent instability after lumbar spine fusion[J].Spine,2001,26(22):519-528.
    [6]Krag MH.Biomechanics of thoracolumbar spinal fixation.A review[J].Spine.1991;16(3 Suppl):S84-S99.
    [7]Rahm MD,Hall BB.Adjacent-segment degeneration after lumbar fusion with instrumentation:a retrospective s tudy[J].J Spinal Disord.1996;9(5):392-400
    [8]Eck JC,Humphreys SC,Hodges SD.Adjacent-segment degeneration after lumbar fusion:a review of clinical,biomechanical,and radiologics tudies[J].Am J Orthop.1999;28(6):336-340
    [9]Park P,Garton HJ,Gala VC,et al.Adjacent segment disease after lumbar or lumbosacral fus ion:review of the literature[J].Spine.2004;29(17):1938-1944
    [10]Wilke HJ,Drumm J,H(a|¨)ussler K,Mack C,Steudel WI,KettlerA.Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure [J].Eur Spine J.2008,17(8):1049-56.
    [1]Bao QB,Yuan HA.Prosthetic disc replacement:the future[J].Clin Orthop,2002;394:139-145.
    [2]Etebar S,Cahill DW.Risk factors for adjacent-segnent failure following lumbar fixation with rigid instrumention for degenerative instability[J].J Neurosurg.1999;90:163-9.
    [3]Farfan HP.Mechanical disorders of the low back[M].Philadelphia.Lea and Febiger;1973,37-40.
    [4]Amundsen T,Weber H,Lilleas F,et al.Lumbar spinal stenosis.Clinical and radiologic features[J].Spine.1995;20:1178-86.
    [5]饶书城.脊柱外科手术学[M].北京:人民卫生出版社,1993,405。
    [6]Garfin ST,Herkowttz HN,Mirkovic S.Spinal stenosis[J].J Bone Joint Surg.1999;81 A(4):572-586.
    [7]Nelson MA.Lumbar spinal stenosis.Definition and classification[J].Clin Orthop.1976;115:4
    [8]胥少汀,葛宝丰,徐印坎.实用骨科学[M].北京:人民军医出版社,1999,1451-2
    [9]Bridwell KH,Sedgewick TA,O'Brien MF,ea al.The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis[J].J Spinal Disord.1993;6:461-72.
    [10]West JL 3rd,Bradford DS,Ogilvie JW.Results of spinal arthrodesis with pedicle screw-plate fixation[J].J Bone Joint Surg Am.1991;73:1179-84.
    [11]Boos N,Webb JK.Pedicle screw fixation in spinal disorders:a European view[J].Eur Spine J.1997;6:2-18.
    [12]Cunningham BW,Kotani Y,McNulty PS,Cappuccino A,ea al.The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure:an in vitro biomechanical analysis[J].Spine.1997;22:2655-63.
    [13]Mulholland,Sengupta.Rationale,principles and experimental evaluation of the concept of soft stabilization[J].Eur Spine J.2002,11(Suppl.2):198-205.
    [14]Lee CK.Accelerated degeneration of the segment adjacent to a lumbar fusion[J]. Spine.1988; 13: 375-7.
    [15]Schlegel JD, Smith JA, Schleusener RL.Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions[J].Spine.1996; 21:970-81.
    [16]Penta M, Sandhu A, Fraser RD.Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion[J].Spine.1995;20: 743-7.
    [17]Etebar S, Cahill DW.Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability[J].J Neurosurg.1999;90: 163-9.
    [18]Minns RJ, Walsh WK.Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine[J].Spine.1999;22(16):1819-1825.
    [19]Bono CM, Vaccaro AR.Interspinous process devices in the lumbar spine[J].J Spinal Disord Tech.2007;20(3):255-61.
    [20]Kanayama M, Hashimoto T, Shigenobu K, ea al.Adjacent-segment morbidity after Graf ligamentoplasty compared with posterolateral lumbar fusion[J].J Neurosurg.2001;95(Suppl 1):5-10.
    [21]Korovessis P, Papazisis Z, Koureas G, Lambiris E.Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis:a correlative radiological and clinical analysis of short-term results[J].Spine.2004; 29: 735-42.
    [22]Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, ea al.A prospective randomized multicenter study for the treatment of lumbar spinal stenosis with the X STOP interspinous implant: 1-year results[J].Eur Spine J.2004; 13:22-31.
    [23]Kaech DL, Jinkins JR.The interspinous 'U': a new restabilization device for the lumbar spine[M].Spinal Restabilization Procedures.2002: 355-62.
    [24]Lee J, Hida K, Seki T, Iwasaki Y, Minora A.An interspinous process distractor (X-STOP) for lumbar spinal stenosis in elderly patients:preliminary experiences in 10 consecutive cases[J].J Spinal Disord Tech.2004;17:72-7;discussion 78.
    [25]Kong DS, Kim ES, Eoh W.One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability[J].J Korean Med Sci.2007;22(2):330-5.
    [26]Talwar V,Lindsey DP,Frederick AD,et al.Insertion loads of the X-STOP interspinous process distraction system designed to treat neurogenic intermittent claudication[J].Eur Spine J.2006;15(6):908-12.
    [27]ShePherd DET,Leahy JC,Mathias KJ,et al.Spinous process strength[J].Spine.2000;25(3):319-23.
    [28]胥少汀,葛宝丰,徐印坎.实用骨科学第3版[M].北京:人民军医出版社,2005:1712-3.
    [1]Boos N, Webb JK.Pedicle screw fixation in spinal disorders: a European view[J].Eur Spine J.1997;6:2-18.
    [2]Mulholland, Sengupta .Rationale, principles and experimental evaluation of the concept of soft stabilization [J].Eur Spine J.2002;11(Suppl.2):198~205.
    [3]Lee CK.Accelerated degeneration of the segment adjacent to a lumbar fusion[J].Spine.1988; 8:375-7.
    [4]Hilibrand AS, Robbins M.Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion[J]? Spine.2004;4(6Suppl): 190-4.
    [5]Sengupta DK.Dynamic stabilization devices in the treatment of low back pain[J].Orthop Clin North Am.2004;35(1):43-56.
    [6]Samani J.Study of a semi-rigid interspinous "U" fixation system.Available at:fil://E:\U \pub -u-us.htm, 2000.
    [7]Lindsey DP, Swanson KE, Fuchs P, et al.The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine[J].Spine.2003;28:2192-7.
    [8]Lee J, Hida K, Toshitaka S, et al.An interspinous process distractor (X -STOP) for lumbar spinal stenosis in elderly patients[J].J Spinal Disord Tech.2004;17:72-7.
    [9]Swanson KE, Lindsey DP, Hsu KY, et al.The effects on an interspinous implant on intervertebral disc pressures[J].Spine.2003;28:26-32.
    [10]Lorenz M, Patwardhan A, Vanderby R.1982 Volvo Award in Biomechanics.Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments[J].Spine.1983; 8:122-8.
    [11]Richards JC, Majumdar S, Lindsey DP, Beaupre GS, Yerby SA.The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication[J].Spine.2005;30(7):744-9.
    [12]Siddiqui M, Nicol M, Karadimas E, et al.The positional magnetic resonance imaging changes in the lumbar spine following insertion of a novel interspinous process distraction device[J].Spine.2005;30:2677-82.
    [13]Zucherman JF, Hsu KY, Hartjen CA, et al.A prospective randomized multicenter study for the treatment of lumbar spinal stenosiswith the X-STOP intersp inous implant: 12yearresults[J].Eur Spine J.2004; 13:22-31.
    [14]Talwar V, Lindsey DP, Frederick AD, et al.Insertion loads of the X-STOP interspinous process distraction system designed to treat neurogenic intermittent claudication[J].Eur Spine J.2006;15(6):908-12.
    [15]Shepherd DET, Leahy JC, Mathias KJ, et al.Spinous process strength[J].Spine.2000; 25: 319 -23.
    [16]Sengup ta T, Etchevers JP, Vital JM, et al.Recalibration of the lumbar canal, an alternative to laminectomy in the treatment of lumbar canal stenosis[J].Rev Chir Orthop Reparatrice ApparMot.1988;74:15-22.
    [17]Senegas J.Mechanical supplementation by nonrigid fixation in degenerative intervertebral lumbar segments: the Wallis system[J].EurSpine.2002;11(Suppl.2).164-9.
    [18]Phillips FM, Voronov LI, Gaitanis IN, Carandang G, Havey RM, Patwardhan AG.Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy[J].Spine.2006;6(6):714-22.
    [19]Guizzardi G, Petrini P, Fabrizi AP, et al.The use of DIAM (interspinous stress-breaker device) in the DDD: Italian multicenter experience.Spinal Arthroplasty Soc.2005.
    [20]Tsai KJ, Murakami H, Lowery GL, Hutton WC.A biomechanical evaluation of an interspinous device (Coflex) used to stabilize the lumbar spine[J].J Surg Orthop Adv.2006; 15(3): 167-72.
    [21]Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ.Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea[J].Clin Biomech (Bristol,Avon).2008;23(2):242-7.
    [22]Kong DS, Kim ES, Eoh W.One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability[J]J Korean Med Sci.2007;22(2):330-5.
    [23]D.Gamer, J.Wolfe, et al .Development and preclinical testing of a new tension-band device for the spine: the Loop system[J].Eur Spine J.2002;ll (Suppl.2): 186-91.
    [24]Graf H (1992) Lumbar instability surgical treatment without fusion: soft system stabilization[J].Rachis.412:123-37.
    [25]Gardner A, Pande KC.Graf ligamentoplasty: a 7-year follow-up[J].Eur Spine J.2002;ll:157-63.
    [26]M.Stoll, Gilles Dubois, et al .The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system[J].Eur Spine J.2002;11 (Supp1.2): 170-8.
    [27]Rajaratnam SS, Mueller M, Shepperd JAN, Mulholland RC.Dynesis stabilization of the lumbo-sacral spine.Britspine 2002, The Second Combined Meeting of the BSS BASS BCSS SBPR; 2002 Feb 27-Mar 1; Birmingham, UK.
    [28]Dilip K.Sengupta, MCh and Robert C.Mulholland, Fulcrum Assisted Soft Stabilization System A New Concept in the Surgical Treatment of Degenerative Low Back Pain[J].Spine.2005;30:1019-29.
    [29]Sengupta DK, Herkowitz HN, Hochschuler S, Mulholland RC.Loads sharing characteristics of two novel soft stabilization devices in the lumbar motion segments:a biomechanical study in cadaver spine.Spine Arthroplasty Society Annual Conference; 2003 May 5; Scottsdale, USA.
    [30]Reeves NP, Narendra KS, Cholewicki J.Spine stability: the six blind men and the elephant[J].Clin Biomech, 2007,22:266-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700