用户名: 密码: 验证码:
首发未服药青年重性抑郁症脑网络连接的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:从脑网络的角度,探讨抑郁症相关的特异性脑结构和脑功能的生物学标记。
     (1)应用基于神经束的空间统计学方法(tract-based spatial statistics, TBSS)处理首发未服药青年重性抑郁症患者的弥散张量数据(diffusion tensor imaging, DTI),探讨抑郁症脑白质结构连接的改变及其与临床症状之间的关系。
     (2)采用静息态功能磁共振技术,以默认网络(default mode network, DMN)研究为入手点,探讨患者抑郁症静息态脑功能连接的异常改变;在此基础上,进一步研究患者DMN与冗思、自传体记忆等抑郁症状之间的关系。
     方法:
     (1)对30例首发未服药青年重性抑郁症患者和30例与抑郁症组按性别、年龄和教育程度匹配的健康对照者,进行全脑DTI扫描。应用TBSS方法比较两组脑白质图像的各向异性分数(fractional anisotropy,FA),寻找有显著性差异的脑白质区域。进一步对抑郁症患者的脑白质结构图与抑郁症严重程度、病程和发病年龄等临床症状进行相关分析。
     (2)对35例首发未服药青年重性抑郁症患者和35例与抑郁症组按性别、年龄和教育程度匹配的健康对照者,进行静息态功能磁共振数据采集。采用独立成分分析方法(independent component analysis, ICA)对数据进行处理,检测患者组与对照组DMN功能连接有显著性差异的脑区。进一步引入认知情绪调节问卷冗思因子得分(CERQ-rumination)和自传体记忆(autobiographical memory, AM)得分等行为学数据,探讨其与抑郁症患者DMN影像学数据之间的相关性。
     结果:
     (1)与正常对照组相比,抑郁症组的左侧内囊前肢、右侧海马旁回、左侧后扣带回白质的FA值显著低于正常组(p<0.05,t>3,多重校正).患者组左侧内囊的FA值与抑郁症状严重程度得分呈负相关。未发现抑郁症组比正常人组FA值高的脑区。
     (2)与正常对照组相比,抑郁症组的DMN前部如背内侧前额叶/腹侧前扣带回(dorsal MPFC/ventral ACC).腹内侧前额叶(ventral MPFC)和内侧眶额回(medial orbital PFC)功能连接升高,而DMN后部如后扣带/楔前叶(posterior cingulate cortex/precuneus, PCC/precuneus)、角回(Angular gyrus, AG)功能连接显著降低(p<0.05,t>3,FDR校正)。相关分析表明,DMN前部的ventral MPFC和ventralACC的功能连接与CERQ-rumination得分呈正相关;而DMN后部的precuneus和AG的功能连接与过度概括化记忆得分(overgeneral autobiographical memory, OAM)呈负相关。
     结论:
     (1)首发未服药青年重性抑郁症存在脑白质微结构连接的异常,异常的纤维束主要涉及前额叶-子皮层和边缘系统-子皮层等与认知和情感调节关系较密切的神经环路。这些神经环路的白质结构异常导致大脑皮层和皮层下组织连接损害,这可能是理解抑郁症神经病理基础的关键。此外,该研究进一步证实前额叶、海马和扣带回是抑郁症白质损害的关键区域,并且这种损害在抑郁症发病早期就已经存在。
     (2)首发未服药青年重性抑郁症存在静息态DMN功能连接异常。DMN异常表现为“前高后低”的模式,即前部区域如MPFC和ACC功能连接增强,并与冗思得分呈正相关;后部区域如后precuneus和AG功能连接降低,与过度概括化记忆得分呈负相关。本研究提示静息态DMN功能连接障碍可能是导致抑郁症冗思倾向和自传体记忆损害的病理基础之一,这对解析冗思和自传体记忆的神经生理机制具有重要的意义。
Objective
     The aim of the study is to explore the possible changes in brain structural and functional connection in first-episode, treatment-naive young adults with major depressive disorder (MDD), in order to investigate the disease-specific biological makers and to provide new evidences for the understanding the mechamism and diagnosis of MDD.
     (1) to explore structural integrity of white matter by means of diffusion tensor imaging and the correlationship with the depressive symptoms in first-episode, treatment-naive young adults with MDD.
     (2) to explore resting-state functional connectivity of default mode network and the correlationship with the depressive symptoms in first-episode, treatment-naive young adults with MDD.
     Methods
     (1) DTI was performed in 30 first-episode, treatment-naive young adult patients with MDD and 30 healthy controls matched for age, gender and education. A whole-brain statistical comparison method called tract-based spatial statistics (TBSS) was used to analyze the data. The white matter difference between the patients and the controls was examined. Then the the severity of depressive symptoms, age at onset of illness and illness duration were introduced to examine their relationship with white matter of depressive patients.
     (2) We analyzed the resting-state fMRI data from 35 first-episode, treatment-naive young adults with MDD and 35 age-, gender-and education-matched healthy controls. A method called by independent component analysis (ICA) was used to analyze the resting-state data and the rule of goodness-of-fit was used to choose the independent component. The difference of default mode network (DMN) between the patients and the controls was examined. Then rumination and autobiographical memory were introduced to examine their relationship with the DMN of the depressive patients.
     Results
     (1) Compared with healthy controls, patients with MDD showed decreased fractional anisotropy (FA) values in three white matter (WM) tracts:the left anterior limb of the internal capsule, the right parahippocampal gyrus and the left posterior cingulate cortex. Further analysis revealed that FA values in the left anterior limb of the internal capsule were negatively correlated with the severity of depressive symptoms. No regions showed higher FA in MDD patients than in controls.
     (2) Patients with MDD exhibited higher levels of rumination and autobiographical memory than the controls. We observed increased functional connectivity in the anterior medial cortex region [especially the medial prefrontal cortex (MPFC) and anterior cingulate cortex (ACC)], and decreased functional connectivity in the posterior medial cortex region [especially the posterior cingulate cortex/precuneus (PCC/precuneus)] in MDD patients compared with the controls. Within the depressed group, the increased functional connectivity in anterior medial cortex correlated positively with rumination score, while the decreased functional connectivity in posterior medial cortex correlated negatively with OGM score.
     Conclusions
     The MDD showed the abnormal WM microstructral integrity and resting-state DMN.
     (1) The present results support the hypothesis that altered WM integrity, especially in the cortical-subcortical neural circuit, may contribute to the pathophysiology of MDD. Furthermore, these findings provide novel evidence that microstructural abnormalities in WM may occur early in the course of depression.
     (2) We reported a dissociation between anterior and posterior functional connectivity in resting-state DMNs of first-episode, treatment-naive young adults with MDD. Rumination may be mediated by increased functional connectivity in anterior medial regions whereas overgeneral autobiographical memory (OGM) may be mediated by decreased functional connectivity in posterior medial regions of the resting-state DMN. These results provided new evidence for the importance of the DMN in the pathophysiology of MDD and suggested abnormal DMN activity may be an MDD trait.
引文
[1]Raes F, Hermans D, Williams J M, et al. Is overgeneral autobiographical memory an isolated memory phenomenon in major depression? Memory,2006, 14:584-594.
    [2]Who. The world health report, Chap 2,4.2001.
    [3]Kessler R C, Chiu W T, Demler O, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry,2005,62:617-627.
    [4]王志强,罗和春.抑郁障碍患病情况的中国研究现状.中国临床康复,2004(30):6728-6730.
    [5]Cohen P, Cohen J, Kasen S, et al. An epidemiological study of disorders in late childhood and adolescence-I. Age-and gender-specific prevalence. J Child Psychol Psychiatry,1993,34:851-867.
    [6]Kessler R C, Avenevoli S, Ries Merikangas K. Mood disorders in children and adolescents:an epidemiologic perspective. Biol. Psychiatry,2001,49: 1002-1014.
    [7]Kessler R C, Mcgonagle K A, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry,1994,51:8-19.
    [8]Kim-Cohen J, Caspi A, Moffitt T E, et al. Prior juvenile diagnoses in adults with mental disorder:developmental follow-back of a prospective-longitudinal cohort. Arch. Gen. Psychiatry,2003,60:709-717.
    [9]Hammar A, Ardal G. Cognitive functioning in major depression--a summary. Front Hum Neurosci,2009,3:26.
    [10]包尚联.脑功能成像物理学.郑州大学出版社,2006.
    [11]李丽,董奇.抑郁症的脑神经结构和功能改变研究.中国临床心理学杂志,2006(1):106-108.
    [12]潘园园,端义扬,徐乐平.抑郁症脑影像学研究进展.精神医学杂志,2009(2):158-160.
    [13]王颖,凌雪英,潘集阳.抑郁症的脑影像学研究进展.国际精神病学杂 志,2007(2):79-82.
    [14]Duman R S, Malberg J, Nakagawa S, et al. Neuronal plasticity and survival in mood disorders. Biol. Psychiatry,2000,48:732-739.
    [15]Manji H K, Moore G J, Rajkowska G, et al. Neuroplasticity and cellular resilience in mood disorders. Mol. Psychiatry,2000,5:578-593.
    [16]Rajkowska G, Miguel-Hidalgo J J, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry,1999,45:1085-1098.
    [17]Abler B, Erk S, Herwig U, et al. Anticipation of aversive stimuli activates extended amygdala in unipolar depression. J Psychiatr Res,2007,41:511-522.
    [18]Dannlowski U, Ohrmann P, Bauer J, et al. Amygdala reactivity predicts automatic negative evaluations for facial emotions. Psychiatry Res,2007,154: 13-20.
    [19]Abercrombie H C, Schaefer S M, Larson C L, et al. Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport,1998,9: 3301-3307.
    [20]Sheline Y I, Barch D M, Donnelly J M, et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment:an fMRI study. Biol. Psychiatry,2001,50:651-658.
    [21]Hickie I, Naismith S, Ward P B, et al. Reduced hippocampal volumes and memory loss in patients with early-and late-onset depression. Br J Psychiatry, 2005,186:197-202.
    [22]Keller J, Shen L, Gomez R G, et al. Hippocampal and amygdalar volumes in psychotic and nonpsychotic unipolar depression. Am J Psychiatry,2008,165: 872-880.
    [23]Lange C, Irle E. Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol Med,2004,34:1059-1064.
    [24]Anand A, Li Y, Wang Y, et al. Activity and connectivity of brain mood regulating circuit in depression:a functional magnetic resonance study. Biol. Psychiatry,2005,57:1079-1088.
    [25]Malhi G S, Lagopoulos J, Sachdev P, et al. Cognitive generation of affect in hypomania:an fMRI study. Bipolar Disord,2004,6:271-285.
    [26]Ueda K, Okamoto Y, Okada G, et al. Brain activity during expectancy of emotional stimuli:an fMRI study. Neuroreport,2003,14:51-55.
    [27]Austin M P, Mitchell P, Goodwin G M. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry,2001,178: 200-206.
    [28]Rosene DL, Van Hoesen GW. The hippocampal formation of the primate brain: A review of some comparative aspects of cytoarchitecture and connections. 19873452-3456.
    [29]Surguladze S, Brammer M J, Keedwell P, et al. A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol. Psychiatry,2005,57:201-209.
    [30]Savitz J, Drevets W C. Bipolar and major depressive disorder:neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev,2009,33: 699-771.
    [31]Lorenzetti V, Allen N B, Fornito A, et al. Structural brain abnormalities in major depressive disorder:a selective review of recent MRI studies. J Affect Disord,2009,117:1-17.
    [32]Fu C H, Williams S C, Cleare A J, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment:a prospective, event-related functional magnetic resonance imaging study. Arch. Gen. Psychiatry,2004,61:877-889.
    [33]Chen C H, Suckling J, Ooi C, et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology,2008,33:1909-1918.
    [34]Matsuo K, Rosenberg D R, Easter P C, et al. Striatal volume abnormalities in treatment-naive patients diagnosed with pediatric major depressive disorder. J Child Adolesc Psychopharmacol,2008,18:121-131.
    [35]Lee L, Harrison L M, Mechelli A. A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage,2003,19:457-465.
    [36]Friston K J. Dysfunctional connectivity in schizophrenia. World Psychiatry, 2002,1:66-71.
    [37]Zeki S, Shipp S. The functional logic of cortical connections. Nature,1988,335: 311-317.
    [38]邸新,饶恒毅.人脑功能连通性研究进展.生物化学与生物物理进展,2007(1):5-12.
    [39]Andrews-Hanna J R, Snyder A Z, Vincent J L, et al. Disruption of large-scale brain systems in advanced aging. Neuron,2007,56:924-935.
    [40]Bressler S L, Menon V. Large-scale brain networks in cognition:emerging methods and principles. Trends Cogn. Sci. (Regul. Ed.),2010,14:277-290.
    [41]Dickerson B C, Sperling R A. Large-scale functional brain network abnormalities in Alzheimer's disease:insights from functional neuroimaging. Behav Neural,2009,21:63-75.
    [42]梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络.科学通报,2010(16):1565-1583.
    [43]Sporns O, Chialvo D R, Kaiser M, et al. Organization, development and function of complex brain networks. Trends Cogn. Sci. (Regul. Ed.),2004,8: 418-425.
    [44]Sporns O, Tononi G, Kotter R. The human connectome:A structural description of the human brain. PLoS Comput. Biol.,2005,1:e42.
    [45]唐劲松.早发精神分裂症神经网络连接障碍的磁共振研究以及重性精神疾病DNA拷贝数变异分析.中南大学,2008.
    [46]柏树令.系统解剖学.北京:人民卫生出版社,2002:305-450.
    [47]Mamata H, Mamata Y, Westin C F, et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol,2002,23:67-75.
    [48]Taylor W D, Hsu E, Krishnan K R, et al. Diffusion tensor imaging:background, potential, and utility in psychiatric research. Biol. Psychiatry,2004,55: 201-207.
    [49]Smith S M, Johansen-Berg H, Jenkinson M, et al. Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc,2007,2:499-503.
    [50]Smith S M, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage,2006,31: 1487-1505.
    [51]Yeh P H, Simpson K, Durazzo T C, et al. Tract-Based Spatial Statistics (TBSS) of diffusion tensor imaging data in alcohol dependence:abnormalities of the motivational neurocircuitry. Psychiatry Res,2009,173:22-30.
    [52]Focke N K, Yogarajah M, Bonelli S B, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage,2008,40:728-737.
    [53]Versace A, Almeida J R, Hassel S, et al. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch. Gen. Psychiatry,2008,65: 1041-1052.
    [54]Kieseppa T, Eerola M, Mantyla R, et al. Major depressive disorder and white matter abnormalities:a diffusion tensor imaging study with tract-based spatial statistics. J Affect Disord,2010,120:240-244.
    [55]Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr. Res.,2009,108:3-10.
    [56]Kyriakopoulos M, Bargiotas T, Barker G J, et al. Diffusion tensor imaging in schizophrenia. Eur. Psychiatry,2008,23:255-273.
    [57]Seok J H, Park H J, Chun J W, et al. White matter abnormalities associated with auditory hallucinations in schizophrenia:a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging. Psychiatry Res,2007,156:93-104.
    [58]Nestor P G, Kubicki M, Niznikiewicz M, et al. Neuropsychological disturbance in schizophrenia:a diffusion tensor imaging study. Neuropsychology,2008,22: 246-254.
    [59]Adler C M, Holland S K, Schmithorst V, et al. Abnormal frontal white matter tracts in bipolar disorder:a diffusion tensor imaging study. Bipolar Disord, 2004,6:197-203.
    [60]Adler C M, Adams J, Delbello M P, et al. Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania:a diffusion tensor imaging study. Am J Psychiatry,2006,163:322-324.
    [61]Choi S J, Lim K O, Monteiro I, et al. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer's disease:a preliminary study. J Geriatr Psychiatry Neurol,2005,18:12-19.
    [62]Yoshiura T, Mihara F, Ogomori K, et al. Diffusion tensor in posterior cingulate gyrus:correlation with cognitive decline in Alzheimer's disease. Neuroreport, 2002,13:2299-2302.
    [63]Medina D, Detoledo-Morrell L, Urresta F, et al. White matter changes in mild cognitive impairment and AD:A diffusion tensor imaging study. Neurobiol. Aging,2006,27:663-672.
    [64]Friston K J, Frith C D, Liddle P F, et al. Functional connectivity:the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab.,1993,13:5-14.
    [65]Calhoun V D, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage,2009,45: S163-S172.
    [66]Friston K J, Frith C D, Frackowiak R S J. Time-Dependent Changes in Effective Connectivity. Measured With PET. Hum. Brain Mapp.,1993,1(1): 69-79.
    [67]B B R. Introduction to Functional Magnetic Resonance Imaging:Principles & Techniques. London:Cambridge University Press,2002272.
    [68]Fox M D, Raichle M E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci.,2007,8: 700-711.
    [69]Greicius M D, Krasnow B, Reiss A L, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A.,2003,100:253-258.
    [70]Raichle M E, Macleod A M, Snyder A Z, et al. A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A.,2001,98:676-682.
    [71]Gusnard D A, Akbudak E, Shulman G L, et al. Medial prefrontal cortex and self-referential mental activity:relation to a default mode of brain function. Proc. Natl. Acad. Sci. U.S.A.,2001,98:4259-4264.
    [72]Buckner R L, Andrews-Hanna J R, Schacter D L. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci.,2008,1124: 1-38.
    [73]Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995,34:537-541.
    [74]Hampson M, Peterson B S, Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp,2002, 15:247-262.
    [75]Cordes D, Haughton V M, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol,2000,21:1636-1644.
    [76]Lowe M J, Mock B J, Sorenson J A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 1998,7:119-132.
    [77]Fox M D, Corbetta M, Snyder A Z, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U.S.A.,2006,103:10046-10051.
    [78]Mantini D, Perrucci M G, Del Gratta C, et al. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. U.S.A.,2007, 104:13170-13175.
    [79]Fox M D, Snyder A Z, Vincent J L, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A.,2005,102:9673-9678.
    [80]Lemogne C, Mayberg H, Bergouignan L, et al. Self-referential processing and the prefrontal cortex over the course of depression:a pilot study. J Affect Disord,2010,124:196-201.
    [81]Northoff G, Heinzel A, de Greek M, et al. Self-referential processing in our brain--a meta-analysis of imaging studies on the self. Neuroimage,2006,31: 440-457.
    [82]D'Argembeau A, Collette F, Van der Linden M, et al. Self-referential reflective activity and its relationship with rest:a PET study. Neuroimage,2005,25: 616-624.
    [83]Gilbert D T, Wilson T D. Prospection:experiencing the future. Science,2007, 317:1351-1354.
    [84]Mason M F, Norton M I, Van Horn J D, et al. Wandering minds:the default network and stimulus-independent thought. Science,2007,315.
    [85]Uddin L Q, Kelly A M, Biswal B B, et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J. Neurosci. Methods, 2008,169:249-254.
    [86]De Luca M, Beckmann C F, De Stefano N, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage,2006,29:1359-1367.
    [87]Herault J J C. Space or Time Adaptive Signal Processing by Neutral Network Models.1986206-211.
    [88]Comon P. Independent component analysis—a new concept? 1994:36,287-314.
    [89]Hyvarinen A, Oja E. Independent component analysis:algorithms and applications. Neural Netw,2000,13:411-430.
    [90]Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput,2001,13:863-882.
    [91]Correa N, Adali T, Calhoun V D. Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magn Reson Imaging, 2007,25:684-694.
    [92]A. C, S. A. Adaptive blind signal and image processing:learning algorithms and applications. J.Wiley:New York,2002.
    [93]Greicius M D, Srivastava G, Reiss A L, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A.,2004,101:4637-4642.
    [94]Mckeown M J, Makeig S, Brown G G, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp,1998,6: 160-188.
    [95]Garrity A G, Pearlson G D, Mckiernan K, et al. Aberrant default mode functional connectivity in schizophrenia. Am J Psychiatry,2007,164:450-457.
    [96]Whitfield-Gabrieli S, Thermenos H W, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. U.S.A.,2009, 106:1279-1284.
    [97]郭文斌,姚树桥.认知偏差与抑郁症.中国行为医学科学,2003(1):111-113.
    [98]Greicius M D, Flores B H, Menon V, et al. Resting-state functional connectivity in major depression:abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry,2007,62:429-437.
    [99]Grimm S, Boesiger P, Beck J, et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology,2009,34:843-932.
    [100]Sheline Y I, Price J L, Yan Z, et al. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U.S.A.,2010,107:11020-11025.
    [101]Zhou Y, Yu C, Zheng H, et al. Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord,2010,121:220-230.
    [102]Nolen-Hoeksema S. Responses to depression and their effects on the duration of depressive episodes. J Abnorm Psychol,1991,100:569-582.
    [103]Nolen-Hoeksema S. Sex differences in unipolar depression:Evidence and theory. Psychological Bulletin,1987,101(2):259-282.
    [104]Burt D B, Zembar M J, Niederehe G. Depression and memory impairment:a meta-analysis of the association, its pattern, and specificity. Psychol Bull,1995, 117:285-305.
    [105]Ilsley J E, Moffoot A P, O'Carroll R E. An analysis of memory dysfunction in major depression. J Affect Disord,1995,35:1-9.
    [106]Brittlebank A, Scott J, Williams J. Autobiographical memory in depression: state or trait marker? 1993:162,118-121.
    [107]Pollock L R, Williams J M. Effective problem solving in suicide attempters depends on specific autobiographical recall. Suicide Life Threat Behav,2001, 31:386-396.
    [108]Hermans D, Vandromme H, Debeer E, et al. Overgeneral autobiographical memory predicts diagnostic status in depression. Behav Res Ther,2008,46: 668-677.
    [109]刘衔华,姚树桥,肖晶,等.抑郁症患者的自传体记忆特征及其应用自传体记忆测验的元分析.心理科学进展,2010(4):578-589.
    [110]姚树桥,刘衔华,赵巍峰,等.抑郁症患者的自传体记忆研究.中南大学学报 (医学版),2010(7):679-684.
    [111]Nobuhara K, Okugawa G, Sugimoto T, et al. Frontal white matter anisotropy and symptom severity of late-life depression:a magnetic resonance diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatr.,2006,77:120-122.
    [112]Yuan Y, Zhang Z, Bai F, et al. White matter integrity of the whole brain is disrupted in first-episode remitted geriatric depression. Neuroreport,2007,18: 1845-1849.
    [113]Nobuhara K, Okugawa G, Minami T, et al. Effects of electroconvulsive therapy on frontal white matter in late-life depression:a diffusion tensor imaging study. Neuropsychobiology,2004,50:48-53.
    [114]Li L, Ma N, Li Z, et al. Prefrontal white matter abnormalities in young adult with major depressive disorder:a diffusion tensor imaging study. Brain Res., 2007,1168:124-128.
    [115]Ma N, Li L, Shu N, et al. White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder. Am J Psychiatry, 2007,164:823-826.
    [116]Taylor W D, Payne M E, Krishnan K R, et al. Evidence of white matter tract disruption in MRI hyperintensities. Biol. Psychiatry,2001,50:179-183.
    [117]Taylor W D, Macfall J R, Payne M E, et al. Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. Am J Psychiatry,2004,161:1293-1296.
    [118]Bae J N, Macfall J R, Krishnan K R, et al. Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol. Psychiatry,2006,60:1356-1363.
    [119]Yang Q, Huang X, Hong N, et al. White matter microstructural abnormalities in late-life depression. Int Psychogeriatr,2007,19:757-766.
    [120]刘想林,王玉忠,刘海洪,等.青年重性抑郁症患者弥散张量和静息状态下的功能磁共振成像.中南大学学报(医学版),2010(1).
    [121]林明方,李建军,王桂华,等.青年抑郁症患者脑的3D~1H MRS和DTI应用研究.中华临床医师杂志(电子版),2009(6).
    [122]赖丽莎,陈少琼,张建生,等.抑郁症患者边缘系统-皮层-纹状体-苍白球-丘脑神经环路相关结构的磁共振成像研究.中华临床医师杂志(电子版),2010(6).
    [123]Alexopoulos G S, Kiosses D N, Choi S J, et al. Frontal white matter microstructure and treatment response of late-life depression:a preliminary study. Am J Psychiatry,2002,159:1929-1932.
    [124]李建军.青年抑郁症患者脑的三维磁共振氢质子波谱和扩散张量成像应用研究.华中科技大学,2008.
    [125]Cullen K R, Klimes-Dougan B, Muetzel R, et al. Altered white matter microstructure in adolescents with major depression:a preliminary study. J Am Acad Child Adolesc Psychiatry,2010,49:173-183.
    [126]Benes F M, Turtle M, Khan Y, et al. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatry,1994,51:477-484.
    [127]Brodaty H, Cullen B, Thompson C, et al. Age and gender in the phenomenology of depression. Am J Geriatr Psychiatry,2005,13:589-596.
    [128]Giorgio A, Watkins K E, Chadwick M, et al. Longitudinal changes in grey and white matter during adolescence. Neuroimage,2010,49:94-103.
    [129]First M, Spitzer R, Gibbon M. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician's Version (SCID-CV). Washington:DC:American Psychiatric Press,1996.
    [130]Ls R. The CES-D scale:A self-report depression scale for research in the general population. Applied Psychological Measurement,1977,1:385-401.
    [131]凌宇,魏勇,蚁金瑶,等.CES-D在高中生中的因素结构研究.中国临床心理学杂志,2008(03).
    [132]Axer H, Keyserlingk D G. Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy. J. Neurosci. Methods,2000,94:165-175.
    [133]Zou K, Huang X, Li T, et al. Alterations of white matter integrity in adults with major depressive disorder:a magnetic resonance imaging study. J Psychiatry Neurosci,2008,33:525-530.
    [134]Thomas A J, O'Brien J T, Davis S, et al. Ischemic basis for deep white matter hyperintensities in major depression:a neuropathological study. Arch. Gen. Psychiatry,2002,59:785-792.
    [135]Botteron K N, Raichle M E, Drevets W C, et al. Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol. Psychiatry,2002,51: 342-344.
    [136]Kumar A, Jin Z, Bilker W, et al. Late-onset minor and major depression:early evidence for common neuroanatomical substrates detected by using MRI. Proc. Natl. Acad. Sci. U.S.A.,1998,95:7654-7658.
    [137]Tekin S, Cummings J L. Frontal-subcortical neuronal circuits and clinical neuropsychiatry:an update. J Psychosom Res,2002,53:647-654.
    [138]Rogers M A, Bradshaw J L, Pantelis C, et al. Frontostriatal deficits in unipolar major depression. Brain Res. Bull.,1998,47:297-310.
    [139]Alexander G E, Crutcher M D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci.,1990,13:266-271.
    [140]Alexander G E, Crutcher M D, Delong M R. Basal ganglia-thalamocortical circuits:parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog. Brain Res.,1990,85:119-146.
    [141]Alexander G E, Delong M R, Strick P L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986,9:357-381.
    [142]Jones-Gotman M, Milner B. Design fluency:the invention of nonsense drawings after focal cortical lesions. Neuropsychologia,1977,15:653-674.
    [143]Matsuo K, Glahn D C, Peluso M A, et al. Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol. Psychiatry,2007,12:158-166.
    [144]Savitz J, Solms M, Ramesar R. Neuropsychological dysfunction in bipolar affective disorder:a critical opinion. Bipolar Disord,2005,7:216-235.
    [145]Chen C H, Ridler K, Suckling J, et al. Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol. Psychiatry,2007,62:407-414.
    [146]Kringelbach M L. The human orbitofrontal cortex:linking reward to hedonic experience. Nat. Rev. Neurosci.,2005,6:691-702.
    [147]Amodio D M, Frith C D. Meeting of minds:the medial frontal cortex and social cognition. Nat. Rev. Neurosci.,2006,7:268-277.
    [148]Steffens D C, Mcquoid D R, Welsh-Bohmer K A, et al. Left orbital frontal cortex volume and performance on the benton visual retention test in older depressives and controls. Neuropsychopharmacology,2003,28:2179-2183.
    [149]Ballmaier M, Sowell E R, Thompson P M, et al. Mapping brain size and cortical gray matter changes in elderly depression. Biol. Psychiatry,2004,55: 382-389.
    [150]Nobuhara K, Okugawa G, Sugimoto T, et al. Frontal white matter anisotropy and symptom severity of late-life depression:a magnetic resonance diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatr.,2006,77:120-122.
    [151]Biver F, Goldman S, Delvenne V, et al. Frontal and parietal metabolic disturbances in unipolar depression. Biol. Psychiatry,1994,36:381-388.
    [152]Koo M S, Levitt J J, Salisbury D F, et al. A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis. Arch. Gen. Psychiatry,2008,65:746-760.
    [153]Boes A D, Mccormick L M, Coryell W H, et al. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol. Psychiatry,2008,63:391-397.
    [154]Werner N S, Meindl T, Materne J, et al. Functional MRI study of memory-related brain regions in patients with depressive disorder. J Affect Disord,2009,119:124-131.
    [155]Abe O, Yamasue H, Kasai K, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res,2010, 181:64-70.
    [156]Drevets W C. Neuroimaging and neuropathological studies of depression: implications for the cognitive emotional manifestations of mood disorder. Current Opinion in Neurobiology,2001,11:240-249.
    [157]Vogt B A, Vogt L, Laureys S. Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage,2006,29:452-466.
    [158]Northoff G, Heinzel A, de Greek M, et al. Self-referential processing in our brain--a meta-analysis of imaging studies on the self. Neuroimage,2006,31: 440-457.
    [159]Drevets W C, Price J L, Furey M L. Brain structural and functional abnormalities in mood disorders:implications for neurocircuitry models of depression. Brain Struct Funct,2008,213:93-118.
    [160]Buchsbaum M S, Wu J, Siegel B V, et al. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol. Psychiatry,1997,41: 15-22.
    [161]van Wingen G A, van Eijndhoven P, Cremers H R, et al. Neural state and trait bases of mood-incongruent memory formation and retrieval in first-episode major depression. J Psychiatr Res,2010,44:527-534.
    [162]Raichle M E, Macleod A M, Snyder A Z, et al. A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A.,2001,98:676-682.
    [163]Broyd S J, Demanuele C, Debener S, et al. Default-mode brain dysfunction in mental disorders:a systematic review. Neurosci Biobehav Rev,2009,33: 279-296.
    [164]Bluhm R, Williamson P, Lanius R, et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin. Neurosci.,2009, 63:754-761.
    [165]Ge Y, Law M, Grossman R I.{{A}pplications of diffusion tensor{M}{R} imaging in multiple sclerosis}. Ann. N. Y. Acad. Sci.,2005,1064:202-219.
    [166]Lee S K, Kim D I, Kim J, et al. Diffusion-tensor MR imaging and fiber tractography:a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics,2005,25:53-65.
    [167]Sheline Y I, Barch D M, Price J L, et al. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. U.S.A.,2009, 106:1942-1947.
    [168]姚志剑,王丽,卢青,等.抑郁症静息态默认状态网络内功能连接的初步探讨.中国神经精神疾病杂志,2008(5).
    [169]秦玲娣,周滟,陈俊,等.难治性抑郁症患者静息状态默认网络的改变.中国医学影像技术,2009(12):2182-2185.
    [170]Garnefski N, Kraaij V. Relationships between cognitive emotion regulation strategies and depressive symptoms:A comparative study of five specific samples. Personality and Individual Differences,2006,40(8):1659-1669.
    [171]杨娟.高中生冗思对生活事件和抑郁\焦虑症状关系的调节作用——多时段追踪研究.中南大学,2010.
    [172]罗英姿.冗思在青少年抑郁发展中的作用及其神经机制.中南大学,2009.
    [173]Siegle G J, Carter C S, Thase M E. Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am J Psychiatry,2006, 163:735-738.
    [174]Ray R D, Ochsner K N, Cooper J C, et al. Individual differences in trait rumination and the neural systems supporting cognitive reappraisal. Cogn Affect Behav Neurosci,2005,5:156-168.
    [175]Siegle G J, Steinhauer S R, Thase M E, et al. Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol. Psychiatry,2002,51: 693-707.
    [176]Kross E, Davidson M, Weber J, et al. Coping with emotions past:the neural bases of regulating affect associated with negative autobiographical memories. Biol. Psychiatry,2009,65:361-366.
    [177]Johnson M K, Nolen-Hoeksema S, Mitchell K J, et al. Medial cortex activity, self-reflection and depression. Soc Cogn Affect Neurosci,2009,4:313-327.
    [178]Conway M A, Pleydell-Pearce C W. The construction of autobiographical memories in the self-memory system. Psychol Rev,2000,107:261-288.
    [179]Sumner J A, Griffith J W, Mineka S. Overgeneral autobiographical memory as a predictor of the course of depression:a meta-analysis. Behav Res Ther,2010, 48:614-625.
    [180]Maguire E A, Vargha-Khadem F, Mishkin M. The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain,2001,124:1156-1170.
    [181]Ryan L, Nadel L, Keil K, et al. Hippocampal complex and retrieval of recent and very remote autobiographical memories:evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus, 2001,11:707-714.
    [182]Andreasen N C, O'Leary D S, Cizadlo T, et al. Remembering the past:two facets of episodic memory explored with positron emission tomography. Am J Psychiatry,1995,152:1576-1585.
    [183]Gilboa A, Winocur G, Grady C L, et al. Remembering our past:functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex,2004,14:1214-1225.
    [184]Botzung A, Denkova E, Manning L. Experiencing past and future personal events:functional neuroimaging evidence on the neural bases of mental time travel. Brain Cogn,2008,66:202-212.
    [185]Park R J, Goodyer I M, Teasdale J D. Effects of induced rumination and distraction on mood and overgeneral autobiographical memory in adolescent Major Depressive Disorder and controls. J Child Psychol Psychiatry,2004,45: 996-1006.
    [186]Spreng R N, Grady C L. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J Cogn Neurosci,2010,22:1112-1123.
    [187]Spreng R N, Mar R A, Kim A S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode:a quantitative meta-analysis. J Cogn Neurosci,2009,21:489-510.
    [188]Buckner R L, Carroll D C. Self-projection and the brain. Trends Cogn. Sci. (Regul. Ed.),2007,11:49-57.
    [189]Garnefski N, Kraaij V, Spinhoven P. Negative life events, cognitive emotion regulation and emotional problems. Personality and Individual Differences, 2001,30(8):1311-1327.
    [190]Zhu X, Auerbach R P, Yao S, et al. Psychometric properties of the Cognitive Emotion Regulation Questionnaire:Chinese version. Cognition\& Emotion, 2008,22(2):288-307.
    [191]Williams J M, Broadbent K. Autobiographical memory in suicide attempters. J Abnorm Psychol,1986,95:144-149.
    [192]Yeung C A, Dalgleish T, Golden A M, et al. Reduced specificity of autobiographical memories following a negative mood induction. Behav Res Ther,2006,44:1481-1490.
    [193]黄敏儿,崔丽弦.沉思和分心对负性情绪和自传体记忆的影响.2007:39,78-87.
    [194]Williams J M, Barnhofer T, Crane C, et al. Autobiographical memory specificity and emotional disorder. Psychol Bull,2007,133:122-148.
    [195]Johnson S C, Baxter L C, Wilder L S, et al. Neural correlates of self-reflection. Brain,2002,125:1808-1814.
    [196]Fossati P, Hevenor S J, Graham S J, et al. In search of the emotional self:an fMRI study using positive and negative emotional words. Am J Psychiatry, 2003,160:1938-1945.
    [197]Johnson M K, Raye C L, Mitchell K J, et al. Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc Cogn Affect Neurosci, 2006,1:56-64.
    [198]Northoff G. Psychopathology and pathophysiology of the self in depression -neuropsychiatric hypothesis. J Affect Disord,2007,104:1-14.
    [199]Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A., 2007,104:18760-18765.
    [200]Ochsner K N, Beer J S, Robertson E R, et al. The neural correlates of direct and reflected self-knowledge. Neuroimage,2005,28:797-814.
    [201]Mayberg H S. Positron emission tomography imaging in depression:a neural systems perspective. Neuroimaging Clin. N. Am.,2003,13:805-815.
    [202]Elliott R, Rubinsztein J S, Sahakian B J, et al. The neural basis of mood-congruent processing biases in depression. Arch. Gen. Psychiatry,2002, 59:597-604.
    [203]Lee B T, Seok J H, Lee B C, et al. Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry,2008,32:778-785.
    [204]Castelli F, Happe F, Frith U, et al. Movement and mind:a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage,2000,12:314-325.
    [205]Buckner R L, Andrews-Hanna J R, Schacter D L. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci.,2008,1124: 1-38.
    [206]Gusnard D A, Raichle M E, Raichle M E. Searching for a baseline:functional imaging and the resting human brain. Nat. Rev. Neurosci.,2001,2:685-694.
    [207]Barbas H. Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev,1995,19:499-510.
    [208]Carmichael S T, Price J L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol.,1995,363: 642-664.
    [209]王凤.抑郁症自传体记忆搜寻和精加工阶段的fMRI研究.第三军医大学,2010.
    [210]王丽,姚志剑,卢青,等.静息态下复发抑郁症患者海马的功能连接.临床精神医学杂志,2009(2):73-76.
    [211]刘想林,王玉忠,刘海洪,等.青年重性抑郁症患者弥散张量和静息状态下的功能磁共振成像.中南大学学报(医学版),2010(1).
    [1]B B R. Introduction to Functional Magnetic Resonance Imaging:Principles& Techniques. London:Cambridge University Press,2002272.
    [2]Zhang D, Raichle M E. Disease and the brain's dark energy. Nat Rev Neurol, 2010,6:15-28.
    [3]Raichle M E. The brain's dark energy. Sci. Am.,2010,302:44-49.
    [4]Fox M D, Raichle M E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci.,2007,8: 700-711.
    [5]Mckiernan K A, D'Angelo B R, Kaufman J N, et al. Interrupting the stream of consciousness:an fMRI investigation. Neuroimage,2006,29:1185-1191.
    [6]Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995,34:537-541.
    [7]Raichle M E. Two views of brain function. Trends Cogn. Sci. (Regul. Ed.), 2010,14:180-190.
    [8]Hampson M, Peterson B S, Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp,2002, 15:247-262.
    [9]Cordes D, Haughton V M, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol,2000,21:1636-1644.
    [10]Lowe M J, Mock B J, Sorenson J A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 1998,7:119-132.
    [11]Fox M D, Corbetta M, Snyder A Z, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U.S.A.,2006,103:10046-10051.
    [12]Beckmann C F, Deluca M, Devlin J T, et al. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond., B, Biol. Sci.,2005,360:1001-1013.
    [13]Mantini D, Perrucci M G, Del Gratta C, et al. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. U.S.A.,2007, 104:13170-13175.
    [14]Liao W, Chen H, Feng Y, et al. Selective aberrant functional connectivity of resting state networks in social anxiety disorder. Neuroimage,2010,52: 1549-1558.
    [15]Raichle M E, Macleod A M, Snyder A Z, et al. A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A.,2001,98:676-682.
    [16]Gusnard D A, Raichle M E, Raichle M E. Searching for a baseline:functional imaging and the resting human brain. Nat. Rev. Neurosci.,2001,2:685-694.
    [17]Greicius M D, Krasnow B, Reiss A L, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A.,2003,100:253-258.
    [18]Greicius M D, Flores B H, Menon V, et al. Resting-state functional connectivity in major depression:abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry,2007,62:429-437.
    [19]Sheline Y I, Barch D M, Price J L, et al. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. U.S.A.,2009, 106:1942-1947.
    [20]Zhou Y, Yu C, Zheng H, et al. Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord,2010,121:220-230.
    [21]Sheline Y I, Price J L, Yan Z, et al. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U.S.A.,2010,107:11020-11025.
    [22]Bluhm R, Williamson P, Lanius R, et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin. Neurosci.,2009, 63:754-761.
    [23]姚志剑,王丽,卢青,等.抑郁症静息态默认状态网络内功能连接的初步探讨.中国神经精神疾病杂志,2008(5).
    [24]秦玲娣,周滟,陈俊,等.难治性抑郁症患者静息状态默认网络的改变.中国医学影像技术,2009(12):2182-2185.
    [25]Zhang H Y, Wang S J, Xing J, et al. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behav. Brain Res.,2009,197:103-108.
    [26]De Luca M, Beckmann C F, De Stefano N, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage,2006,29:1359-1367.
    [27]Ries M L, Schmitz T W, Kawahara T N, et al. Task-dependent posterior cingulate activation in mild cognitive impairment. Neuroimage,2006,29: 485-492.
    [28]Chetelat G, Desgranges B, de la Sayette V, et al. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology,2003,60:1374-1377.
    [29]Chetelat G, Desgranges B, de la Sayette V, et al. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology,2003,60:1374-1377.
    [30]Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A., 2007,104:18760-18765.
    [31]Greicius M D, Srivastava G, Reiss A L, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A.,2004,101:4637-4642.
    [32]Prvulovic D, Hubl D, Sack A T, et al. Functional imaging of visuospatial processing in Alzheimer's disease. Neuroimage,2002,17:1403-1414.
    [33]Tales A, Butler S. Visual mismatch negativity highlights abnormal preattentive visual processing in Alzheimer's disease. Neuroreport,2006,17:887-890.
    [34]Zhang H Y, Wang S J, Liu B, et al. Resting brain connectivity:changes during the progress of Alzheimer disease. Radiology,2010,256:598-606.
    [35]Frings L, Dressel K, Abel S, et al. Reduced precuneus deactivation during object naming in patients with mild cognitive impairment, Alzheimer's disease, and frontotemporal lobar degeneration. Dement Geriatr Cogn Disord,2010,30: 334-343.
    [36]Lustig C, Snyder A Z, Bhakta M, et al. Functional deactivations:change with age and dementia of the Alzheimer type. Proc. Natl. Acad. Sci. U.S.A.,2003, 100:14504-14509.
    [37]Rombouts S A, Barkhof F, Goekoop R, et al. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease:an fMRI study. Hum Brain Mapp,2005,26:231-239.
    [38]Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease:evidence from resting state fMRI. Neuroimage, 2006,31:496-504.
    [39]Garrity A G, Pearlson G D, Mckiernan K, et al. Aberrant default mode functional connectivity in schizophrenia. Am J Psychiatry,2007,164:450-457.
    [40]Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, et al. Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr. Res.,2010,117:21-30.
    [41]Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr. Res.,2007,97:194-205.
    [42]唐劲松.早发精神分裂症神经网络连接障碍的磁共振研究以及重性精神疾病DNA拷贝数变异分析.中南大学,2008.
    [43]Jang J H, Jung W H, Choi J S, et al. Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia. Schizophr Res,2011.
    [44]Bluhm R L, Miller J, Lanius R A, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients:anomalies in the default network. Schizophr Bull,2007,33:1004-1012.
    [45]Repovs G, Csernansky J G, Barch D M. Brain Network Connectivity in Individuals with Schizophrenia and Their Siblings. Biol Psychiatry,2010.
    [46]Schacher M, Winkler R, Grunwald T, et al. Mesial temporal lobe epilepsy impairs advanced social cognition. Epilepsia,2006,47:2141-2146.
    [47]Laufs H, Hamandi K, Salek-Haddadi A, et al. Temporal lobe interictal epileptic discharges affect cerebral activity in default mode brain regions. Hum Brain Mapp,2007,28:1023-1032.
    [48]Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging,2008,27: 1214-1220.
    [49]许新梅.基于功能磁共振的脑功能连接分析及在癫痫病理中的应用.南京航空航天大学,2008.
    [50]张志强.内侧颞叶癫痫的静息态功能磁共振成像研究.南京大学,2010.
    [51]Tian L, Jiang T, Wang Y, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci. Lett.,2006,400:39-43.
    [52]Botvinick M M, Braver T S, Barch D M, et al. Conflict monitoring and cognitive control. Psychol Rev,2001,108:624-652.
    [53]Critchley H D, Mathias C J, Josephs O, et al. Human cingulate cortex and autonomic control:converging neuroimaging and clinical evidence. Brain,2003, 126:2139-2152.
    [54]Castellanos F X, Margulies D S, Kelly C, et al. Cingulate-precuneus interactions:a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry,2008,63:332-337.
    [55]Cao Q, Zang Y, Sun L, et al. Abnormal neural activity in children with attention deficit hyperactivity disorder:a resting-state functional magnetic resonance imaging study. Neuroreport,2006,17:1033-1036.
    [56]庞高.注意缺陷多动障碍儿童静息态的脑功能磁共振成像研究.中华精神科杂志.2009:202-205.
    [57]刘冬柏.注意缺陷多动障碍儿童反应抑制功能的磁共振研究.苏州大学,2008.
    [58]Zang Y F, He Y, Zhu C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev.,2007,29:83-91.
    [59]Northoff G, Walter M, Schulte R F, et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat. Neurosci.,2007,10:1515-1517.
    [60]Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol.,2007,3:el7.
    [61]Persson J, Lind J, Larsson A, et al. Altered deactivation in individuals with genetic risk for Alzheimer's disease. Neuropsychologia,2008,46:1679-1687.
    [62]Zhou Y, Shu N, Liu Y, et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr. Res., 2008,100:120-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700