用户名: 密码: 验证码:
中国鲚属鱼类进化关系及刀鲚、凤鲚的分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用形态学、线粒体DNA和AFLP三种方法,分析了中国鲚属(Coilia)鱼类的系统发育关系和种间的分类地位,并探讨了湖鲚和短颌鲚的物种有效性。同时以刀鲚(C. nasus)和凤鲚(C. mystus)为研究对象,通过线粒体DNA和ISSR标记技术,探讨了中国长江流域以及西北太平洋刀鲚群体的系统地理格局;以形态学分析、线粒体DNA和AFLP技术探讨了中国沿海凤鲚群体的遗传结构差异和地理分布格局。
     1.中国鲚属鱼类的系统发育研究
     (1)通过形态学方法探讨了5种鲚属鱼类的系统发育关系和种间的分类地位。聚类分析结果表明湖鲚、短颌鲚与刀鲚的亲缘关系紧密,而与凤鲚和七丝鲚亲缘关系较远。聚类分析、主成分分析的结果及分节特征的分布频率显示刀鲚、湖鲚与短颌鲚间亲缘关系较近,可能为同一物种。
     (2)利用线粒体DNA的COI、ND5和Cytb基因片段进行序列联合分析,研究了中国鲚属鱼类的系统发育关系。短颌鲚、刀鲚、湖鲚的个体间遗传距离非常接近于这三者的种间遗传距离;而短颌鲚、刀鲚与湖鲚的Fst值也显著低于这三者与七丝鲚(Coilia grayi)和凤鲚的Fst值。在NJ、MP和BI法构建的系统发育树中,刀鲚、短颌鲚和湖鲚未能各自形成单系群。刀鲚、短颌鲚与湖鲚的AMOVA分析结果显示种间的分子差异仅占9.76%,且统计检验不显著。Fst值变化范围和AMOVA分析的统计检验结果表明短颌鲚、刀鲚与湖鲚之间无显著的遗传分化。因此,短颌鲚和湖鲚应为刀鲚的不同生态型种群,而不能作为独立的种。
     (3)应用AFLP分子标记技术对5种鲚属鱼类的系统发育关系进行了分析。结果显示:刀鲚、短颌鲚和湖鲚的种间平均遗传距离和基因分化系数明显低于它们与七丝鲚和凤鲚间的比较结果。将短颌鲚与湖鲚被视作刀鲚的种群,对刀鲚、七丝鲚与凤鲚来进行AMOVA分析的结果显示分子差异主要属于种间差异,且统计检验结果显著。NJ系统发育树与UPGMA系统树的结果也显示出湖鲚、短颌鲚与刀鲚的亲缘关系紧密,而与凤鲚和七丝鲚亲缘关系较远。据此推测短颌鲚、湖鲚与刀鲚应属于同一个种。
     2.刀鲚的分子系统地理学研究
     (1)利用线粒体DNA控制区片段及Cytb片段对刀鲚的11个群体进行了分析,基于BI法构建的系统发育树中,刀鲚群体113个控制区单倍型聚为3个类群。中性检验的结果都表明三个类群都经历过群体扩张。根据贝叶斯系统发育树划分为三个组群进行AMOVA分析的结果显示三个组群间存在显著的遗传结构。更新世冰期导致长江河流湖泊的隔离可能使刀鲚分化出的淡水生态型。更新世冰期晚期,日本海的剧烈波动以及有明海的特殊地理环境可能是日本刀鲚群体发生隔离的重要原因。此外,刀鲚洄游的生活史特性也影响3个类群在地理上的分布频率。
     (2)基于ISSR分子标记开展了西北太平洋刀鲚种群遗传结构及其地理分布格局研究。UPGMA系统树与PCA分析的结果显示日本有明海群体与中国群体间呈现显著的遗传分化。STRUCTURE分析结果表明刀鲚5个群体应分为2个遗传上不同的组群;AMOVA分析的结果也表明了两组群间存在显著的遗传差异。基因流结果显示刀鲚的日本有明海群体与中国群体间的基因交流受到限制,而中国群体间的基因交流频繁。更新世晚期日本海平面的剧烈波动导致的栖息地隔离,以及较强的海洋环流可能限制了中日群体间刀鲚的基因交流,刀鲚的栖息地和生活史特征导致的基因同质可能是中国群体间基因交流频繁的重要原因。
     (3)应用ISSR分子标记对长江流域刀鲚种群遗传结构及其地理分布格局进行了研究。STRUCTURE分析结果表明刀鲚的5个群体应分为2个遗传上不同的组群。AMOVA分析的结果也表明了两组群间存在显著的遗传差异。刀鲚群体UPGMA系统树中,安庆、天鹅洲和赤壁群体大部分个体聚为一支,镇江与太湖群体聚为另一支。本研究结果表明刀鲚群体间存在显著的遗传分化。长江河流湖泊的隔离可能使刀鲚分化出淡水生态型,并且这种分化可能与更新世的气候波动有关。
     3.凤鲚群体的形态学、遗传学研究
     (1)对中国沿海的5个凤鲚群体进行了形态学研究。聚类分析表明凤鲚的宁波群体与其他群体间差异显著。单因子方差分析也显示出宁波群体与其他的凤鲚群体之间存在差异。与其他凤鲚群体相比,宁波群体在上下鳃耙数和脊椎骨数等分节特征的分布频率上均存在明显差异。栖息地环境可能导致不同凤鲚群体适应了不同的地理环境,从而限制了不同凤鲚群体的扩散区域,最终导致凤鲚群体形态特征上出现差异。
     (2)基于线粒体控制区、Cytb及COI片段序列开展了凤鲚的分子系统地理学研究。结果显示分布于中国沿岸的5个凤鲚群体分化为南北两个世系。基于细胞色素b计算的两个种的分化时间约为390万年,分化事件发生于上新世中期;基于COI基因片段序列得出的凤鲚两个世系间净遗传距离为5.6%,超过了COI基因DNA条形码鉴别不同物种2~3%的遗传距离阈值,这表明凤鲚的群体中可能存在一个隐蔽种,凤鲚的南北两个世系应为两个不同的物种。在更新世的末次冰盛期以后,随着海平面的升高,凤鲚的栖息地可能也发生了扩张。因此,群体数量的增长和栖息地的扩大可能是导致凤鲚mtDNA多态性模式的原因。
     (3)应用ISSR分子标记对分布于中国沿岸4个凤鲚群体遗传多样性进行了研究。STRUCTURE分析结果表明4个群体应分为2个遗传上不同的组群;AMOVA分析的结果显示两组群间的遗传差异显著。UPGMA系统树显示上海凤鲚群体单独聚为一支,而温州、厦门和大亚湾群体聚为另一支。研究结果显示,长江型凤鲚群体与其他凤鲚群体间存在较大的遗传分化并且缺乏基因交流。凤鲚南北两类群在地理上为异域分布,这可能与其产卵场的不同、以及栖息水域的温度、盐度等环境因子有关。
In the present study, morphological, mitochondrial DNA sequence and AFLP markerswere used for the phylogenetic and taxonomic analysis of Coilia in China. Thevalidity of naming species of C. brachygnathus and C. nasus taihuensis wasinvestigated. To elucidate the phylogeographic pattern of C. nasus, mitochondrialDNA sequence and ISSR markers were used to study the sample of C. nasus inYangtze River and Northwestern Pacific. To assess the genetic structure of C. mystus,we also examined the sample along the coastal regions of China by usingmorphological, mitochondrial DNA sequence and ISSR markers.
     1The phylogenetic and taxonomic analysis of Coilia in China:
     (1) The phylogeny and taxonomy of Coilia was studied by the morphological analysisin China. The results from the cluster analysis showed a close relationship among C.brachygnathus, C. nasus taihuensis, and C. nasus. C. brachygnathus and C. nasustaihuensis should be synonymized with C. nasus based on the results from the thecluster analysis, principal component analysis and the frequency distribution of themeristic characters in Coilia species.
     (2) To elucidate the phylogeny and taxonomy of Coilia, mitochondrial COI, ND5andCytb fragment were used for the combined analysis. C. brachygnathus, C. nasustaihuensis, and C. nasus did not form three separate monophyletic groups in the NJ,MP and BI trees. The average intraspecific genetic distance within C. brachygnathus,C. nasus, and C. nasus taihuensis approximates to their interspecific genetic distance.The mean pairwise Fst value obtained from C. brachygnathus, C. nasus, and C. nasus taihuensis comparisons was significantly lower than the mean pairwise Fst valueobtained between these species and the species of C. grayii and C. mystuscomparisons. Results of the AMOVA revealed that9.76%of the total molecularvariance can be attributed to the significant differences among species. The studyshowed no significant difference among C. brachygnathus, C. nasus, and C. nasustaihuensis. C. brachygnathus and C. nasus taihuensis should therefore besynonymized with C. nasus.
     (3) AFLP analysis was applied to study the phylogeny and taxonomy of Coilia inChina. The Gst value and the interspecific genetic distance among C. brachygnathus,C. nasus, and C. nasus taihuensis were significantly lower than those of Gst value andinterspecific genetic distance which were obtained between these species and thespecies of C. grayii and C. mystus. If C. brachygnathus and C. nasus taihuensis wereregarded as populations of C. nasus to investigate the genetic structures of the threespecies, C. nasus, C. grayii and C. mystus, most of the variance (P=0.00) was foundamong species and a small amount within species. In the neighbor-joining tree andUPGMA dendrogram, a close relationship was indicated among C. brachygnathus, C.nasus taihuensis, and C. nasus. Therefore, C. brachygnathus and C. nasus taihuensisshould be synonymized with C. nasus.
     2Molecular Phylogeography of C. nasus:
     (1) To elucidate the phylogeographic pattern of C. nasus, mitochondrial DNAsequences were used to study the sample of C. nasus in Yangtze River andNorthwestern Pacific. The BI tree constructed using the complete data set of113mitochondrial control region haplotypes identified three distinct lineages. The FStestsof three lineages were negative and highly significant, which indicated populationexpansion. Analyses of molecular variance and the population statistic Fst alsorevealed significant genetic structure among three lineages. As the base levels oferosion and ground water levels were lower as well, rivers in upland areas could formdeeply incised river valleys during the last Pleistocene glaciation. We conclude thatfreshwater populations of C. nasus could thereby have become isolated in the lakes ofYangtze River, resulting in a separate lineage observed in the mitochondrial genome. Strong genetic break was found between the Sea of Japan and the China Seapopulations, likely reflecting isolation of Ariake Bay in the Northwestern Pacificduring the late Pleistocene. A hypothetical scenario to explain the observedphylogeographic pattern is that genetic differentiation and homogeneity may beattributed to habitat and life-history characteristics.
     (2) Northwestern Pacific provides unique scenarios for studying the roles ofgeography and ecology in driving population divergence and speciation. Toinvestigate geographical patterns of genetic variation in the Japanese grenadieranchovy using ISSR markers we collected individuals from five locations throughouttheir distribution in the Northwest Pacific. Analyses of molecular variance showedthat genetic differentiation among groups is relatively high. Bayesian analysis of ISSRdata also revealed significant population structuring between Chinese and Japaneselocations. Phylogenetic reconstructions show reciprocal monophyly in populationsbetween China and the Ariake Bay of Japan. We conclude that the present-dayphylogeographic pattern is the result of genetic isolation between Japanese andChinese populations in the Northwestern Pacific following the glacial retreat, and thatlife-history traits and ecology may play a pivotal role in shaping the realizedgeographical distribution pattern of this species.
     (3) To investigate the phylogeographic pattern of C. nasus, ISSR markers were usedto study the sample of C. nasus in Yangtze River. Bayesian analysis of ISSR datarevealed significant population structuring between freshwater and anadromouspopulations (K=2). Analyses of molecular variance also revealed that geneticdifferentiation among groups is relatively high. Phylogenetic reconstructions showtwo distinct lineages in Yangtze River. We conclude that the present-dayphylogeographic pattern is the result of genetic isolation between freshwater andanadromous populations in Yangtze River during the last Pleistocene glaciation, andthat life-history traits and ecology may play a pivotal role in shaping the realizedgeographical distribution pattern of this species.
     3Phylogeography of C. mystus:
     (1) To investigate the genetic difference of C. mystus by the morphological analysis we collected individuals from five locations throughout their distribution alongChinese coastal waters. The results from the cluster analysis showed strong geneticbreak between Ningbo and the other populations. There were significant differencesbetween Ningbo and the other populations based on the results from the clusteranalysis, principal component analysis and the frequency distribution of the meristicand gill rakers characters in populations of C. mystus. Local populations may besufficiently locally adapted to the particular habitat to limit the dispersal amongpopulations of C. mystus. Habitat and life-history differences may play a pivotal rolein shaping morphological characteristics of this species.
     (2) To elucidate the phylogeographic pattern of C. mystus, mitochondrial DNAsequences were used to study the sample of C. mystus along Chinese coastal waters.The NJ tree constructed with mtDNA sequences identified two distinct lineages. Thecytochrome b and control region data suggests a divergence time of3.9MY betweenthe two lineages, indicating isolation in the middle Pliocene. A highest geneticdistance for COI gene was found between two lineages (5.6%). According to thebarcoding approach, species could be identified based on a ‘barcoding gap’ betweenintra-and interspecific genetic distances by using a threshold value of23%forspecies delimitation. The study indicated the presence of cryptic species within thepopulations of C. mystus. The neutrality tests indicated population expansion in thetwo lineages. Population range expansion must have occurred after the last glacialmaximum. Range contractions and expansions played a central role in shaping thegenetic diversity of the two lineages of C. mystus.
     (3) To investigate the phylogeographic pattern, ISSR markers were used to study thesample of C. mystus along Chinese coastal waters. Bayesian analysis of ISSR datarevealed significant population structuring between northern and southern groups(K=2). Analyses of molecular variance also revealed that genetic differentiationamong groups is relatively high. Phylogenetic reconstructions show reciprocalmonophyly in populations between northern (SH) and southern (NB, XM and DB)groups. The results showed strong genetic break northern and southern populations.Local populations may be sufficiently locally adapted to the particular habitat to limit the dispersal among populations of C. mystus. Life-history traits and ecology mayplay a pivotal role in shaping the realized geographical distribution pattern of thisspecies.
引文
曹光杰,王建,屈贵贤.末次盛冰期以来长江河口段河道演变研究综述.地球科学进展,2006,21(10):1039-1045.
    陈领,宋延龄.生物地理学理论的发展.动物学杂志,2005,40(4):111-120.
    陈艳翠.刀鲚(Coilia ectenes)与日本鲚(C. nasus)群体的形态学、遗传学研究:[硕士毕业论文].青岛:中国海洋大学,2007.
    程起群,李思发.刀鲚和湖鲚种群的形态判别.海洋科学,2004,28(11):39-43.
    程起群,马春艳,庄平等.基于线粒体Cytb基因标记探讨凤鲚3群体遗传结构和进化特征.水产学报,2008,32(1):1-7.
    房新英,张全启,齐洁,王志刚,包振民.野生和养殖牙鲆(Paralichthys olivaceus)遗传差异的RAPD和ISSR研究.海洋与湖沼,2006,37(2):138-142.
    福永剛,濱崎稔洋.エツの受精、孵化および初期飼育と塩分濃度.福岡県水産海洋技術センター研究報告,1988,8:67-71.
    福永剛,濱崎稔洋.有明海地域特産種増殖事業エツ種苗生産技術開発.平成11年度福岡県水産海洋技術センター事業報告,2001,329-330.
    郭平仲.群体遗传学导论.北京:农业出版社,1993.
    郭荣昌,动物遗传学.北京:经济科学出版社,1997.
    郭新红,刘少军,刘巧,刘筠.鱼类线粒体DNA研究新进展.遗传学报,2004,31(9):983-1000.
    海萨,李家乐,冯建彬,木拉提.基于多变量形态度量学和线粒体Cyt b序列的鲈属鱼类分类探讨.动物学研究,2008,29(2):113-120.
    韩志强,高天翔,王志勇等.黄姑鱼群体遗传多样性的AFLP分析.水产学报,2007,30(5):640-646.
    胡自民.角叉菜属分子分类、系统发育及居群遗传多样性研究:[博士毕业论文].青岛:中国海洋大学,2007.
    吉田裕.本邦近海に産するエツ属のCoiliaの種の異同に関する考察並びに稚仔の同定に就いて.動物学雑誌,1935,47:784-789.
    刘必谦,董闻琦,王亚军,等.岱衢族大黄鱼种质的AFLP分析.水生物学学报,2005,29(4):413-416.
    刘楚珠,严利平,李建生等.基于框架法的东黄海日本鲭产卵群体形态差异分析.中国水产科学,2011,18(4):908-917.
    刘凯,张敏莹,徐东坡,施炜纲.长江口凤鲚资源变动及最大持续产量研究.上海水产大学学报,2004,13(4):298-303.
    刘文斌.中国鲚属4种鱼的生化和形态比较及其系统发育的研究.海洋与湖沼,1995,26(5):558-564.
    马春艳.鳀科鱼类分子系统进化及凤鲚、刀鲚遗传多样性研究:[博士毕业论文].上海:华东师范大学,2010.
    马明,冉光松,许志强,葛家春.AFLP技术及其在水生动物研究中的应用.生物学通报,2007,42(8):10-12.
    内田恵太郎,塚原博.有明海の魚類相について.日本生物地理学会会報,1955,16(19):292-302.
    倪勇.长江口凤鲚的渔业生物学特性.中国水产科学,1999,6(5):69-71.
    松井誠一,富重信一,塚原博.エツCoilia nasus Temminck et Schlegelの生態学的研究I溯上群の生態に関する予報.九州大学農学部学芸雑誌,1986a,40:221-228.
    松井誠一,富重信一,塚原博.エツCoilia nasus Temminck et Schlegelの生態学的研究II卵発生及び子魚に及ぼす塩分濃度の影響.九州大学農学部学芸雑誌,1986b,40:229-234.
    松井誠一,中川清,富重信一.エツCoilia nasus Temminck et Schlegelの生態的研究III筑後川における仔稚魚の出現生態と食性.九州大学農学部学芸雑誌,1987,41:55-62.
    石田宏一.有明海エツ(Coilia nasus Temminck et Schlegel)の成長について.水産増殖,1990,38(2):135-145.
    石田宏一,塚原博.有明海および筑後川下流域におけるエツの生態について.九州大学農学部学芸雑誌,1972,26(1-4):217-221.
    孙儒泳.动物生态学原理(第3版).北京:北京师范大学出版社,2001.
    唐文乔,胡雪莲,杨金权.从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性.生物多样性,2007,15(3):224-231.
    田北徹.有明海産エツCoilia sp.の産卵および初期生活史.長崎大学水産学部研究報告,1967,23:107-122.
    田北徹.エツ日本の希少な野生水生生物に関する基礎資料(I).日本水産庁研究部漁場保全課,1994,pp.160-168.
    田北徹,増谷英雄.エツCoilia nasusの産卵域。長崎大学水産学部研究報告,1979,46:7-10
    田北徹.有明海の魚類.月刊海洋科学(有明海),1980,24:105-115.
    田島正敏.佐賀県の淡水魚.佐賀新聞社,1995,272pp.
    王世锋,杜佳莹,苏永全,等.斜带髭鲷野生与养殖群体遗传结构的ISSR分析.海洋学报,2007,29(4):105-110.
    王祎玲,郭元涛,钱增强,等.植物分子系统地理学及其研究进展.西北植物学报,2005,25:1250-1258.
    王永飞,马三梅,刘翠平,王鸣.遗传标记的发展和分子标记的检测技术.西北农林科技大学(自然科学版),2001,29(6):130-136.
    王志勇,王艺磊,林利民,等.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异.水产学报,2001,25(4):289-293.
    王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP指纹多态性的研究.中国水产科学,2002,9(3):198-202.
    吴常文,许逸天,吕振明,等.基于D-LOOP基因的中国沿海鳓鱼(Ilisha elongata)种群遗传结构研究.海洋与湖沼,2009,40(3):330-337.
    伍献文,杨干荣,乐佩琦,黄宏金.中国经济动物志(淡水鱼类).中国科学院水生生物研究所.科学出版社.北京,1963.
    许志强,葛家春,黄成等.基于颌骨长度和线粒体Cyt b序列变异探讨短颌鲚的分类地位.大连水产学报,2009,24(3),242-246.
    阎雪岚,唐文乔,杨金权.基于线粒体控制区的序列变异分析中国东南部沿海凤鲚种群遗传结构.生物多样性,2009,17(2):143-150.
    杨达源.晚更新世冰期最盛时长江中下游地区的古环境.地理学报,1986,41(4):302-310.
    杨达源,李徐生,张振克.长江中下游湖泊的成因与演化.湖泊科学,2000,12(3):227-232.
    杨金权,胡雪莲,唐文乔,林弘都.长江口邻近水域刀鲚的线粒体控制区序列变异与遗传多样性.动物学杂志,2008,43(1):8-15.
    杨太有,关建义,陈宏喜.三个地理群体赤眼鳟遗传多样性的ISSR分析.水生生物学报,2008,32(4):529-533.
    袁传宓.刀鲚的生殖洄游.生物学通报,1987,12:1-3.
    袁传宓,林金榜,秦安舲,刘仁华.关于我国鲚属鱼类分类的历史和现状—兼谈改造旧鱼类分类学的几点体会.南京大学学报(自然科学版),1976,2:1-12.
    袁传宓,秦安舲.我国近海鲚鱼生态习性及其产量变动状况.海洋科学,1984,5:35-37.
    袁传宓,秦安舲.关于日本鲚属(Coilia)鱼类分类位置的探讨.南京大学学报,1985,21(2):318-326.
    袁传宓,秦安舲,刘仁华,林金榜.关于长江中下游及东南沿海各省的鲚属鱼类种下分类的探讨.南京大学学报(自然科学版),1980,3:67-82.
    曾强,董方勇凤鲚繁群体的生物学特性及因数关系的研究.湖泊科学,1993,5(2):164-17.
    张国祥,华家栋.长江口凤鲚资源的变动及其最大持续产量的估算.水产科技情报,1990,17(5):130-134.
    张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析.热带海洋学报,2004,23(5):50-55.
    张俊丽,高天翔,韩志强等.3种白鲑线粒体细胞色素b和16SrRNA基因部分序列分析.中国水产科学,2007,14(1):8-4.
    张敏莹,徐东坡,刘凯,施炜纲.长江下游刀鲚生物学及最大持续产量研究.长江流域资源与环境,2005,14(6):694-698.
    张全启,徐晓斐,齐洁,等.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004,34(5):816-820.
    张世义.中国动物志—硬骨鱼纲:鲟形目海鲢目鲱形目鼠鱚目.北京:科学出版社,2001.
    张四明,吴清江,张亚平.中华鲟(Acipenser sinensis)及相关种类的mtDNA控制区串联重复序列及其进化意义.中国生物化学与分子生物学报,2000,16(4):458-461.
    张媛,胡则辉,周志刚,陈亚瞿.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构.上海水产大学学报,2006,15(4):390-397.
    周晓犊,杨金权,唐文乔,刘东.基于线粒体COI基因DNA条形码的中国鲚属物种有效性分析.动物分类学报,2010,35(4):819-826.
    周延清.遗传标记的发展.生物学通报,2000,35(5):17-18.
    Aboim, M.A., Menezes, G.M., et al. Genetic structure and history of populations of the deep-seafish Helicolenus dactylopterus (Delaroche,1809) inferred from mtDNA sequence analysis.Molecular Ecology,2005,14:1343-1354.
    Albertson, R.C., Markert, J.A., et al. Phylogeny of a rapidly evolving clade: The cichlid fishes ofLake Malawi, East Africa. Proceedings of the National Academy of Sciences,1999,96:5107-5110.
    Allendorf, F.W., Ryman, N., Utter, F.M. Genetics and Fishery Management: past, present andfuture. In: Ryman, N., Utter, F.M. eds. Population genetics and fisheries management. Univ.of Washington Press, Seattle.1987, p.1-19.
    Alvarez-Buylla, E.R., Garay, A.A. Population genetic structure of Cecropia obtusifolia, a tropicalpioneer tree species. Evolution,1994,48(2):437-453.
    Avise, J.C. Space and time as axes in intraspecific phylogeography. In: Huntley, B., Cramer, W.,Morgan, A.V., Prentice, H.C., Allen, J.R.M. eds. Past and Future Rapid EnvironmentalChanges: The Spatial and Evolutionary Responses of Terrestrial Biota. Springer-Verlag, NewYork,1996a, pp.381-388.
    Avise, J.C. The history and purview of phylogeography: a personal reflection. Molecular Ecology,1998,7:371-379.
    Avise, J.C. Phylogeography: The history and Formation of Species. Cambridge, MA, USA:Harvard University Press,2000.
    Avise J.C., Arnold J., Ball, R.M., et al. Intraspecific phylogeography: the mitochondrial DNAbridge between population genetics and systematics. Annual Review of Ecology, Evolution,and Systematics,1987,18:489-522.
    Avise, J.C., Helfman, G.S., Saunders, N.C., et al. Mitochondrial DNA differentiation in NorthAtlantic eels: Population genetic consequences of an unusual life history pattern. Proceedingsof the National Academy of Sciences,1986,83:4350-4354.
    Ayvazian, S.G., Johnson, M.S., McGlashan, D.J. High levels of genetic subdivision of marine andestuarine populations of the estruarine catfish Cnidoglanis macrocephalus (Plotosidae) insouthwestern Australia. Marine Biology,1994,118,25-31.
    Barber, P.H., Palumbi, S.R., et al. A marine Wallace’s line? Nature,2000,406:692-693.
    Barber, P.H., Palumbi, S.R., et al. Sharp genetic breaks among populations of Haptosquillapulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences.Molecular Ecology,2002,11:659-674.
    Barthel, B.L., Lutz-Carrillo, et al. Genetic relationships among populations of Florida bass.Transactions of the American Fisheries Society,2010,139:1615-1641.
    Bebler, M.H., Foltz, D.W. Genetic diversity in Hawaiian stream macroinvertebrates. Micronesia,2004,37:117-126.
    Bell, L.J., Moyer, J.T., Numachi, K. Morphological and genetic variation in Japanese populationsof the anemonefish Amphiprion clarkii. Marine Biology,1982,72:99-108.
    Bell, M.A., Andrews, C.A. Evolutionary consequences of postglacial colonization of fresh waterby primitively anadromous fishes. Evolutionary Ecology of Freshwater Animals,1997, EXS82(4):323-363.
    Bell, M.A., Foster, S.A. Introduction to the evolutionary biology of the threespine stickleback. In:The Evolutionary Biology of the Threespine Stickleback (Bell, M.A., Foster, S.A. eds.),Oxford University Press, Oxford,1994, pp.1-27.
    Bentzen, P., Taggart, C.T., et al. Microsatellite polymorphism and the population structure ofAtlantic cod (Gadus morhua) in the northwest Atlantic. Canadian Journal of Fisheries andAquatic Sciences,1996,53:2706-2721.
    Benzie, J.A.H. Major genetic differences between crown-of-thorns starfish (Acanthaster planci)populations in the Indian and Pacific Ocean. Evolution,1999,53:1782-1795.
    Bermingham, E., Martin, A.P. Comparative phylogeography of neotropical freshwater fish: testingshared history to infer the evolutionary landscape of Central America. Molecular Ecology,1998,7:499-517.
    Bermingham, E.S., McCafferty, A., Martin, P. Fish biogeography and molecular clocks:perspectives from the Panamanian Isthmus. In: Kocher, T., Stepien, C.(Eds.), MolecularSystematics of Fishes. Academic Press, New York,1997, pp.113-126.
    Bernardi, G. Barriers to gene flow in Embiotoca jacksoni, a marine fish lacking a pelagic larvalstage. Evolution,2000,54(1):226-237.
    Bernatchez, L., Wilson, C. Comparative phylogeography of Nearctic and Palearctic fishes.Molecular Ecology,1998,7:431-452.
    Berrebi, P., Cattaneo-Berrebi, G., et al. Genetic homogeneity in eight freshwater populations ofSicyopterus lagocephalus, an amphidromous gobiid of La Réunion Island. Marine Biology,2005,148:179-188.
    Bi, X.X., Yang Q.L., et al. The loss of genetic diversity during captive breeding of the endangeredsculpin, Trachidermus fasciatus, based on ISSR markers: implications for its conservation.Chinese Journal of Oceanology and Limnology,2011,29(5):958-966.
    Bickford, D., Lohman, D.J., et al. Cryptic species as a window on diversity and conservation.Trends in Ecology and Evolution,2007,22:148-155.
    Blanchet, S., Rey, O. et al. Species-specific responses to landscape fragmentation: implications formanagement strategies. Evolutionary Applications,2010,3(3):291-304.
    Bookstein, F.L. Foundations of morphometrics. Annual Review of Ecology and Systematics,1982,13:451-470.
    Bowen, B.W., Bass, A.L., et al. Phylogeography of the trumpetfishes (Aulostomus): ring speciescomplex on a global scale. Evolution,2001,55:1029-1039.
    Brown, W.M. Evolution of animal mitochondrial DNA. In: Nei, M., Koehn, R. K. eds. Evolutionof Genes and Proteins. Sinauer, Sunderland MA,1983, pp.62-88
    Brunner, P.C., Douglas, M.R., et al. Holarctic phylogeography of arctic charr (Salvelinus alpinusL.) inferred from mitochondrial DNA sequences. Evolution,2001,55(3):573-586.
    Cadrin, S.X. Advances in morphometric identification of fishery stocks. Reviews in Fish Biologyand Fisheries,2000,10:91-112.
    Caley, M.J., Carr, M.H., et al. Recruitment and the local dynamics of open marine populations.Annual Review of Ecology and Systematics,1996,27:477-500.
    Campana, S.E., Thorrold, S.R. Otoliths, increments, and elements: keys to a comprehensiveunderstanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences,2001,58:30-38.
    Cann, R., Brown, W., et al. Polymorphic sites and the mechanism of evolution in humanmitochondrial DNA. Genetics,1984,106:479-499.
    Carisio, L., Cervella, P., et al. Biogeographical patterns of genetic differentiation in dung beetlesof the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses.Journal of Biogeography,2004,31:1149-1162.
    Casane, D., Gueride, M. Evolution of heteroplasmy at a mitochondrial tandem repeat locus incultured rabbit cells. Current Genetics,2002,42(1):66-72.
    Cavalcanti, M.J., Monteiro, L.R. et al. Landmark-based morphometric analysis in selected speciesof serranid fishes (Perciformes: Teleostei). Zoological Studies,1999,38(3):287-294.
    Cheng, Q.Q., Han, J.D. Morphological variations and discriminant analysis of two populations ofCoilia ectenes. Journal of Lake Sciences,2004,16:356-364.
    Cheng, Q.Q., Lu, D.R. PCR-RFLP analysis of cytochrome b gene does not support Coilia ectenestaihuensis being a subspecies of Coilia ectenes. Journal of Genetics,2005,3:307-310.
    Chenoweth, S.F., Hughes, J.M., et al. Concordance between dispersal and mitochondrial geneflow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi).Heredity,1998,80:187-197.
    Chubb, A.L., Zink, R.M., Fitzsimons, J.M. Patterns of mtDNA variation in Hawaiian freshwaterfishes: the phylogeographic consequences of amphidromy. Journal of Heredity1998,89:8-16.
    Colborn, J., Crabtree, R.E., et al. The evolutionary enigma of bonefishes (Albula spp.): crypticspecies and ancient separations in a golbally distributed shorefish. Evolution,2001,55(4):807-820.
    Collin, R., De Maintenon, M. Integrative approaches to biogeography: patterns and processes onland and in the sea. Integrative and Comparative Biology,2002,42:911-912.
    Cook, B.D., Bernays, S., et al. Marine dispersal determines the genetic population structure ofmigratory stream fauna of Puerto Rico: evidence for island-scale population recoveryprocesses. Journal of the North American Benthological Society,2009,28(3):709-718.
    DeWoody, J.A., Avise, J.C. Microsatellite variation in marine, freshwater and anadromous fishescompared with other animals. Journal of Fish Biology,2000,56:461-473.
    Doherty, P.J., Planes, S., Mather, P. Gene flow and larval duration in seven species of fish from theGreat Barrier Reef. Ecology,1995,76:2373-2391.
    Donaldson, K.A., Wilson, R.R. Amphi-Panamic geminates of snook (Percoidei: Centropomidae)provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes.Molecular Phylogenetics and Evolution,1999,13:208-213.
    Doosey, M.H., Bart, H.L.Jr., et al. Phylogenetic relationships of catostomid fishes (Actinopterygii:Cypriniformes) based on mitochondrial ND4/ND5gene sequences. Molecular Phylogeneticsand Evolution,2007,54(3):1028-1034.
    Dragoo, J.W., Salazar-Bravo, J., et al. Relationships within the Calomys callosus species groupbased on amplified fragment length polymorphisms. Biochemical Systematics and Ecology,2003,31:703-713.
    Durbin, R., Eddy, S., et al. Biological Sequence Analysis. Cambridge University Press, Cambridge,1998.
    Eckert, C.G., Samis, K.E., Lougheed, S.C. Genetic variation across species’ geographical ranges:the central-marginal hypothesis and beyond. Molecular Ecology,2008,17:1170-1188.
    Erguden, D., Turan, C. Examination of genetic and morphologic structure of sea-bass populationsin Turkish coastal waters. Turkish Journal of Veterinary and Animal Sciences,2005,29:727-733.
    Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model. Molecular Ecology,2004,13:853-864.
    Excoffier, L., Laval, G., Schneider, S. Arlequin ver.3.0: An integrated software package forpopulation genetics data analysis. Evolutionary Bioinformatics Online,2005,1:47-50.
    Excoffier, L., Smouse, P.E., Quattro, J.M. Analysis of molecular variance inferred from metricdistances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics,1992,131:479-491.
    Faber, J.E., Stepien, C.A. Tandemly repeated sequences in the mitochondrial DNA control regionand phylogeography of the pike-perches Stizostedion. Molecular Phylogenetics and Evolution,1998,10(3):310-322.
    Farris, J., Kallersjo, M., et al. Testing significance of incongruence. Cladistics,1995,10:315-319.
    Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution,1985,39:783-791.
    Fièvet, E., Eppe, R. Genetic differentiation among populations of the amphidromous shrimp Atyainnocous (Herbst) and obstacles to their upstream migration. Archiv für Hyrdobiologie,2002,153:287-300.
    Fraser, C.I., Thiel, M., et al. Contemporary habitat discontinuity and historic glacial ice drivegenetic divergence in Chilean kelp. BMC Evolutionary Biology,2010,10:203.
    Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking andbackground selection. Genetics,1997,147:915-925.
    Gao, T.X., Watanabe, S. Genetic variation among local populations of the Japanese mitten crabEriocheir japonica De Haan. Fisheries Science,1998,64(2):198-205.
    Gold, J.R., Richardson, L.R. Mitochondrial DNA diversification and population structure in fishesfrom the Gulf of Mexico and Western Atlantic. Journal of Heredity,1998,89:404-414.
    Gopurenko, D., Hughes, J.M. Regional patterns of genetic structure among Australian populationsof the mud crab, Scylla serrata (Crustacea: Decapoda): evidence from mitochondrial DNA.Marine and Freshwater Research,2002,53:849-857.
    Grabowski, T.B., Young, S.P., et al. Evidence of phenotypic plasticity and local adaption inmetabolic rates between components of the Icelandic cod (Gadus morhua L.) stock.Environmental Biology of Fishes,2009,86:361-370.
    Grant, W.S., Bowen, B.W. Shallow population histories in deep evolutionary lineages of marinefishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity,1998,89:415-426.
    Griffiths, A.M., Sims, D.W., et al. Molecular markers reveal spatially segregated cryptic species ina critically endangered fish, the common skate (Dipturus batis). Proceedings of the RoyalSociety B,2010,277(1687):1497-1503.
    Gwo, J.C., Hsu, T.H., et al. Genetic relationship among four subspecies of cherry salmon(Oncorhynchus masou) inferred using AFLP. Molecular Phylogenetics and Evolution,2008,48:776-781.
    Gyllensten, U. The genetic structure of fish: differences in the intraspecific distribution ofbiochemical genetic variation between marine, anadromous, and freshwater species. Journalof Fish Biology,1985,26:691-699.
    Hall, B.G. Phylogenetic Trees Made Easy: A How-To Manual,2nd ed. Sinauer Associates,Sunderland, MA,2004.
    Hampl, V., Pavlicek, A., Flegr, J. Construction and bootstrap analysis of DNA fingerprinting-basedphylogenetic trees with the freeware program FreeTree: application to trichomonad parasites.International Journal of Systematic and Evolutionary Microbiology,2001,3:731-735.
    Han, Z.Q., Gao, T.X., et al. Deep phylogeographic break among white croaker Pennahiaargentata (Sciaenidae, Perciformes) populations in North-western Pacific. Fisheries Science,2008,74:770-780.
    Hansen, M.M., Hemmer-Hansen, J. Landscape genetics goes to sea. Journal of Biology,2007,6:6.
    Hartl, D.L., Clark, A.G. Principles of Population Genetics, second ed. Sinauer Associates,Sunderland, Massachusetts,1989.
    Hedrick, P.W., Miller, P.S. Conservation genetics: techniques and fundamentals. EcologicalApplications,1992,2:30-46.
    Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation.Biological Journal of the Linnean Society,1996,58:247-276.
    Hewitt, G.M. Post-glacial re-colonization of European biota. Biological Journal of the LinneanSociety,1999,68:87-112.
    Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913.
    Hewitt, G.M. The structure of biodiversity—insights from molecular phylogeography. Frontiers inZoology,2004,1:4.
    Huang, B.X., Peakall, R., Hanna, P.J. Analysis of genetic structure of blacklip abalone (Haliotisrubra) populations using RAPD, minisatellite, and microsatellite markers. Marine Biology,2000,136:207-216.
    Huang, J.C., Sun, M. Genetic diversity and relationships of sweetpotato and its wild relatives inIpomea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR)and restriction analysis of chloroplast DNA. Theoretical and Applied Genetics,2000,100:1050-1060.
    Huelsenbeck, J.P., Bollback, J.P. Empirical and hierarchical Bayesian estimation of ancestral states.Systematic Biology,2001,50:351-366.
    Huelsenbeck, J.P., Rannala, B. Phylogeny methods come of age: testing hypotheses in anevolutionary context. Science,1997,276:227-232.
    Hudson, R.R. Gene genealogies and the coalescent process. In: Futuyma, D., Antonovics, J. eds.Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford,1991, pp1-43.
    Hufford, L. Ontogenetic evolution, clade diversification, and homoplasy. In: Sanderson, M.,Hufford, L. eds. Homoplasy: The Recurrence of Similarity in Evolution. Academic Press, SanDiego, CA.1996, p.271-301.
    Humphries J M. Multivariate discrimination by shape in relation to sizes. Systematic Zoology,1981,30(3):291-308.
    Humpheries, J.M., Bookstein, F.L., Chernoff, B., et al. Multivariate discrimination by shape inrelation to size. Systematic Zoology,1981,30:291-308.
    Imron, Jeffrey, B., et al. Pleistocene isolation and recent gene flow in Haliotis asinina, anIndo-Pacific vetigastropod with limited dispersal capacity. Molecular Ecology,2007,16:289-304.
    Jardine, N. The ovservational and theoretical components of homology: a study based on themorphology of the dermal skull-roofs of rhipidistian fishes. Biological Journal of the LinneanSociety,1969,1:327-361.
    Johansson, M., Primmer, C.R., Meril, J. History vs. current demography: explaining the geneticpopulation structure of the common frog (Rana temporaria). Molecular Ecology,2006,15:975-983.
    Johnson, M.S., Black, R. Neighbourhood size and the importance of barriers to gene flow in anintertidal snail. Heredity,1995,75:142-154.
    Johnson, M.S., Black, R. Effects of isolation by distance and geographical discontinuity ongenetic subdivision of Littorina cingulata. Marine Biology,1998a,132:295-303.
    Johnson, M.S., Black, R. Increased genetic divergence and reduced genetic variation inpopulations of the snail Bembicium vittatum in isolated tidal ponds. Heredity,1998b,80:163-172.
    Johnson, M.S., Watts, R.J., Black, R. High levels of genetic subdivision in peripherally isolatedpopulations of atherinid fish Craterocephalus capreoli in the Houtman Abrohlos Islands,Western Australia. Marine Biology,1994,119:179-184.
    Jones, S., Menon, P.M.G. Observations on the development and systematics of the fishes of thegenus Coilia Gray. Journal of the Zoological Society of India,1952,4(1):17-36.
    Kakehi, Y., Nakayama, K., et al. Inheritance of amplified fragment length polymorphism markersand their utility in population genetic analysis of Plecoglossus altivelis. Journal of FishBiology,2005,66:1529-1544.
    Kassam, D., Seki, S., et al. Genetic diversity within the genus Cynotilapia and its phylogeneticposition among Lake Malawi’s mbuna cichlids. African Journal of Biotechnology,2005,4:1195-1202.
    Kenchington, E.L., Harding, G.C., et al. Pleistocene glaciation events shape genetic structureacross the range of the American lobster, Homarus americanus. Molecular Ecology,2009,18(8):1654-1667.
    Kimura, M. A simple method for estimating evolutionary rate of base substitutions throughcomparative studies of nucleotide sequences. Journal of Molecular Evolution,1980,16:111-120.
    Kingman, J.F.C. Origins of the coalescent:1974-1982. Genetics,2000,156:1461-1463.
    Kitamura, A., Takano, O, et al. Late Plioceneearly Pleistocene paleoceanographic evolution of theSea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,172:81-98.
    Knowlton, N. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia,2000,420:73-90.
    Knutsen, H., Jorde, P.E., et al. Fine-scaled geographic population structuring in a highly mobilemarine species: the Atlantic cod. Molecular Ecology,2003,12:385-394.
    Kojima, S., Hayashi, I., et al. Phylogeography of an intertidal direct-developing gastropodBatillaria cumingi around the Japanese Islands. Marine Ecology Progress Series,2004,276:161-172.
    Kontula, T., V in l, R. Relationships of Palearctic and Nearctic ‘glacial relict’ Myoxocephalussculpins from mitochondrial DNA data. Molecular Ecology,2003,12:3179-3184.
    Kreyenberg, W., Pappenheim, P. Ein Beitrag zur Kenntnis der Fische der Jangtze und seinerZuflüsse. Sitzungsber. Ges. Naturf. Freunde Berlin,1908, p.95-109.
    Kumar, S., Tamura, K., Nei, M. MEGA3: Integrated software for molecular evolutionary geneticsanalysis and sequence alignment. Briefings in Bioinformatics,2004,5:150-163.
    Lambeck, K., Esat, T.M., Potter, E.K. Links between climate and sea levels for the past threemillion years. Nature,2002,419:199-206.
    Langella, O. Populations,1.2.30. Population Genetic Software (individuals or populationsdistances, phylogenetic trees). CNRS, France,1999.
    Lavery, S., Moritz, C., Fielder, D.R. Changing patterns of population structure and gene flow atdifferent spatial scales in Birgus latro (the coconut crab). Heredity,1995,74:531-541.
    Lavery, S., Moritz, C., Fielder, D.R. Indo-Pacific population structure and evolutionary history ofthe coconut crab Birgus latro. Molecular Ecology,1996,5:557-570.
    Lecomte, F., Grant, W.S., et al. Living with uncertainty: genetic imprints of climate shrifts in EastPacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Molecular Ecology,2004,13:2169-2182.
    Lewis, P. O. Phylogenetic systematics turns over a new leaf. Trends in Ecology and Evolution,2001,16:30-37.
    Li, C., Ortí, G. Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear andmitochondrial DNA sequences. Molecular Phylogenetics and Evolution,2007,44:386-398.
    Li, W.H. Molecular Evolution. Sinauer Associates: Sunderland, MA,1997.
    Li, W.H., Fu, Y.X. Coalescent theory and its application in population genetics. In: Halloran, M.E.,Geisser, S. eds. Statistics in Genetics. Springer Verlag, New York,1999, pp.45-79.
    Libungan, L.A. Local Adaptation and Variation in Life History Reaction Norms within theIcelandic Cod Stock. Dissertation, University of Iceland,2009.
    Liò, P., Goldman, N. Models of Molecular Evolution and Phylogeny. Genome Research,1998,8:1233-1244.
    Liu, J.X., Gao, T.X., et al. Differential population structuring and demographic history of twoclosely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass(Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics and Evolution,2006a,39:799-811.
    Liu, J.X., Gao, T.X., et al. Late Pleistocene divergence and subsequent population expansion oftwo closely related fish species, Japanese anchovy (Engraulis japonicus) and Australiananchovy (Engraulis australis). Molecular Phylogenetics and Evolution,2006b,40:712-723.
    Liu, J.X., Gao, T.X., et al. Pleistocene isolation in the Northwestern Pacific marginal seas andlimited dispersal in a marine fish, Chelon haematocheilus (Temminck&Schlegel,1845).Molecular Ecology,2007,16:275-288.
    Liu, Y.G., Chen, S.L., et al. Genetic diversity in three Japanese flounder (Paralichthys olivaceus)populations revealed by ISSR markers. Aquaculture,2006,255:565-572.
    Liu, Y.G., Yu, Z.G., et al. Population genetics studies of half-smooth tongue sole Cynoglossussemilaevis using ISSR markers. Biochemical Systematics and Ecology,2009,36:821-827.
    Liu, Z.J., Cordes, J.F. DNA marker technologies and their applications in aquaculture genetics.Aquaculture,2004,238:1-37.
    Ludwig, A., May, B., et al. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser,Huso and Scaphirhynchus). Genetics,2000,156:1933-1947.
    Ma, C.Y., Cheng, Q.Q., et al. Genetic variation of Coilia ectenes (Clupeiformes: Engraulidae)revealed by the complete cytochrome b sequences of mitochondrial DNA. Journal ofExperimental Marine Biology and Ecology,2010,385:14-19.
    Mamuris, Z., Stamatis, C., Triantaphyllidis, C. Intraspecific genetic variation of striped red mullet(Mullus surmuletus L.) in the Mediterranean Sea assessed by allozyme and random amplifiedpolymorphic DNA (RAPD) analysis. Heredity,1999,83:30-38.
    Maniatis, T., Fritsch, E.F. Sambrook, J. Molecular Cloning: a Laboratory Manual. Cold SpringHarbor Laboratory Press, New York,1982, pp.545.
    Matsuoka, K., Shin, H.H. Environmental changes in the inner part of Ariake Sound, West Japanrecorded in dinoflagellate cyst assemblages. Coastal Environmental and Ecosystem Issues ofthe East China Sea,2010,111-120.
    McDowall, R.M. Anadromy and homing: two lifehistory traits with adaptive synergies insalmonid fishes? Fish and Fisheries,2001,2:78-85.
    McMillan, W.O., Palumbi, S.R., Rapid rate of control-region evolution in Pacific butterflyfishes(Chaetodontidae). Journal of Molecular Evolution,1997,45:473-484.
    Menon, P.M.G. Regeneration of the caudal fin in Coilia reynaldi Cuv.&Val.. The Journal of theRoyal Asiatic Society,1951,16(2):123-1266.
    Merrell, D.J. Ecological Genetics.500pp. Longman, London.
    Merril, C.R., Switzer, R.C., et al. Trace polypeptides in cellular extracts and human body fluiddetected by two-dimensional electrophoresis and a highly sensitive silver stain. Biochemistry,1979,76:4335-4339.
    Meyer, A. Evolution of mitochondrial DNA in fishes. In: Mochachka, P.W., Mommsen, T.P. eds.Biochemistry and Molecular Biology of Fishes. Elsevier, Amsterdam/New York,1993, Vol.2,pp.1-38.
    Michel, C., Hicks, B.J., et al. Distinct migratory and non-migratory ecotypes of an endemic NewZealand eleotrid (Gobiomorphus cotidianus)-implications for incipient speciation in islandfreshwater fish species. BMC Evolutionary Biology,2008,8:49.
    Mikhail, E.M. Observations and Least Squares. IEP-Dun-Donnelly, New York,1976,428pp.
    Miya, M., Nishida, M. Speciation in the Open Sea. Nature,1997,389:803-804.
    Miyamoto, M.M., Cracraft, J. Phylogenetic Analysis of DNA Sequences. Oxford University Press,New York,1991.
    Murdy, E.O., Shibukawa, K. Odontamblyopus rebecca, a new species of amblyopine goby fromVietnam with a key to known species of the genus (Gobiidae: Amblyopinae). Zootaxa,2003,138:1-6.
    Nagaoka, T., Ogihara, Y. Applicability of inter-simple sequence repeat polymorphisms in wheatfor use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and AppliedGenetics,1997,94:597-602.
    Nakada, M., Yonekura, N., Lambeck, K. Late Pleistocene and Holocene sea-level changes inJapan: implications for tectonic histories and mantle rheology. Palaeogeography,Palaeoclimatology, Palaeoeeology,1991,85:107-122.
    Nei, M. Genetic distance between populations. The American Naturalist,1972,106:283-292.
    Nei, M. Molecular Evolutionary Genetics. Columbia University Press, New York,1987.
    Nei, M.1973. Analysis of gene diversity in subdivided populations. Genetics,70:3321-3323.
    Nei, M., Li, W.H. Mathematical model for studying genetic variation in terms of restrictionendonucleases. Proceedings of the National Academy of Sciences,1979,76:5259-5273.
    Nei, M., Kumer, S. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford,2000.
    Nei, M., Maruyama, T., Charaborty, R. The bottleneck effect and genetic variability in populations.Evolution,1975,29,1-10.
    Neigel, J.E., Avise, J.C. Application of a random walk model to geographic distributions of animalmitochondrial DNA variation. Genetics,1993,135:1209-1220.
    Nesb, C.L., Rueness, E.K., et al. Phylogeography and population history of Atlantic mackeral(Scomber scombrus L.): a genealogical approach reveals genetic structuring among theeastern Atlantic stocks. Proceedings of the Royal Society of London, Series B,2000,267:281-292.
    Nielsen, E.E., Hemmer-Hansen, J., et al. Population genomics of marine fishes: identifyingadaptive variation in space and time. Molecular Ecology,2009,18:3128-3150.
    Nylander, J. MrModeltest2.0. Program Distributed by the Author. Sweden: Evolutionary BiologyCentre, Uppsala University,2004.
    Olson, E.C., Miller, R.L. Morphological integration. Univ. Chicago Press,1958,317pp.
    Orloci, L. Multivariate analysis in vegetation research, second ed. The Hague: Dr. W. JunkPublishers,1978.
    Ovenden, J.R., Salini, J., et al. Pronounced genetic population structure in a potentially vagile fishspecies (Pristipomoides multidens, Teleostei; Perciformes; Lutjanidae) from the East Indiestriangle. Molecular Ecology,2004,13:1991-1999.
    Palumbi, S.R. Marine speciation on a small planet. Trends in Ecology and Evolution,1992,7:114-118.
    Palumbi, S.R. Genetic divergence, reproductive isolation, and marine speciation. Annual Reviewof Ecology and Systematics,1994,25:547-572.
    Palumbi, S.R., Grabowsky, G., et al. Speciation and population genetic structure in tropical Pacificsea urchins. Evolution,1997,51:1506-1517.
    Pampoulie, C., Ruzzante, D.E., et al. The genetic structure of Altantic cod (Gadus morhua) aroundIceland: insight from microsatellites, the Pan I locus, and tagging experiments. CanadianJournal of Fisheries and Aquatic Sciences,2006,63:2660-2674.
    Patthy, L. Protein Evolution. Blackwell Science, Malden, MA,1999.
    Peakall, R., Smouse, P.E. GENEALEX6: genetic analysis in excel. Population genetic softwarefor teaching and research. Molecular Ecology Notes,2006,6:288-295.
    Pérrin, C., Wing, S.R., Roy, M.R. Effects of hydrographic barriers on population genetic structureof the sea star Coscinasterias muricata (Echinodermata, Asteroidea) in the New Zealandfiords. Molecular Ecology,2004,13(8):2183-2195.
    Planes, S., Galzin, R., Bonhomme, F. A genetic metapopulation model for reef fishes in oceanicislands: the case of the surgeonfish, Acanthurus triostegus. Journal of Evolutionary Biology,1996,9:103-117.
    Pogson, G.H., Mesa, K.A., Boutilier, R.G. Genetic population structure and gene flow in theAtlantic Cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics,1995,139:375-385.
    Pollar, M., Jaroensutasinee, M., Jaroensutasinee, K. Morphometric Analysis of Tor tambroides byStepwise Discriminant and Neural Network Analysis. Engineering and Technology,2007,33:16-20.
    Posada, D., Crandall, K.A. MODELTEST: testing the model of DNA substitution. Bioinformatics,1998,14,817-818.
    Pritchard, J.K., Stephens, M., Donnelly, P. Inference of population structure using multilocusgenotype data. Genetics,2000,155(2),945-959.
    Qian, W., Ge, S., Hong, D.Y. Genetic variation within and among populations of a wild rice Oryzagranulata from China detected by RAPD and ISSR markers. Theoretical and Applied Genetics,2001,102:440-449.
    Raeymaekers, J.A.M., Maes, G.E., et al. Detecting Holocene divergence in theanadromous–freshwater three-spined stickleback (Gasterosteus aculeatus) system. MolecularEcology,2005,14:1001-1014.
    Ray, N., Currat, M., Excoffier, L. Intra-deme molecular diversity in spatially expandingpopulations. Molecular Biology and Evolution,2003,20:76-86.
    Reynolds, J., Weir, B.S., Cockerham, C.C. Estimation of the coancestry coefficient: Basis for ashort term genetic distance. Genetics,1983,105:767-779.
    Riginos, C., Nachman, M.W. Population subdivision in marine environments: the contributions ofbiogeography, geographical distance and discontinuous habitat to genetic differentiation in ablennioid fish, Axoclinus nigricaudus. Molecular Ecology,2001,10:1439-1453.
    Rocha, L.A., Robertson, D.R., et al. Ecological speciation in tropical reef fishes. Proceedings ofthe Royal Society B,2005,272:573-579.
    Rogers, A.R. Genetic evidence for a Pleistocene population expansion. Evolution,1995,494:608-615.
    Rogers, A.R., Harpending, H. Population growth makes waves in the distribution of pairwisegenetic differences. Molecular Biology and Evolution,1992,9:552-569.
    Rohlf, F.J., Archie, J.W. Least squares mapping using interpoint distances. Ecology,1978,59:126-132.
    Roman, J., Palumbi, S.R. A global invader at home: population structure of the green crab,Carcinus maenas, in Europe. Molecular Ecology,2004,13:2891-2898.
    Ronquist, F., Huelsenbeck, J. MrBayes3: Bayesian phylogenetic inference under mixed models.Bioinformatics,2003,19:1572-1574.
    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation bydistance. Genetics,1997,145:1219-1228.
    Rüber, L., Verheyen, E., Meyer, A. Replicated evolution of trophic specializations in an endemiccichlid fish lineage from Lake Tanganyika. Evolution,1999,96:10230-10235.
    Russell, J.R., Fuller, J.D., et al. Direct comparison of levels of genetic variation among barleyaccessions detected by RFLPs, AFLPs, SSRs and RAPDs, Theoretical and Applied Genetics,1997,95,714-722.
    Ruzzante, D.E, Taggart, C.T., Cook, D. A nuclear DNA basis for shelf-and bank-scale populationstructure in NW Atlantic cod (Gadus morhua): Labrador to Georges Bank. Molecular Ecology,1998,7:1663-1680.
    Sagarin, R.D., Gaines, S.D., Gaylord, B. Moving beyond assumptions to understand abundancedistributions across the ranges of species. Trends in Ecology and Evolution,2006,21:524-530.
    Saitou, N., Nei, M. The neighbour-joining method: a new method for reconstructing phylogenetictrees. Molecular Biology and Evolution,1987,6:514-525.
    Sang, T., Chang, H., et al. Population structure of the Japanese eel, Anguilla japonica. MolecularBiology and Evolution,1994,11:250-260.
    Sato, A., Takezaki, N., et al. Origin and speciation of Haplochromine fishes in East African craterlakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Molecular Biologyand Evolution,2003,20(9):1448-1462.
    Sato, M. Life in the Ariake Sea: biodiversity in tidal flats and estuaries. Kaiyusya, Tokyo,2000.
    Sato, S. Temporal changes of bivalves and gastropods in Isahaya bay shut off from Ariake Sea,western Kyushu, Japan. Quat. Res.(Tokyo),2001,40:85-95(in Japanese).
    Santos, S., Hrbek, T., et al. Population genetic structuring of the king weakfish, Macrodonancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergencewithout morphological change. Molecular Ecology,2006,15:4361-4373.
    Savolainen, P., Zhang, Y.P., et al. Genetic evidence for an East Asian origin of domestic dogs.Science,2002,298:1610-1613.
    Schaeffer, B. Practical aspects of homology recognition. In: Masterton, R.B., Hodos, W., Jerison,H. eds. Evolution, Brain, and Behavior. Erlbaum Associates, Hillsdale, New Jersey:1976,312pp.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends.Frontiers in Zoology,2007,4:11.
    Schneider, S., Excoffier, L. Estimation of past demographic parameters from the distribution ofpairwise differences when the mutation rates vary among sites: application to humanmitochondrial DNA. Genetics,1999,152:1079-1089.
    Sch nhuth, S., Doadrio, I., et al. Molecular evolution of southern North American Cyprinidae(Actinopterygii), with the description of the new genus Tampichthys from central Mexico.Molecular Phylogenetics and Evolution,2008,47:729-756.
    Shaw, P.W., Arkhipkin, A.I., Al-Khairulla, H. Genetic structuring of Patagonian toothfishpopulations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deepwater troughs as barriers to genetic exchange. Molecular Ecology,2004,13:3293-3303.
    Shaw, P.W., Pierce, G.J., Boyle, P.R. et al. Subtle population structuring within a highly vagilemarine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNAmarkers. Molecular Ecology,1999,8:407-417.
    Shedlock, A.M., Parker, J.D., et al. Evolution of the salmonid mitochondrial control region.Molecular Phylogenetics and Evolution,1992,1:179-192.
    Shen, K.N., Jamandre B. W., et al. Plio-Pleistocene sea level and temperature fluctuations in thenorthwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugilcephalus. BMC Evolutionary Biology,2011,11:83.
    Shikano, T., Shimada, Y., et al. History vs. habitat type: explaining the genetic structure ofEuropean nine-spined stickleback (Pungitius pungitius) populations. Molecular Ecology,2010,19:1147-1161.
    Shimoyama, S., Kosugi, M., et al. Integral analysis for the paleoenvironment of the coastallowland around the innermost Ariake Bay, West Japan. Kanto Heiya,1996,4:53-76(inJapanese).
    Shulman, M.J., Bermingham, E. Early life histories, ocean currents, and the population genetics ofCaribbean reef fish. Evolution,1995,49:897-910.
    Skalak, R., Dasgupta, M., et al. Analytical description of growth. Journal of Theoretical Biology,1982,94:555-577.
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science,1987,236:787-792.
    Slatkin, M. Inbreeding coefficients and coalescence times. Genetics Research,1991,58:167-175.
    Slatkin, M. Isolation by distance in equilibrium and nonequilibrium populations. Evolution,1993,47:264-279.
    Slatkin, M., Hudson, R.H. Pairwise comparisons of mitochondrial DNA sequences in stable andexponentially growing populations. Genetics,1991,129:555-562.
    Sotka, E.E., Wares, J.P., et al. Strong genetic clines and geographical variation in gene flow in therocky intertidal barnacle Balanus glandula. Molecular Ecology,2004,13:2143-2156.
    Stepien, C.A., Rosenblatt, R.H. Patterns of gene flow and genetic divergence in the northeasternPacific Clinidae (Teleostei: Blennioidei), based on allozyme and morphological data. Copeia,1991,4:873-896.
    Strathmann, R.R., Hughes, T.P., et al. Evolution of local recruitment and its consequences formarine populations. Bulletin of Marine Science,2002,70: S377-S396.
    Strauss, R.E., Bookstein, F.L. The truss: body form reconstructions in morphometrics. SystematicZoology,1982,31(2):113-135.
    Sturmbauer, C., Baric, S. et al. Lake level fluctuations synchronize genetic divergences of cichlidfishes in African lakes. Molecular Biology and Evolution,2001,18:144-154.
    Sullivan, J.P., Lavoué, S., et al. AFLPs resolve phylogeny and reveal mitochondrial introgressionwithin a species flock of African electric fish (Mormyroidea: Teleostei). Evolution,2004,58(4):825-841.
    Swofford, D. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version4.Sunderland, MA: Sinauer Associates,2002.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585-595.
    Takahashi, R., Watanabe, K., et al. Evolution of feeding specialization in Tanganyikan scale-eatingcichlids: a molecular phylogenetic approach. BMC Evolution Biology,2007,7:195.
    Takezaki, N., Nei, M., Tamura, K. POPTREE2: software for constructing population trees fromallele frequency data and computing other population statistics with windows interface.Molecular Biology and Evolution,2009,27(4):747-752.
    Takita, T. The spawning and the early life history of the Engraulid fish Coilia sp. distributed inAriake Sound. Bull. Fac. Fish. Nagasaki Univ.,1967,23:107-122.
    Takita, T. Identification of a species of Coilia (Engraulidae) distributed in Ariake Sound. JapaneseJournal of Ichthyology,1978,25(3):223-226.
    Tamaki, K., Honza, E. Global tectonics and formation of marginal basins: role of the westernPacific. Episodes,1991,14:224-230.
    Tamura, K., Nei, M. Estimation of the number of nucleotide substitutions in the control region ofmitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution,1993,10:512-526.
    Tang, W., Lshimatsu, A, et al. Cryptic species and historical biogeography of eel gobies(Gobioidei: Odontamblyopus) along the northwestern Pacific coast. Zoological Science,2010,27(1):8-13
    Techaprasan, J., Klinbunga, S., Jenjittikul, T. Genetic relationships and species authentication ofBoesenbergia (Zingiberaceae) in Thailand based on AFLP and SSCP analyses. BiochemicalSystematics and Ecology,2008,36:408-416.
    Templeton, A.R., Routman, E., Phillips, C.A. Separating population structure from populationhistory: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypesin tiger salamander, Ambystom tigrinum. Genetics,1995,140:767-782.
    Thompson, J., Gibson, T., et al. Clustal_X windows interface: flexible strategies for multiplesequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,22:4876-4882.
    Tonteri, A., Veselov, A.J., et al. The effect of migratory behaviour on genetic diversity andpopulation divergence: a comparison of anadromous and freshwater Atlantic salmon Salmosalar. Journal of Fish Biology,2007,70(Suppl. C):381-398.
    Utter, F.M. Biochemical genetics and fishery management: an historical perspective. Journalof Fish Biology,1991,39,1-20.
    Vergara-Chen, C., González-Wangüemert M., et al. High gene flow promotes the genetichomogeneity of the fish goby Pomatoschistus marmoratus (Risso,1810) from Mar Menorcoastal lagoon and adjacent marine waters (Spain). Marine Ecology,2010,31:270-275.
    Voris, H.K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and timedurations. Journal of Biogeography,2000,27:1153-1167.
    Vos, P., Hogers, R., et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23:4407-4414.
    Vucetich, J.A., Waite, T.A. Spatial patterns of demography and genetic processes across thespecies’ range: null hypotheses for landscape conservation genetics. Conservation Genetics,2003,4:639-645.
    Wang, P.X. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic andsedimentological features. Marine Geology,1999,156:5-39.
    Wang, Z.Y., Tsoi, K.H., Chu, K.H. Applications of AFLP technology in genetic and phylogeneticanalysis of penaeid shrimp. Biochemical Systematics and Ecology,2004,32:399-407.
    Waples, R.S. Separating wheat from the chaff: patterns of genetic differentiation in high gene flowspecies. Journal of Heredity,1998,89(5):438-450.
    Ward, R.D., Woodwark, M., Skibinski, D.O.F. A comparison of genetic diversity levels in marine,freshwater, and anadromous fishes. Journal of Fish Biology,1994,44:213-232.
    Waters, J.M., Dijkstra, L.H. Wallis, G.P. Biogeography of a southern hemisphere freshwater fish:how important is marine dispersal? Molecular Ecology,2000,9:1815-1821.
    Webb, S.A., Graves, J.A., et al. Molecular phylogeny of the livebearing Goodeidae(Cyprinodontiformes). Molecular Phylogenetics and Evolution,2004,30(3):527-544.
    Weir, B.S., Cockerham, C.C. Estimating F-statistics for the analysis of population structure.Evolution,1984,38:1358-1370.
    Whitehead, P.J.P. FAO Species Catalogue. Vol.7. Clupeoid Fishes of the World (SuborderClupeoidei). Part1: Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis,1985,125:305-579.
    Whitehead, P.J.P, Nelson, G.J., Wongratana, T. FAO Species Catalogue. Vol.7. Clupeoid Fishes ofthe World (Suborder Clupeoidei). Part2: Engraulididae. FAO Fisheries Synopsis,1988,125:305-579.
    Winans, G.A. Geographic variation in the milkfish Chanos chanos. I. Biochemical evidence.Evolution,1980,34:558-574.
    Wirth, T., Bernatchez, L. Genetic evidence against panmixia in the European eel. Nature,2001,409:1037-1040.
    Wongratana, T. Systematics of Clupeoid Fishes of the Indo-Pacific Region. Ph.D. thesis, Facultyof Science, University of London,1980,432p.
    W rheide, G., Epp, L.S., Macis, L. Deep genetic divergences among Indo-Pacific populations ofthe coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both?BMC Evolutionary Biology,2008,8:24.
    Wright, S. Evolution in Mendelian populations. Genetics,1931,16:97-159.
    Wright, S. Isolation by distance. Genetics,1943,28:114-138.
    Wright, S. The genetical structure of populations.Annals of Eugenics,1951,15:323-354.
    Wright, S. The interpretation of multivariate systems. P.11-33. In: Kempthorne, O. Bancroft, T.A.,Gowen, J.W. and Lush J.L. eds. Statistics and Mathematics in Biology. Iowa State CollegePress, Ames,1954,328pp.
    Xia, X., Xie, Z. DAMBE: Software Package for Data Analysis in Molecular Biology andEvolution. The Journal of Heredity,2001,92(4):371-373.
    Xiao, Y., Zhang, Y., et al. Population genetic structure of the point-head flounder, Cleisthenesherzensteini, in the Northwestern Pacific. Genetica,2011,139(2):187-198.
    Xu, X., Oda, M. Surface-water evolution of the eastern East China Sea during the last36,000years. Marine Geology,1999,156:285-304.
    Yang, Q.L., Han, Z.Q., et al. Genetics and phylogeny of genus Coilia in China based on AFLPmarkers. Chinese Journal of Oceanology and Limnology,2010,28(4):795-801.
    Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood.Bioinformatics,1997,13(5):555-556.
    Ying, Y., Chen, Y. et al. Risks of ignoring fish population spatial structure in fisheries management.Canadian Journal of Fisheries and Aquatic Sciences,2011,68:2101-2120.
    Yokogawa, K. Morphological and genetic differences between Japanese and Chinese red ark shellScapharca broughtonii. Fisheries Science,1997,63:332-337.
    Yokogawa, K., Seki, S. Morphological and genetic differences between Japanese and Chinese seabass of the genus Lateolabrax. Japanese Journal of Ichthyology,1995,41:437-445.
    York, K.L., Blacket, M.J., Appleton, B.R. The Bassian Isthmus and the major ocean currents ofsoutheast Australia influence the phylogeography and population structure of a southernAustralian intertidal barnacle Catomerus polymerus (Darwin). Molecular Ecology,2008,17:1948-1961.
    Zardoya, R., Castilho, R., et al. Differential population structuring of two closely related fishspecies, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in theMediterranean Sea. Molecular Ecology,2004,13:1785-1798.
    Zattara, E.E., Premoli A.C. Genetic structuring in Andean landlocked populations of Galaxiasmaculatus: effects of biogeographic history. Journal of Biogeography,2005,32:5-14
    Zhang, J.B., Huang, L.M., Huo, H.Q. Larval identification of Lutjanus Bloch in Nansha coralreefs by AFLP molecular method. Journal of Experimental Marine Biology and Ecology,2004,298:3-20.
    Zhang, Y.P., Ryder, O.A. Different rates of mitochondrial DNA sequence evolution in Kirk’sdik-dik (Madoqua kirkii) populations. Molecular Phylogenetics and Evolution,1995,4:291-297.
    Zhao, L., Zhang, J., et al. Complex population genetic and demographic history of the Salangid,Neosalanx taihuensis, based on cytochrome b sequences. BMC Evolutionary Biology2008,8:201.
    Zhu, D., Jamieson, B.G.M., et al. Sequence evolution and phylogenetic signal in control-regionand cytochrome b sequences of rainbow fishes (Melanotaenidae). Molecular Biology andEvolution,1994,11:672-683.
    Zietkiewicz, E., Rafalski, A., Labuda, D., Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700