用户名: 密码: 验证码:
稀脉萍(Lemna aequinoctialis)和紫萍(Spirodela polyrrhiza)的重金属生态毒理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态毒理学是上世纪80年代前后才形成的新学科,许多方面尚处于完善过程中,而在我国,生态毒理学研究还属于刚起步,相对于其它研究显得尤为薄弱。加强这方面的研究不仅可以促使我国在该学科的上的进步,而且在促进我国经济发展模式向可持续发展转变上有积极的推动作用。
     生态毒理学是建立在生态学基础的毒理学,着重研究研究外源化学物质,尤其是有毒化学品对生态系统结构和功能的危害作用及生态系统所发生的反应,也探索这些物质在生态系统中的迁移转化规律。同时,还为有毒物质污染环境的生态(生物)恢复、生态风险评价提供技术支持和理论指导。其中,重金属作为一类特殊的有毒物质受到生态毒理学研究者的特别关注。生态毒理学给毒理学研究带来了深刻的变革,也改变了许多环境技术的发展方向。
     重金属对植物的生态效应是多方面的,既有个体水平上的,也有更高水平上的,如种群水平和群落水平上的,既有生理生化方面的,也有遗传演化方面的,但植物也能够产生多种耐性机制以减轻重金属的毒害效应,如产生胁迫蛋白、胁迫乙烯,启动抗氧化保护系统,合成金属硫蛋白、植物螯合素,产生应激乙烯,增加排除量,将重金属集中于局部部位并隔离起来等。理解重金属的毒性及其产生机制,了解植物对胁迫的反应,既可以增加我们对重金属的生态效应的认识,还能够帮助我们更深入地了解重金属的不良的生态学效应,促使我们更加合理地使用重金属,以尽量减轻重金属对生态系统的不利影响。
     各种化学品,特别是像重金属及其制品、农药、除草剂之类的有毒化学物质对生态系统的结构和功能有很大的危害性,对这种危害性进行评价是进行有毒化学品科学管理的基础,也是保护环境,维护生态安全的有效手段。发达国家不仅有成熟的标准评价方法,而且有相应的法规保证。我国在这方面还比较落后,但严峻的环境形势迫使我们必须加快研究步伐,尤其是应该将国外成熟的评价方法能尽快本土化,以便为加强有毒化学品管理的立法、执法和科学管理提供科学依据。国外在使用维管束植物进行毒性评价时,浮萍属的植物是其中研究和应用最多的,加快本土化的步伐会对保护我国的环境产生积极影响。
     本论文利用我国浮萍科植物中分布最广的两个种类作为测试材料,从几个方面对自然
    
    来源的稀脉萍(L。。na aoquj,] ocrj;/js)和紫萍(sPjrod。/刀夕01少r厂hiz召)的重金属生
     态毒理学进行了较全面的研究,其目的是建立以本土浮萍种类为标准植物毒性m.J试材料的
     国家标准方法,发挥浮萍在水体污染植物修复中的作用.在研究中有新的发现,并探讨了
    其机理.研究结果不仅增加了人们对重金属毒性效应的认识,也可以为建立我国利用本土
    浮萍属植物进行有毒有害物质的植物毒性评价的标准方法,充分发挥其在重金属污染的生
    态恢复中的作用提供科学依据.主要工作如下:
    1.在实验中研究7重金属锡(Cd)、铜(Cu)、锌(Zn)、镍(Ni)、汞(Hg)、铬(Cr)胁
     迫对自然来源的稀脉萍(L.刁四u,’刀octf召1j’s)和锡(cd)胁迫对自然来源的紫萍(s.
     Po了厂rh,’z刀)的效应,发现它们能够产生使这两种浮萍的子体与母体提前分离,致使
     群体发生解体的效应,也发现锡和铜的这种效应非常灵敏,并呈现明显的时间和浓度
     依赖关系,其它四种金属的这种效应要低于铜和锡,时间和浓度依赖关系也比较弱.
     并且,对稀脉萍,这种效应在最快时暴露于锡或铜处理下2一3个小时就可达到显著水
     平,2礴小时即可完成,而对紫萍需要30小时才脆达到显著水平,72小时才基本完成。
     同时还证明铅(Pb)对自然来源的稀脉萍(乙.五时ul’肋cti左l,’,.)不产生这种效应。分
     析了过去的研究没有报道这种现象的原因可能是因为他们使用的材料多是经过特殊筛
     选的浮萍的特殊品系,遗传多样性水平大大降低,已经丢失了产生这种反应的敏感株
     系,或者是他们忽略了这种反应,也可能是由浮萍的地理差异导致的遗传上的原因.
     认为能够形成浓度依赖和时间依赖关系也是由于自然来源的稀脉萍的遗传多样性较高
     的缘故,使得敏感个体和杭性个体构成正态分布,是形成时间一浓度一效应关系的基础.
     并推测两种浮萍对重金属的这种反应对植物适应环境变化有一定价值,也可以作为重
     金属植物毒性评价的生物标记。重金属锅过量会对植物的生存形成多种胁迫效应,如
     生长率的下降,光合作用效率降低,呼吸强度增加等,但它们能够促使稀脉萍和紫萍
     群体发生解体的现象尚未见文献报道。
    2.以铜、锡的胁迫效应为例,进一步研究了重金属产生的这种效应的机制,并测定了锅
     胁迫下紫萍的一些生理生化指标的变化,较全面地了解了锅对紫萍的毒性效应。气相
     色谱分析表明,在胁迫培养过程中,乙烯的产生量有很大增加,远远超过正常生长时
     的产生量.说明在它们的胁迫下,有胁迫乙烯产生.根据已有的对其它植物进行研究
     II
    
    的报道,锅、铜胁迫能够刺激这些植物产生胁迫乙烯,并结合乙烯在植物体内具有的
    能够加快衰老、促进脱叶的生理学作用,推侧?
Ecotoxicology is a newsubjecl just founded in about 1980 and is developing rapidlyOver the past two decades, ecotoxicology has experienced a rapid progress,thus it has become to be very important in protecting ecological safety from toxic contaminants. In our country, however, ecotoxicology is in its babyhood, to which we do not know very clear in many aspects. Enhancing the research in this field not only can faditate the advancement of this new subject in our country, but also greatly hasten the conversion of the economic pattern of our country into sustainable development.
    Based on ecology, ecotoxicology is to study the hazardous influences of contaminants, especially, toxic chemicals on the structure and functions of ecosystem, the response of ecosystems to them, and the pathways of the toxicants moving, transforming and decomposing in the surrounding. Also, acotoxicology provides the technological base and tboretic steering for the ecological remediation of contaminated environment and ecological risk assessment. Of the toxic chemicals, heavy metals are given special attention by ecotocicological researchers because they are important inorganic poIlutantsEcotoxicology brought a profound revolution in toxicology, and led a change of the direction of the advance ofome environmentaltechniques.
    Heavy metals have lots of effects on the plants, not only on the individuals, and on the populations and the comnunities in higher levels, but also in physiological and biochemical aspects and in genetics and evolution, e.g. in physiology, depressing the activity of some enzymes, initiating a few free radicals, reducing the growth of plants, degrading chlorophyll, inhibiting the elongation of the root and so on. But, the plant also develops plenty of mechanisms to resist the toxicities of heavy metals, such as stimulating stress proteins and stress ethylene production, activating antioxidant system to eliminate the fe radicals, synthesizing metallothioneins-like and phytochelatins, excluding more metals and accumulating and compartmentalizing in some organs. To understand the toxicity and mechanisms underlying of the heavy metals can increase our knowledge about thai ecological effects, and facilitate us to know their hazardous ecological effects more clear, which would urge us to use them
    more availably and rationally so that their negative effects could be alleviated as possible.
    Various chemicals, especially toxc chemicals, such as heavy metals or heavy metals-contained, insecticide, herbicide and so on, have great toxic effects orthe structure and functions ofinosphere. To assess their toxicity, including phytotoxicity, is the basis of scientific management fa them, and is profound to protect environmental quality and ecological safety.
    
    
    
    Developed countries not only have weHestablished standard method to process the toxicity evaluation of toxicants, but also many related laws and rules for it. Our country drps greatly behind them in this aspect. However, the environmental status of our country has been so severe that we have to enhance the research in this field. It should be a short way to study the feasibility of using indigene organisms in assessing the taicity of pollutants based on using the established standard method. Management for reference, legislation and executing the law of toxic chemicals could be on the scientific basis when standard toxicity assessment method of our country is established. By far, the most commonly used vascular plants in toxicity tests are duckweeds, members of Lemanaceae.
    This thesis conducted a completely ecotoxicological studyon the effects of heavy metals on two duckweed species, most common in our country,recollected from natural populations instead of from special strains selected in laboratory with axentic conditionsThe objects are to provide an available autochthonous model testing material for phytotoxicity assessment ofiiic chemicals in our country, an excellent plant material for phytoremediation of cadmimpolluted water. In
引文
[1].张毓琪,陈叙龙.环境生物毒理学。天津:天津大学出版社。1993。
    [2].熊治廷。环境生物学。武汉:武汉大学出版社。2000。
    [3].李汉卿,谢文焕,傅纯彦等。环境污染与生物。哈尔滨:黑龙江科学技术出版社。1985。
    [4].孔繁翔,尹大强,严国安。环境生物学。北京:高等教育出版社。2000。
    [5].孟紫强。环境毒理学。北京:中国环境科学技术出版社。2000。
    [6].孙铁珩,周启星,李培军。污染生态学。北京:科学出版社。2001。
    [7].王焕校。污染生态学。北京:高等教育出版社。2000。
    [8].黄玉瑶。内陆水域污染生态学—原理与应用。北京:科学出版社。2001。
    [9]. Newman, M.C. Fundamentals of ecotoxicology. Sleeping Bear Press, Chelsea, 1998.
    [10]. Wind, A. 1998. Conditions and plant growth. (11th ed.). The Bath Press, Avon.
    [11]. Verkleij, J.A.C., Schat, H. 1990. Mechanisms of metal tolerance in higher plants. In: Shaw, J.(ed), Heavy Metal Tolerance in Plans: Evolutionary Aspects. p179~193. CRC Press, Boca Raton, F1
    [12]. Xu, E.M. 2001. Statns of agricnltural products contaminated by heavy metals and control technology in China. In: Environment Problems and Strategy in Agriculture. p44~46. Chinese Agriculture Press, Beijing.
    [13].《中国环境年鉴》编辑委员会编。1993年中国环境状况公报。中国环境年鉴。1994,79-84。
    [14].周锡爵。张士灌区镉污染及其解决和利用的途径。农业环境保护,1987,6(2):17-19.
    [15].刘立群。赣南土壤污染的防治途径。资源开发与保护,1990,6(2):100-102.
    [16].王常任等。青岛市农业环境问题与治理对策的探讨。国外农业环境保护,1993,3:32-34.
    [17].秦淑琴。治理土壤重金属污染方法概述。新疆环境保护,1998,20(1):19-23.
    [18].岛崎和夫,孙米敏(译)。日本农田的土壤污染现状与对策。国外农业保护,1990,2:33—34。
    [19].张立成,董文江,赵桂久等。水口山矿区康家溪河流沉积物中金属的形态及其地球化学特征。见:环境中重金属研究文集。《环境中重金属研究文集》编辑组。北京:科学出版社。1988。p152-160。
    [20].Kabata-Pendias, A., Pendias, H. Trace Elements In Soils and Plants. CRC Press, 1984. p1-123.
    [21].弗斯特纳,U., 雏持曼,G.T.W.水环境的重金属。北京:海洋出版社。1988,p294.
    [22].李春兰,徐谦。北京土壤不同历史时期汞元素背景水平值及其污染历史。中国环境科学。1987,7(1):35-37。
    [23]. Jones, K.C. Contamination trends in soils and crops. Environ. Pollut. 1991, 69:311-325.
    
    
    [24].许嘉琳,杨居荣。陆地生态系统中的重金属。北京:中国环境科学出版社。1995.
    [25].廖自基。环境中微量重金属元素的污染危害与迁移转化。北京:科学出版社。p20-22.1989。
    [26].张立成,章申等。水环境化学元素研究。北京:中国环境科学出版社。1996。
    [27].章申,张立成,田笠卿等。化学元素水环境背景值研究。北京:测绘出版社。1990。
    [28].唐以剑,杨惟礼,王同山等。京津唐地区河水与沉积物中重金属元素的背景值。见:环境中重金属研究文集。《环境中重金属研究文集》编辑组。北京:科学出版社。1988。p122-1287。
    [29].王云等。土壤环境元素化学。北京:中国环境科学技术出版社。1995。
    [30].贾琇,李勤奋。上海市地下水中重金属研究。见:环境中重金属研究文集,《环境中重金属研究文集》编辑组。北京:科学出版社。p209-218。
    [31].汪安璞,黄衍初,杨淑兰等。北京大气中的重金属。见:环境中重金属研究文集。《环境中重金属研究文集》编辑组。北京:科学出版社。1988。p8-13。
    [32]. Tersier, A., Campbell, W.G., Baisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 1979, 51(7):844-850.
    [33].黄铭洪。环境污染与生态恢复。北京:科学出版社。2003。
    [34].许嘉琳,Thonlton,I.1988.砷与几种重金属在地球化学异常区内土壤-作物系统中的迁移特征.见:环境中重金属研究文集。《环境中重金属研究文集》编辑组。北京:科学出版社。p80-88。
    [35]. Campbell, P.G.C. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier, A., Turner, D.R. (eds.). Metal Speciation and Bioavailability in Aquatic Systems. Wiley, New York. 1995.
    [36]. Foy, C.D., Chancy, R.L., White, M.C. The physiology of metal toxicity in plants. Ann. Rev. plant physiol. 1978, 29: 511-566.
    [37]. Woolhouse, H.W. Toxicity and tolerance in the responses of plants to metals. In: Lange, O,L., Nobel, P.S., Osmond, C,B., Ziegler, H.(eds.). Encyclopedia of Plant Physiology. New Series, Vol.12C. Springer-Verlag, Berlin 1983. p245-300.
    [38].杨树华,曲仲湘,王焕校。铅在水稻中的迁移和累积及其对生长的影响。生态学报,1986,6(4):312-322。
    [39].莫文红,李懋学。镉离子对蚕豆根尖细胞分裂的影响。植物学通报,1992,9(3):30-34。
    [40]. Moral, R., Gomez, I., et al. Effect of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture. J. Plant Nutri. 1994,17(6): 953-962.
    [41]. Haghiri, F. Cadmium uptake of plant. J. Environ. Qual. 1973, 2: 93-96.
    [42]. Root, R.A., Miller, R. J., Koeppe, D.E. Uptake of cadmium -its toxicity and effect on the iron-to-zinc ratio in hydroponically grown corn. J. Environ. Qual. 1975,
    
    4:473-476.
    [43]. Kennedy, C.D., Gonsalves, F.A.N. The action of divalent Zn, Cd, Hg. Cu, Pb on the transroot potential and H~+ efflux of excised root. J. Exp. Bot. 1987, 38:800-817.
    [44].顾宗濂,谢思琴,吴留松等。土壤中镉、砷、铅的微生物效应及其临界值。土壤学报,1987,24:319-324。
    [45].顾宗濂,吴留松,谢思琴。黄棕壤添加重金属的毒性评价及其临界浓度的确定。土壤学报,1992,29:158-167。
    [46].和文祥,陈惠明,冯贵颖等。汞、铬、砷元素污染土壤的酶监测研究。环境科学学报,2000,20(3):338-343。
    [47].谢思琴,顾宗濂,吴留松。砷、镉、铅对土壤酶活性的影响。环境科学,1987,8(1):19-23。
    [48].王焕校。污染生态学基础。昆明:云南大学出版社。1990。
    [49].杨居荣,久保井。Cd、Cu抗性细胞株的增长及元素吸收特性。应用生态学报,1992,3(3):273-279。
    [50]. Das, P., Samantaray, S., Rout, G.R. Studies on cadmium toxicity in plants: a review. Environ. Pollut. 1997, 98:29-36.
    [51].黄岚。化学添加剂对铜污染土壤植物修复的强化效应的研究。武汉大学硕士论文。2002。
    [52].龚平,李培军,孙铁珩。Cd、Zn、菲和多效唑复合污染土壤的微生物生态毒理效应。中国环境科学,1997,17(1):58-62。
    [53].孔祥生,张妙霞,郭秀璞。Cd~(2+)毒害对玉米幼苗细胞膜透性及保护酶活性的影响。农业环境保护,1999,18(3):133-134。
    [54].张志杰,吕秋芬,方芳。汞对小麦某些生理指标的影响。1990,农业环境保护,9(4):27-39。
    [55]. Cedeno-Maldonado, A. The copper ion as an inhibitor of photosynthesis of electron transport in isolated chloroplast. Plant Pysiol. 1972, 50:698-701.
    [56].杨丹慧,许春辉等。镉离子对菠菜叶绿体光系统Ⅱ的影响。植物学报,1989,31(9):702-707。
    [57].杨丹慧,许春辉,王可玢等。镉离子对菠菜叶绿素蛋白复合物激发能分配的影响。植物学报,1990,32(3):198-204。
    [58].杨丹慧。重金属离子对高等植物光合膜结构和功能的影响。植物学通报,1991,8(3):26-29.
    [59]. Balsberg Pàhlsson, A.-M. 1989. Toxiixty of heavy metals (Zn, Cu, Cd, Pb) to vascular plants (A literature review). Wat. Air, Soil Pollut. 287-319.
    
    
    [60]. Fernandes, J.C., Henriques, F.S. 1991. Biochemical, physiological, and structural effects of excess copper in plants. Biotan, Rev. 57(3): 246-273.
    [61].彭鸣,王焕校,吴玉树。镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构变化。中国环境科学,1991,11(6)::426-431.
    [62].周易勇,刘同仇,邓波儿。六价铬污染对红菜苔产量、品质、养分吸收及叶片酶活性的影响。农业环境保护,1990,9(3):25-26。
    [63]. Morris, H.E. Injury to growing crops caused by the application of arsenical compound to the soil. J. Agr. Res. 1927, 34: 59-78.
    [64]. Mukherji, S., Roy, B.K. Characterization of chromium toxicity in different plant materials. India J. EXp. Biol. 1978, 16: 1017-1019.
    [65].张云荪,王焕校.种子申Cd的累积对蚕豆质量的影响。环境科学学报,1986,6(2):199-205。
    [66].刘海亮,崔世民,李强等。Cd对作物种子萌发、幼苗生长及氧化酶同工酶的影响。环境科学,1991,12(6):29-31。
    [67].吴家燕,夏增禄,巴音等。土壤重金属污染的酶学诊断:紫色土Cd、Cu、Pb和As对水稻根系脱氢酶的影响。应用生态学报,1991,2(1):58-62。
    [68].周鸿,刘成远。玉米根对Pb的吸收途径及有关的两种酶活性变化初探。环境科学学报,1986,6(1):67-71。
    [69].郑玉瑛。汞对小麦的影响。农业环境保护,1985,4(5):17-19。
    [70].张志杰,吕秋芬,方芳。汞对小麦幼苗生长发育和生理功能的影响。环境科学。1989,10(4):10-13。
    [71].张春龙,何增耀,叶兆杰。铬对大豆结瘤和固氮酶活性的影响。中国环境科学,1988,8(3):41-44。
    [72].罗立新,孙铁珩,靳月华.镉胁迫下小麦叶中超氧阴离子自由基地积累。环境科学学报,1998,18(5):495-499。
    [73].段昌群,王焕校。Pb~(2+)、Cd~(2+)、Hg~(2+)对蚕豆(Vicia fabd L.)乳酸脱氫酶的影响。生态学报,]998,18(4):413-417。
    [74].段昌群,王焕校,曲仲湘。重金属对蚕豆(gicia faba)根尖的核酸含量及核酸酶活性的影响研究。环境科学,1992,13(5):31-35。
    [75].常学秀,王焕校.Cd~(2+)、Al~(3+)对蚕豆(Vicia faba L.)DNA合成及修复的影响。生态学报,1999,16(6):855-859。
    [76].施农农,陈志伟,贾秀英。镉胁迫下水稻种子的萌芽生长及体内水解酶的活性变化 [J]。农业环境保护,1999,18(5):213-216。
    [77].吕朝晖,王焕校。镉、铅对小麦醇脫氢酶(ADH)基因表达影响的初步研究。环境科学学
    
    报,1998,18(5):503-505。
    [78]. Coombes, A.J., Effect of copper on IAA-oxidase activity in root tissue of barley. Pflanzenphysiol. 1976, 80: 236-242.
    [79].季玉鸣,李振国等。镉引起小麦逆境乙烯的产生及其和镉的吸收、分布的关系。植物生理学报,1989,15(2):159-166。
    [80].罗立新,孙铁珩,靳月华。镉胁迫对小麦叶片细胞膜脂过氧化的影响。中国环境科学,1998,18(1):72-75。
    [81].周建华,王永锐。硅营养缓解水稻幼苗Cd、Cf毒害的生理研究.应用与环境生物学报,1999,5(1):11-15。
    [82].马成仓,李清芳。Ca~(2+)对汞毒害下的小麦种子萌发代谢的影响。农业环境保护,2000,19(3):173-175。
    [83]. Lamoreaux, R.J., Chaney, W.R. Grow and water movement in silver maple seedling affected by cadmium. J. Environ. Oual. 1977, 6: 201-205.
    [84]. Goldbold, D.L., Huttermann, A. Effect of zinc, cadmium and mercury on root elongation of P. abies (Karst.) seedlings and the significance of these metals to forest die-back. Environ. Pollut. 1985, 38: 375-381.
    [85].黄正,Sakadevan, K., Bavor, J. Cd~(2+)、Cu~(2+)、Zn~(2+)对人工湿地反硝化作用的影响。环境科学,2000,21(4):110-112。
    [86]. Schulze, H., Brand, J.J. Lead toxicity and phosphate deficiency in Chlamydomonas. Plant Physiol. 62: 721-730.
    [87].陈国祥,施国新,何兵等。Hg、Cd对莼菜越冬芽光合膜化学活性及多肽组分的影响。环境科学学报,1999,19(5):521-525。
    [88].孙赛初,王焕校,李启任。水生维管束植物受镉污染后的生理变化及受害机制初探。植物生理学报,1985,11(2):113-121。
    [89]. Branquinho, C.Brown, D.H., Catarino, F. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ. Experi. Botan. 1997,38:165-179.
    [90]. Maksymiec, W. Effect of copper on cellular processes in higher plants. Phytosysthetica. 1997, 34(3): 321-342.
    [91].徐楠,施国新,杜开和等。Hg、Cd及其复合污染对浮萍叶片的毒害研究。南京师大学报,2002,25(3):109-115。
    [92].林舜华,黄银晓,韩荣庄等。木本植物气孔对不同污染类型的反应。植物生态学与地植物学报,1986,10(3):208-216。
    [93].文传浩,常学秀,王震洪等。不同重金属污染经历下曼佗罗(Datura stramonium)核酸代谢动态变化研究。农业环境保护,1999,18(2):49-53。
    
    
    [94].陈愚,任久长,蔡晓明。镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响。环境科学学报。1998,18(3):313-317。
    [95].吴建新,丁小余,罗玉明等。黄丝草镉污染毒害及硒的缓解作用。中国环境科学,2003,23(2):180-183。
    [96].文传浩,段昌群,常学秀等。重金属污染下曼陀罗种群分化的RAPD分析。生态学报,2001,21(8):1239-1245。
    [97].文传浩,常学秀,段昌群等。不同重金属污染历史条件下曼陀罗种群核酸代谢变化研究。农业环境保护,1999,18(2):49-52。
    [98].章金鸿,李玫,潘南明。深圳福田红树林对重金属Cu、Pb、Zn、Cd的吸收累积与循环。云南环境科学,2000,19(增刊):53-56。
    [99].郑文教,郑逢中,连玉武等。九龙江口秋茄红树林镉铬镍元素的累积与动态。环境科学学报,1996,16(2):233-237.
    [100].杨盛昌,吴琦。Cd对桐花树幼苗生长及某些生理特性的影响。海洋环境科学,2003,22(1):38-42。
    [101].缪绅裕,陈桂株。模拟秋茄湿地系统中Pb的分配与迁移。中国环境科学,1998,18(1):48-51。
    [102].施国新,解凯彬,杜开和等。Cr~(6+)、As~(3+)污染对黑藻叶细胞伤害的超微结构研究。南京师大学报(自然科学版),2001,24(4):93-97。
    [103].郝怀庆,施国新,杜开和等.镉污染对水鳖的毒害影响。西北植物学报,2001,21(6):1237-1240。
    [104].徐勤松,施国新,杜开和等。六价铬污染对水车前叶片生理生化及细胞超微结构的影响。广西植物,2002,22(1):92-96.
    [105].徐勤松,施国新,杜开和等.Hg~(2+)对睡莲幼叶细胞超微结构的损伤。2002,25(1):33-37。
    [106].徐勤松,施国新,杜开和等。重金属镉、锌在沮草叶细胞中的超微定位观察。云南植物研究,2002,24(2):241-244.
    [107]. Kelly, J.M., Parker, G.R., et al. Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level.J. Environ. Qual. 1979, 8:361-364.
    [108].黄亮,李伟,吴莹等。长江中游若干湖泊中水生植物体內重金属分布。环境科学研究,2002,15(6):1-4.
    [109].栾以玲,叶镜中,蔡志全等。城市近郊火炬松林重金属元素的分布与季节变化。2002,26(6):37-40。
    [110].余国营,昊燕玉,王新。重金属复合污染对大豆生长的影响及其综合评价研究。应用生态学报,1995。6(4):433-439.
    [111].王秀丽,徐建民,姚槐应等。重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的
    
    影响。环境科学学报,2003,23(1):22-27.
    [112].宋菲,郭玉文,刘孝义等。镉、锌、铅复合污染对菠菜的影响。农业环境保护,1996,15(1):9-14.
    [113].周东美,王慎强,陈怀满。土壤中有机污染物-重金属复合污染的交互作用。土壤与环境,2000,9(2):141-145。
    [114].罗立新,孙铁珩。Cd和表面活性剂复合污染对小麦叶片若干生理性状的影响。应用生态学报,1998,9(1):95-100.
    [115].王振中,张友梅,贺跃明等。重金属污染的稻田土壤中动物群落的研究。环境科学,1986,7(6):34-39.
    [116].牛世全,宁应之,马正学等。重金属复合污染土壤中原生动物的群落特征。甘肃科学学报,2002,14(3):44-48。
    [117].张波,高兴梅,宋秀贤等。芝罘湾底质环境因子对底栖动物群落结构的影响。海洋与湖沼,1998,29(1):53-59.
    [118]. Baker, A.J.M. Metal tolerance. New Phytologist. 1987, 106: 111.
    [119]. Bradshaw A D. 1952. Populations of. Agrostis tenuis resistant to lead and zinc poisoning. Nature, 169: 1098.
    [120]. Raskin, I., Smith, R.D., Salt, D.E., Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotech. 1997, 8: 221-226.
    [121]. Salt, D.E., Smith, R.D., Rastkin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49: 643~668.
    [122]. Freedman, B. Environmental ecology-the ecological effects of pollution, distribution and other stress. 2~(nd). Academic Press, London. 1995.
    [123]. Ye, Z.H. Heavy metal tolerance, uptake and accumulation in populations of Typha latifolia L. and Phragmites australis (Cav.) Trin. Ex St eudel, PhD thesis, University of Sheffield, UK. 1995.
    [123]. Ye, Z.H., Baker, A.J.M., Wong, M.H., Wikkis, A.J. Zinc, lead and cadmium tolerance, uptake and accumulation in populations of Typha latifolia L. New Phytol. 1997, 136: 469-480.
    [125]. Gregory, P,.P.G., Bradshaw, A.D. Heavy metal tolerance in populations of Agrostia tenuis Sibth. and other grasses. New Phytol. 1965, 64: 131~143.
    [126]. Jowett, D. Population studies on lead tolerant Agrostia tenuis. Evolution. 1964, 18, 70~81.
    [127]. Anotonovics, J., Bradshaw, A.D., Turner, R.G. Heavy metal tolerance in plants. Adv. Ecol. Res. 1989, 7: 1~85.
    [128]. Pieta, L.F. Evoluationary response of plants to anthropogenic pollution. Trend. Ecol. Evolut. 1988, 3(9):233-236.
    [129].熊治廷。植物抗污染进化及其遗传生态学代价。生态学杂志,1997,16(1):53-57.
    
    
    [130].段昌群。植物对环境污染的适应与植物的微进化。生态学杂志,1995,14(5):43-50.
    [131]. Walley, K.A. et al, The potential for evolution of heavy metal tolerance in plant. 1. Copper and zinc tolerance in agrostis tenuis. Heredity, 1974, 32: 309-319.
    [132]. Gartside, D., Wund, T., Me Neilly, The potential for evolution of heavy metal tolerance in plants. 2. Copper tolerance in normal populations of different plant species. Heredity, 1974, 32: 335-348.
    [133]. Bradshaw, A.D., T. Me Neiny, Evolution in relation to environmental stress In: Taylor, G..E., et al, (eds.). Ecological Genetics and Air Pollution. Springer-Verlag, New York, 1991, 11-31.
    [134]. Antonovics, J. Evolution in closely adjacent plant population V. Evolution of self-fertility. Heredity, 1968, 23: 219-238.
    [135]. Nichols, M.K., Ecological genetics of copper tolerant Agrostis tenuis Sibth. Ph.D. Thesis University of Liverpool, Liverpool, England, 1979.
    [136]. Punz, W.F. and sieghardt, H., The response of roots of herbaceous plant species to heavy metals. Environ. Experi. Botan. 1993, 33(1): 85-97.
    [137]. Shaw, A.J. Heavy metal tolerance in plants: Evolutionary Aspects. CRC Press, Boca Raton. 1990.
    [138].刘杰。金属型植物抗性与非抗性种群比较生态毒理学研究。武汉大学硕士论文。2003。
    [139]. Bradshaw, A.D., McNeilly, T. Stress tolerance in plants- the evolutionary framework. In: Rozema, J., Verkleij, J. (eds). Ecological Responses to Environmental Stress. Kluwer Acadmic Publishers, Netherlands, 1991.2~5.
    [140]. Baker, A.J.M. Accumulators and excluders-strategies in the response of plant to heavy metals. J. Plant Nutri. 1981.3:643~654.
    [141]. Baker, A.J.M., Walker, P.L. Ecophysiology of metal uptake by tolerance plants. In: Shaw, A.J. (eds.), Heavy tolerance in plant: Evolutionary aspects. CRC Press, Baca Raton, F1, 1990. 155~177.
    [142]. Peterson, P.J. Adaptation to toxic metals. In: Robb, D.A., Pierpoint, W.S. (ed s), Metals and Micronutrient: Uptake and Utilization by Plants. Academic Press, Load on. 1983.
    [143]. Berry, W.L. Plant factors in influencing the use of plant anslysis as a tool for biogeochemical prospecting. In: Carlisle, D, Berry, W.L., Kaplan, I.R., Watterson, J.R. (eds.), Mineral exploration: Biological systems and organic matter. 5, 13 prentice- Hall, Engiewood Cliffs, NJ. 1986.
    [144]. Cumming, J.R, Taylor, G.L. Mevhanisms of metal tolerance in plants: physiological adaptation for exclution of metal ions from the cytoplasm. In: Alscher, R.G., Cumming, J.R. (eds.), Stress responses in plants: adaptation and accumulation mechanisms. Wiely -Liss Inc.,
    
    New York, 1990. 329~356.
    [145]. Zenk, M.H. Heavy metal detoxification in higher plants: a review. Gene. 1996, 179: 21~30.
    [146]. Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001, 212:475~486
    [147].张玉秀,柴团耀,Burkard, G. 植物耐重金属机理研究进展.植物学报,1999,41:453~457.
    [148]. Lane, B., Kajioka, R., Kennedy, T. The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol. 1987, 65: 1001~1005.
    [149]. Rauser, W.E. Structure and function of metal chelator produced by plants. Cell Biochem. Biophys. 1999, 31: 19~48.
    [150]. Garcia-Hernandez, M., Murphy, A., Taiz, L. Metallothioneins 1 and 2 have distrinct but overlapping expression patterns in Arabidopsis. Plant Physiol. 1998, 118: 387~397.
    [151].柴团耀,张玉秀.Burkard, G. 菜豆重金属胁迫相应基因cDNAs克隆及其表达分析.1998,24(4):399-404.
    [152].张玉秀。张延红,高华等。菜豆泛肽基因在胁迫和非胁迫下的表达。西北植物学报,2002,22(3):505-510。
    [153].张玉秀。张延红,扬水云等。菜豆Dan J-like基因组DNA片断的克隆及其表达分析。西安交通大学学报,2002,36(2):199-203。
    [154]. Wagner, G.J. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron, 1993, 51: 173~212.
    [155]. Vazquez, M.D., Poschenrieder, C.H., Barcelo, J. et al. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. Bot. Acta. 1994, 46: 768~793.
    [156]. Kr(?)mer, U., Cotter-Howells, J.D., Charnock, J.M. et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996, 379, 635~638.
    [157]. Kr(?)mer, U., Picketing, I.J., Raskin, I., Salt, D.E. Subcelluar localization and speciation of nickel in hyperaccumulator and non-hyperaccumulator Thlaspi species. Plant Physiol. 2000, 122(4): 1343~1353
    [158]. Lytle, C.M., Lytle, F.W., Yang, N., et al. Reduction of Cr (Ⅵ) to Cr (Ⅲ) by wetland plants: potential for in situ heavy metal detoxification. Environ. Sci. Technol. 1998, 32: 3087~3093.
    [159]. Alien, WR, Sheppard, G. Copper tolerance in some Californian populations of the monkey flower: Mumulus guttatus. Proceed. Roy. Societ. London. Series B, 1991, 177:177~196.
    [160]. Mathys, W. The role of malate, oxalate and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Plant Physiol. 1977, 40: 130~136.
    [161]. Baker, A.J.M., Brooks, R.R. Terrestrial higher plants which hyper-accumulate metallic elements: a view of their distribution, ecology and phytochemistry. Biorecovery, 1989, 1:81~126
    
    
    [162]. Baker, A.J.M. Tolerant plants and hyperaccumulators. In: Wong, M.H., Bradshaw, A.D. (eds.), Restoration and managemet of derelict lands: modern approaches (in press). 2003.
    [163]. Baker, A.J.M., McGraph, S.P., Reeves, R.D., Smith, J.A. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluteed soils. In: Terry, N., Banuelos, G.S. (eds). Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Florida. 2000.
    [164]. Baker, A.J.M., Walker, P.L. Physiological responses of plants to heavy metals and the qualification of tolerance and toxicity. Chem. Speciat. Bioavail. 1989.1:7~17
    [165]. Reeves, R.D., Brooks, R.R., Dudley, T.R. Uptake of nickel by species of Alyssum, Bonunuellera and other genera of Old World tribus Alysseae. Taxon. 1983, 32: 184-192.
    [166]. Chaney R L, Malik M and Li Y M. et al. Phytoremediation of Soil Metals. Curr. Opin. Biotechnol, 1997, 8:279~284
    [167]. Homer, F.A., Morison, R.S., Brooks, R.R. Comparative stusies of nickel, cobalt and copper uptake by some nickel hyperaccumulators of the genus Alyssum . Plant. & Soil. 1991, 138: 195~205.
    [168].陈同斌,韦朝阳,黄泽春等.2002.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,47:207~210.
    [169].叶志鸿.1992.锌的毒性和植物的耐性.生态学杂志,11:42~45
    [170]. Baker, A.J.M. Metal tolerance. New Phytol., 1987, 106(suppl): 93~111
    [171]. Brooks R R, Lee, Reeves R D and Jaffre T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 1977, 7: 49~77.
    [172]. Reeves, R.D., Baker, A.J. M., Brooks, R.R. Abnormal accumulation of trace metals by plants. Min. Environ. Manag. 1995.4-8.
    [173]. Robinson, B.H., Brooks R.R., Howes, A.W., Kirkman, J.H., Gregg, P.E.H. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geoch Explr. 1997, 60:115-126.
    [174]. Tordoff, G.M., Baker, A.J.M., Willis, A.J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemoshere. 2000, 41:219-228.
    [175]. Baker, A.J.M., Brooks, R.R., Pease, A.J., Malaisse, F. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophallaceae) from Zaire. Plant Soil. 1983, 73: 377-385.
    [176]. Baker, A.J.M., Brooks, R.R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery . 1989, 1: 81-126.
    
    
    [177]. Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D., Reeves, R.D. Possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recyc. 1994, 11: 41-49.
    [178]. Bradshaw, A.D., Humphreys, M.O., Johnson, M.S. The value of heavy metal tolerance in the revegetation of metalliferous mine wastes. In: Goodman GT, Chadwick MJ (ed) Environmental Management of Mineral Wastes. Sijthoff and Noordhoff. The Netherlands, 1978. p 311-334.
    [179]. Brooks, R.R. Plants that Hyperaccumulate Heavy Metals. CAB international, Wallingford. 1998.
    [180]. Brun, L.A., Maillet, J., Richarte, J., Herrmann, P., Remy, J.C. Relationship between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut. 1998, 102:151-161
    [181]. Ernst, W. Bioavailability of heavy metals and decontamination of soils by plants. Appl. Geochem. 1996, 11: 163-167.
    [182]. Huang, J.W., Cunningham, S.D. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 1996, 134:75-84.
    [183]. Nicks, L.J., Chambers, M.F. Farming for metals. Miu Environ Mgt Mining Journal Ltd, London, Sep. 1995, p15-18.
    [184].夏北成。环境污染物生物降解.北京:化学工业出版杜。2002.p365-388.
    [185]. Entry, J.A., Aatred, L.S., Reeves, M. Accumulation of ~(137)Cs and ~(90)Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ. Pollut. 1998, 104:449-457.
    [186].夏北成,Zbou, J. Z., Tiedjc, J. M.植被对土壤微生物群落结构的影响。应用生态学报,1998,9(3):296-300.
    [187].陈玉成.污染环境生物修复工程。北京:化学工业出版社。2003。
    [188]. Dietz, A.C., Schnoor, J.L. Advance in phytoremediation. Environ, Heal, Perspect. 2001, 119(Suppl.): 163-168.
    [189]. Wilkins, D.A. A technique of the measurement of lead tolerance in plants. Nature, 1957, 180:37-38.
    [190].叶志鸿,陈桂珠,蓝崇钰等。宽叶香蒲净化塘复合系统净化铅锌矿废水效应的研究。应用生态学报,1992,3:190-194。
    [191].阳承胜,蓝崇钰,束文圣等.凡口宽叶香蒲湿地植物群落恢复的研究。植物生态学报,2001,26(1):101-108。
    [192].束文圣。铅锌尾矿的植被重建。中山大学博士论文。1997。
    [193].束文圣,蓝崇钰,张志权。凡口铅锌尾矿影响植物定居的主要因素分析。应用生态学报,1997,8:314-318。
    
    
    [194].喻龙,龙江平,李建军等。生物修复技术研究进展及在滨海湿地中的应用。海洋科学进展,2002,4:99-108。
    [195].徐亚同,史家梁,张明。生物修复技术的作用机理和应用。上海化工,2001,19:4-7.
    [196].周乃元,王仁武。植物修复-治理土壤重金属污染的新途径。中国生物工程杂志,2002,5:53-57。
    [197]. Aatry, A.R., Euis, G.M. Bioremediation: An effective remedied alternative for petroleum hydrocarbon-contaminated soil. Environ. Prog. 1992, 11(4): 318-322.
    [198].徐向阳,冯孝善。五氯酚(PCP)污染土壤厌氧生物修复技术的初步研究。应用生态学报,2001,12(3):439-442。
    [199].徐向阳,俞秀娥,华剑等。厌氧颗粒反应器修复模拟手PCP污染地表水的性能研究。环境科学学报,1999,19(3):236-240。
    [200].徐向阳,俞秀娥,郑平等。受酚污染地表水生物修复技术的基础研究。浙江大学学报(农业与生命科学版),1999,25(4):409-413。
    [201].郑天凌,庄铁撑,蔡立哲等。微生物在海洋污染环境中的生物修复作用。厦门大学学报(自然科学版),2001,40(2):524-534。
    [202].张旭,李广贺,黄巍。石油烃污染土层生物修复模拟实验研究。清华大学学报,2000,40(11):106-108。
    [203].张甲耀等.不同堆料比对石油废弃物堆肥处理效率的影响。环境科学,1999,20(5):86-89。
    [204].张甲耀,李静等.生物修复技术研究进展。应用与环境生物学报,1996,2(2):193-199。
    [205].宋玉芳,许华夏,任丽萍。两种植物条件下土壤中矿物油和多环芳烃(PAHs)生物修复研究。应用生态学报,2001,12(1):108-112.
    [206].张海荣,李培军,孙铁珩等。四种石油污染土壤微生物修复技术研究[J]。应用生态学报,2001,20(2):78-80。
    [207]. Atlas, R. Bioremediation of fossil fuel contaminated soils]. In: In situ Bioremediation: Application and Investigation for Hydrocarbon and Contaminated Site Remediation. eds. R.E Hinchee and R.F. Olfenbuttel. 1991, p14-32. Butterworth-Heinemann, Boston, MA.
    [208]. Borden, R.C., Gomez, C.A., Becker, M.T. Natural bioremediation of a gasoline spill. In: Principles and Practices for Petrroleum Contamin ated Soils. Calabrese, E.J., Kostecki, P.T. (eds). Ann Arbor, MI., 1993, p131~322.
    [209]. Harris, J.A., Birch, P., Crawford, DL. Bioremediation: principles and applications. Cambridge University Press, Cambridge. 1996.
    [210].张金霞,徐玉华.生物修复技术在污染处理中的应用。环境保护,2000,25(3):4-7。
    [211].张景来,王剑波,常冠钦等。环境生物技术及应用.北京:化学工业出版社。2002。p451-484.
    
    
    [212].中国科学技术情报研究所。国外公害概况。北京:人民出版社。1975,p11.
    [213].王法东,黄勇,高宏。重金属对A/O生物脫氮系统的毒性影响。沈阳建筑工程学院学报(自然科学版),2003,19(2):145-156.
    [214]. Riggle, D. Integrating options: Combining duckweed and high rate anaerobic treatments. Biocycle. 1998. 2: 64-67.
    [215]. LemnaTec; Bio-Tech Waste Management;
    [216].杨京平,卢剑波。生态安全的形态分析。北京:化学工业出版社。2002。p1-38。
    [217].殷浩文。生态风险评价.上海:华东理工大学出版社。2001。p1-156.
    [218]. Newman, M.C. Fundamentals of ecotoxicology. Sleeping Bear Press, Chelsea, 1998.
    [219].Theo·Colbom,Dianne·Dumanoskj,John·Peterson·Myers[美,西奥·科尔伯恩,戴安娜·杜迈洛斯基,约翰·彼得森·迈尔斯]著。唐艳鸿译。我们被偷走的未来[M]。长沙:湖南科学技术出版杜。2000。
    [220].张永春,林玉锁,孙勤芳等。有害废物生态风险评价。北京:中国环境科学出版社。2002。p1-26.
    [221]. Wang, W. Review: Literatures review on duckweed toxicity testing. Environ Rev. 1990, 52:7-22
    [222]. European Community. Risk assessment of existing substances : Technical guidance document Ⅺ/919/94-EN. Brussels, Belgium. 1994.
    [223]. European Community. Technical guidance document in support of directive 93/67/EEC on risk assessment of new notified substances and regulations (EC) Bmssels, Belgium. 1996.
    [224].陈国阶。论生态安全.重庆环境科学。2002,34(3):1~3.
    [225]. Hoffman, D.J., Rattner, B.A., Allen Burton, G., Jr., Cairns, J., Jr. Handbook of Ecotoxicology. (2~(nd)). New York: A CRC Press Company. 2003. 191-218.
    [226]. USEPA. Ecological Effects Test Guidelines. OPPTS 850.4400 EPA712-C-96-156 April 1996. USA. 1996.
    [227]. ASTM. ASTM Standard on aquatic Toxicology and Hazard Evaluations. ASTM Publ. Code 01-547093-16. ASTM. 1916 Race Street, PA 19103. USA. 1993.
    [228]. APHA, AWWA, WEF. American Public Health Association, American Water Works Association and Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. 19~(th) ed. Part 8000. Washington. DC, USA. 2000.
    [229]. OECD. OECD Guidelines for the Testing of Chemicals: Revised proposal for a new guideline for 221. Draft guideline 221, July 2002. Paris. 2002.
    [230]. Lewis, M.A. Use of freshwater plants for phytotoxicity testing: a review. Environ eollut. 1995, 87: 319-336.
    
    
    [231]. Lewis, M.A., Wang, W. 1999. Biomonitoring using Aquatic Vegetation. Environmental Science Forum Vol.96:243-274.
    [232].Rachel·Carson([美]蕾切尔·卡逊著,吕瑞兰,李长生译)。寂静的春天。长春:吉林人民出版社。1997。
    [233]. Wang, W. Literature review on higher plants for toxicity testing. Wat., Air and Soil Pollut. 1991, 59: 381-400.
    [234]. Kenaga, E.E., Moolenaar, R.J. Fish and Daphnia toxicity as surrogates f or aquatic plants and algae. Environ. Sci. Technol. 1979, 13:1479-1480.
    [235]. Miller, W. E., Peterson, S. A., Greene, J. C., Callahan, C. A. Comparison toxicology of laboratory organisms for assessing hazardous wastes sites. J. Environ. Qual. 1985, 14: 569-574.
    [236]. Thomas, J. M., Skalske, J. P., Cline, J. F. et al. Characterization of chemical waste site contamination and determination of its extent using bioassays. Environ. Toxicol. Chem. 1986, 5: 487-501.
    [237]. Leonard, R.A. Herbicides in surface waters. In: Grover, R., (eds.). Environmental Chemistry of Herbicides. Boca Raton, FL. CRC Press. 1988.
    [238]. Nielsen, E.G., Lee, L.K. The magnitude and costs of groundwater contamination from agricultural chemicals: A national perspective. Staff Report AGE87038. US: Dept. of Agriculture, Washington, DC. 1987.
    [239]. Zhang, T., Jin H. Use of duckweed (Lemna minor L.) growth inhibition test to evaluate toxicity of acrylonitrile, sulphocyanic sodium and acetonitrike in China. Environ. Pollut. 1997, 98:143-147.
    [240] 张彤,金洪均。用浮萍试验检测4种污染物的毒性。中国环境科学。1995,15(4):266-271.
    [241] 张莉,王友保,刘登义。利用浮萍检测Cu、As及其复合污染的植物学毒性。安徽师范大学学报(自然科学版)。24(4):392-394.
    [242]. Song, Z.H., Huang, G.L. Effect of triphenyltin on duckweed Lemna minor. Bull. Environ. Contain. Toxicol. 2001, 67: 368-375.
    [243].沈英娃,曹洪法。生态风险评价简述。中国环境科学。1991,11(6):464-468.
    [244].殷浩文.水环境生态风险评价的应用与原则。污染防治技术,1995a,8:113-115.
    [245].殷浩文。水环境生态风险评价程序。上海环境科学,1995b,14(2):11-14.
    [246].殷浩文,赵华清。略论工业化学品的风险评价。上海环境科学,1997,16(5):10-12.
    [247].殷浩文等。水生生物检测系统的设计研究。上海环境科学,1995,14(5):23-26.
    [248].赵华清。水生毒理检测系统中连续流装置设计与控。水生生物学报,1997,21(4):322-326.
    [249].王宏,沈英娃,卢玲等。几种典型有害化学品对水生生物的毒性。应用与环境生物学报,2003,9(1):49-52。
    
    
    [250].陈海柳,潘纲,闫海等.六价铬抑制淡水蓝绿藻生长的毒性效应。环境科学,2003,24(2):13-18。
    [251].高为,包东平,程鑫。有机酸抑制斜生栅藻生长的毒性研究.环境科学研究,2003,16(1):41-42。
    [252].李坤,李琳,侯和胜等。Cu~(2+)、Cd~(2+)、Zn~(2+)对两种单胞藻的毒害作用。应用与环境生物学报,2002,8(4):395-398。
    [253].李彬,李培军,王晶等。重金属污染土壤毒性的斜生栅藻生长抑制实验诊断。应用生态学报,2002,13(3):331-334。
    [254].沈韫芬.微型生物监测新技术.北京:中国建筑工业出版社。1990。
    [255].惠秀娟。环境毒理学。北京:化学工业出版社。2003。p225-265.
    [256].孟紫强。环境毒理学。北京:中国环境科学出版社。2000,P496-563.
    [257]. Hillman, W.S., Culley, D.D. Jr. The use of duckweed. Am. Scient. 1978, 66:442-451.
    [258].周有院,郭振飞,范金水.浮萍光周期的诱导。武汉植物学研究。1994,12(1):49-52.
    [259].Hillman, w. S. The Lemenaceae, or duckweeds. A review 0f the descriptive and cxPerimental literature. Botan. Rev. 1961, 27:221-287.
    [260].何报作,郑俊华,王玉荣等。中药浮萍及其混淆品的生药学研究。中国中药杂志。1999,24(4):195-198.
    [261]. Nasu, Y., and Kugimoto, M. Lemna (duckweed) as an indicator of water pollution. I. The sensitivity of Lemna paucicostata to heavy metals. Arch. Environ. Cotam. Toxicol. 1981, 10: 159-169.
    [262]. Nasu, Y., Kugimoto, M., Tanak, O., and Takimoto, A. Comparative studies absorption of copper and copper in Lemna paucicostata. Environ. Pollut. (Ser, A). 1983, 32:201-209.
    [263]. Cowgill, U.M., Milazzo, D.P., Landenberger, B.D. The sensitivity of Lemna gibba G-3 and four clones of Lernna minor to eight common chemicals using a 7-day test. Res. J Water Pol. Con. Fed. 1991, 63:991-998.
    [264]. Les, D.H., Crawford, D.J., Landolt, E., Gabel, J.D., Kimball, R.T. Phylogeny and Systematics of Lemnaceae, the Duckweed Family. Syst. Botan. 2002, 27 (2): 221-240.
    [265]. Les, D.H., D.J. Crawford. 1999. Landoltia (Lemnaceae), A New Genus of Duckweeds.Novon. 9: 530-533.
    [266]. Landolt, E. The Family of Lemnaceae: A Monographic Study. Vol. 1. Ver. Geobotan. Institute ETH, Stiftung Rubel, Zurich. 1986, 71:1-566.
    [267].李恒.中国植物志。第13卷,第2分册。北京:科学出版社。1979,p206-211。
    [268].傅书遐.湖北植物志(第4卷)[M]。武汉:湖北科学技术出版社。2002,p428-431。
    [269].郑重。湖北植物大全。武汉:武汉大学出版社。1993,p574-575。
    
    
    [270].李时珍。本草纲目。北京:人民卫生出版社。1982,p1367.
    [271].C. D. K. 库克著,王徽勤等译。世界水生植物。武汉:武汉大学出版社。1993。p150.
    [272]. Lemon, G. D., Posluszny, U., Husband, B. C. Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquat. Botan. 2001, 70: 79-87.
    [273]. Sajwan, K. S. and Omes, W. H. Phytoavailability and bioaccumulation of copper in duckweed plants (Spirodela polyrhiza (L.) Schleid.). J Environ Sci Health (Part A). 1994, 29: 1035-44.
    [274]. Hillman, W. S. The Lemenaceae, or duckweeds. A review of the descriptive and experimental literature. Botan. Rev. 1961, 27: 221-287.
    [275]. Prasad, M.N.V,, Malec, P., Waloazek, A., Bojko, M., Strzalka, K. Physiological response of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci. 2001, 161: 881-889.
    [276]. Yin, L., Zhou, Y., Fan, X., Lu, R. Induction of phytochelati ns in Lemna aequinoctialis in response to cadmium exposure. Bull Environ Contain. Toxicol. 2002, 68: 561-568.
    [277]. Zayed, A., Gowthaman, S., Terry, N. 1998, Phytoaccumulation of trace elements by wetland plants: I. Duckweed.J. Environ. Qual. 27:715-721.
    [278].[英]朱莉.斯托弗(Julie Stauffer)著,张康生,韩建国译。水危机.北京:科学出版社。2000。p100-103.
    [279].杨京平,卢剑波。生态恢复工程技术。北京:化学工业出版社。2002。p58.
    [280]. http://waynesword.palomar.edu/lwayind x.htm; The PRISM Group.; GreenGold Corporation ; The Charms Of Duckweed.
    [281]. Clark, J.R., Van Hassel, J.H., Nicholson, R.B. et al. Accumulation and depuration of metals by duckweed (Lemna perpusilla). Ecotoxicol. Environ. Safety. 1981, 5: 87-96.
    [282]. Caux, P.Y., Weinberger, P., Carlisle, D.B. A physiological study of the effects of triton suffactants on Lenma minor L. Environ. Toxicol. Chem. 1988, 7:671-676.
    [283]. Prasad, M.N.V., Malec, P., Waloszek, A. et al. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci. 2001, 161: 881-889.
    [284]. Mohan, B.S., Hosetti, B.B. Potential phytotoxicity of lead and cadmium to Lemna minor growth in sewage stabilization ponds. Environ. Pollut. 1997, 98(2): 233-238.
    [285]. Appenroth, K. -J., Strckel, J., Srivastava, A. et al. Multiple effects of chromate on the photosynthesis apparatus of Spirodela polyrrhiza as probed by OJIP chlorophyll α fluorescence measurements. Environ. Pollut. 2001, 115:49-64.
    [286]. Seto, M., Takahashi, Y., Ushijima, T. et al. Chlorotic death of Lemna gibba by cadmium in different concentration of nutritional minerals. Japan. J. Limnol. 1979, 40:61-65.
    
    
    [287]. Sanit à di Toppi, L., Gabbrielli, R. Review: Response to cadmium in high plants. Environ. Experi. Bot. 1999. 41:105-130.
    [288]. Nasu, Y., Kugimoto, M. Effects of cadmium and copper co-existing in medium on the growth and flowering of Lemna paucicostata (6746) in relation to their absorption. Environ. Pollut. (Ser. A). 1984, 33:267-274.
    [289]. Hutchinson, T.C., Czyrska, H. Heavy metal toxicity and synergism to floating aquatic weeds. Verh. -Int. Ver. Limnol. 1975, 19: 2102-2111.
    [290]. Teisseire, H., Couderchet, M., Vernet, G. Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environ. Pollut. 1999, 106:39-45.
    [291] Huebert, D.B., Shay, J.M. Zinc toxicity and interaction with cadmium in the submerged aquatic macrophyte Lemna trisulca L. Environ. Toxicol. Chem. 1992, 11:715-720.
    [292] Dirilgen, N. Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemna minor. Chemosphere. 1998, 32(4): 775-783.
    [293] Suedel, B.C., Deaver, E., Rodgers, J.H.Jr. Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater Organisms. Arch. Environ. Contain. Toxicol. 1996, 30:40-46.
    [294]. Adams, N., Dobbs, A.J. A comparison of results from two test methods for assessing the toxicity of anminothiiazole to Selenastrum capricornutum. Chemoshere. 1984, 13: 965-971.
    [295]. Cowgill, U.M., Milazzo, D.P. The culturing and testing of two species of duckweed. In: Cowgill, U.M., Williams, L.R. (eds.). Aquatic Toxicology and Hazard Assessment. 1989, Vol. 12, ASTM STP 1027 ASTM, Philadelphia, PA
    [296]. Bowker, D.W., Duffield, A.N., Denny, P. Methods for the isolation, sterilization and cultivation of Lemnaceae. Freshwat. Biol. 1980, 10: 385-388.
    [297]. Adams, N., Goulding, K.H., Dobbs, A.J. Effect of aceton on the toxicity of four chemicals to Selenastrurn capricornutum. Bull Environ. Contain. Toxicol. 1986, 36:254-259.
    [298]. Smith, S., Kwan, M,K.H. Use of aquatic macrophytes as bioassay method to assess relative toxicity, uptake kinetics and accumulated forms of trace metals. Hydrobiologia. 1989, 188/189: 345-351.
    [299]. Lau, O.L. and Yang, S.F. Stimulation production of ethylene in the mung bean hypocotyls by cupric ion, calcium ion, and kinet in. Plant Physiol. 1976, 57: 88-92.
    [300]. Rodecap, K.D., Tingey, D.T., Tibbs, J.H. Cadmium-induced ethylene production in bean plant. Z. Pflanzenphysiol. 1981, 105: 65-74.
    [301]. Chen Kun-Ming, Gong Hai-Jun, Chen Guo-Cang, Zhang Cheng-Lie. ACC and MACC biosynthesis and ethylene production in water-stressed spring wheat. Acta Botanica Sinica. 2003,
    ._
    
    44(7): 775-781.
    [302].俞飞,徐亦钢,秦文娟。SO_2、NO_2、O_3及其复合物对水稻体内乙烯释放的影响。环境科学,2000,15(4):69-72.
    [303].勾晓华,王勋陵,陈发虎。氟化氢熏气和喷施防护剂对小麦应激乙烯产生的影响。应用与环境生物学报,2000,8(2):117-120.
    [304].黄芳,石兰馨,曹仪植。植物对NH_4~+毒害的敏感性及与多胺和乙烯的关系。兰州大学学报(自然科学版),1996,32(1):102-107.
    [305].Abelcs, F. B. Ethylene in plant Biology. Academjc Press, New York. 1973. p87-102.
    [306].武维华。植物生理学。北京:科学出版社。2003。p302.
    [307].薛应龙。植物生理学实验手册。上海:上海科学技术出版社。1985。p70-71.
    [308]. Lieberman, M. Biosynthesis and action of ethylene. Annu. Rev. Plant Physiol. 1979, 30: 533-591.
    [309]. Adams, D.O., Yang, S.F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 1979, 76: 170-74.
    [310]. Fuhrer, J. Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans (Phaseolus vulgaris L.). Plant Physiol. 1982a, 70:162-167.
    [311]. Fuhrer, J. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant Cell Environ. 1982b, 5: 263-270.
    [312].付立杰.现代毒理学及其应用。上海:上海科学技术出版社。2001。
    [313]. Vermaat, J.E., Hanif, M.K. Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. War. Res. 1998, 32(9):2569-2576.
    [314]. Schwalbe, M., Teller, S., Oelm (?) ler, R., Appenroth, K.-J. Influence of UVB irradiation on nitrate and ammonium assimilating enzymes in Spirodela polyrhiza. Aquat. Botan. 1999, 64:19-34.
    [315]. Wolterbeek, H.Th., van der Meer, A.J.G.M. A sensitive and quantitative biosensing method for determination of γ-ray emitting radionuclides in surface water. J. Environ. Radioactivity, 1996, 33(3): 237-254.
    [316]. Ley, S., D(?)gler, K., Appenroth, K.-J. Carbohydrate metabolism as a possible modulator of dormancy in turions of Spirodela polyrrhiza (L,) Schleiden. Plant Sci. 1997, 129:1-7.
    [317]. Caicedol, J.R., Van der Steen, N.P., ARCE, O., Gijzen. H.J. Effect of total ammonia nitrogen concentration and ph on growth rates of duckweed (Spirodela polyrrhiza). Wat. Res. 2000, 34(15): 3829-3835.
    [318]. Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., Upatham, E.S. Kinetics of basic dye
    
    (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Pollut. 2003, 125:385-392.
    [319]. Appenroth, K.-J., Bischoff, M., Gabrys, H., Stoeckel, J., Swartz, H.M., Walczak, T., Winnefeld, K. Kinetics of chromium (Ⅴ) formation and reduction in fronds of the duckweed Spirodela polyrhiza—a low frequency EPR study. J. Inorgan. Biochem. 2000, 78:235-242.
    [320]. Kumar, V., Sharma, S.S. Nutrient deficiency-dependent anthocyanin development in Spirodela polyrrhiza (L,) Schleid. Biologia Plantaum. 1999, 42(4): 621-624.
    [321]. Gaur, J.P., Sharma, S.S. Potential of Lemna polyrrhiza for removal of heavy metals. Ecol. Engine. 1995, 4:37-43.
    [322]. Magone, I. The effect of electromagnetic radiation from the Skrunda Radio Location Station on Spirodela polyrrhiza (L,) Schleiden cultures. The Sci. of the Total Environ. 1996, 180:75-80.
    [323]. Rai, U.N., Sinha, S., Tripathi, R.D., Chandra, P. Wastewater treatability potential o f some aquatic macrophytes: Removal of heavy metals. Ecol. Engine. 1995, 5:5-12.
    [324].李树华,许兴,惠红霞等。不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应。麦类作物学报,2000,20(4):63-67.
    [325].冯建灿,胡秀丽,苏金乐等。保水剂对干旱胁迫下刺槐叶绿素a荧光动力学参数的影响。西北植物学报,2002,22(5):1144-1149.
    [326].苏行,胡迪琴,林植芳等。广州市大气污染对两种绿化植物叶绿素荧光特性的影响。植物生态学报,2002,28(5):599-604.
    [327].戈峰.现代生态学.北京:科学出版社。2002。p80~82.
    [328].曹惠荣,牟云霞,李巍。沈阳经济技术开发区镉污染状况调查。环境保护科学。2000,26(4):45-46
    [329].成杰民,郑绍建,胡霭堂,蒋廷惠。近矿区农田镉污染的调查与评价。南京农业大学学报。1997,20(1):43-47.
    [330].曾北巍。环境镉污染化学生态的几个问题。见:环境污染与生态学文集。中国科学院水生生物研究所。南京:江苏科学技术出版社。1981。p10-28.
    [331].沈允刚,施教耐,许大全。光合作用的荧光分析。北京:科学出版社。1998,p134-136
    [332].陈贻竹,李晓萍,夏丽,郭俊彦。叶绿素荧光技术在植物环境胁迫研究中的应用。1995。热带亚热带植物学报,3(4):79-86.
    [333]. Maxwell, K., Johnson. Chlorophyll fluorescence—a practical guide. J. Experi. Botan. 2000, 51(345): 659-668.
    [334].张守仁.叶绿素荧光动力学参数的意义及讨论。植物学通报。1999,18(4):444-448.
    [335].王曙光,林先贵。菌根在污染土壤生物修复中的作用。农村生态环境,2001,17(1):56-59。
    
    
    [336].朱宛华。水环境污染的植物修复技术。地学前沿,2001,8(1):143-150.
    [337].张锡辉。水环境污染修复工程学原理与应用。北京:化学工业出版社。2002。p153-174.
    [338]. Home, A.L. Phytoremediation by constructed wetland. In: Terry, N. and Banuelos, G. (eds.), Phytoremediation of contaminated soil and water. Lewis Publisher, Boca Raton, 1999, p13-40.
    [339].赵开弘,董金荣,周明。环境生物技术。武汉:武汉理工大学出版社。2002.p182-238.
    [340]. A.-Nozaily, F., Alaerts, G., Veenstra, S. Performance of duckweed-covered sewage lagoons-Ⅰ. Oxygen balance and COD removal. Wat. Res. 2000, 34(10): 2727-2733.
    [341]. A.-Nozaily, F., Alaerts, G., Veenstra, S. Performance of duckweed-covered sewage lagoons-Ⅱ. Nitrogen and phosphorus balance and plant productivity. War. Res. 2000, 34(10): 2734-2741.
    [342]. Boniardi, N., Rota, R., Nano, G. Effect of dissolved metals on the organic load removal efficiency of Lemna gibba. Wat. Res. 1999, 33 (2):530-538.
    [343]. Zhao, M., Duncan, J.R. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azollla filiculoides. Proc. Biochem. 1998, 33(3): 249-255.
    [344]. Zhao, M., Duncan, J.R. Bed-depth-service-time analysis on column removal of Zn~(2+) using Azolla filiculoides. Biotech. Let. 1998, 20(1): 37-39.
    [345]. Zhao, M., Duncan, J.R., van Hille, R. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Wat. Res. 1999, 33(6): 1516-1522.
    [346]. Sanyahumbi, D., Duncan, J.R., van Hille, R. Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides. Biotech, Let. 1998, 20(8): 745-747.
    [347]. Jain, S.K., Vasudevan, P., Jha, N.K. Removal of some. heavy metals from polluted water by aquatic plants: Study on duckweed and water velvet. Biol. Was. 1989, 28:115-126.
    [348] Prasad, M.N.V., Malec, P., Waloazek, A., Bojko, M., Strzalka, K. Physiological response of Lemna trisula L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci. 2001, 161: 881-889.
    [349]. Rodgers, J.H., Jr., Cherry, D.S., Guthrie, R.K. Cycling of elements in duckweed (Lemna perpusilla) in an ash settling basin and swamp drainage system. Wat. Res. 1978, 12:765-770.
    [350]. Zayed, A., Gowthaman, S., Terry, N. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 1998, 27:715-721.
    [351]. Rahmani, G.N.H., Sternberg, S.P.K. Bioremoval of lead from water using Lemna minor [J]. Bioresour. Technol. 1999, 70:225-230.
    [352]. Smith, S., Kwan, M.K.H. Use of macrophytes as a bioassay method to assess relative toxicity, uptake kinetics and accumulated forms of trace metals. Hydrobiologia. 1989, 188/189: 345-351.
    [353] Staves, R.P. Chromium removal from water by three species of duckweeds.Auat. Bot. 1985, 23: 261-273.
    
    
    [354]. Clark, J.R., VanHassel, J.H., and Nicholson, R.B. et al. Accumulation and depuration of metals by duckweed (Lemna perpusilla). Ecotoxicol. Environ. Safety. 1981, 5: 87-96.
    [355]. Dirilgen, N., Inel, Y. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor. Bull. Environ. Contain. Toxicol. 1994, 53:442-449.
    [356]. Hattink, J., de Goeij, J.J.M., Wolterbeek, H. Th. Uptake kinetics of ~(99)Tc in common duckweed. Environ. Experi. Bot. 2000, 44: 9-22.
    [357]. Mo, S.C., Choi, D.S., Robinson, J.W. A study of the uptake by duckweed of aluminum, copper, and lead from aqueous solution. J. Environ. Sci. Heath, A. 1988, 23(2):139-156.
    [358]. Glandon, R.P., McNabb, CoD. The uptake of boron by Lemna minor. Aquat. Bot. 1978, 4:53-64.
    [359]. Hutchinson, T.C., Czyrska, H. Heavy metal toxicity and synergism to floating aquatic weeds. Verb.-Int. Vet. Limnol. 1975, 19: 2102-2111.
    [360]. Hillman, W.S., Jr., Culley, D.D. The use of duckweed. Am. Scient. 1978, 66:442-451
    [361]. Forni, C., Chert, J., Tancioni, L., Caiola, M.G. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Wat. Res. 2001, 35(6): 1592-1598.
    [362].任安芝,唐廷贵。细绿萍对铅、汞污水的净化作用及其生物学效应。南开大学学报(自然科学版),1996,29(1):74-79.
    [363] 恽玉放。凤眼莲净化污水能力的研究。武汉大学硕士学位论文。1990.
    [364] 栽树桂,车广为。凤眼莲对污水中重金属的净化。环境化学,1987,6(2):43-49.
    [365] 夏会龙,吴良欢,陶勤南。凤眼莲加速水溶液中马拉硫磷的降解。中国环境科学,2001,21(6):553-555
    [366] 齐玉梅,高伟生。凤眼莲净化水质及其后处理工艺的研究。环境科学进展。1999,7(2):136-140.
    [367].袁桂良,刘鹰。凤眼莲对集约化甲鱼养殖污水的静态净化研究。农业环境保护,2001,20(5):322-325.
    [368].强胜,曹学章。外来杂草在我国的危害性及其管理对策。生物多样性,2001,9(2):188-195.
    [369].万咸涛。武汉江段大面积出现水葫芦对该水域环境的影响。江苏环境科技。2001,14(4):5-26.
    [370].戴庆中。文化视野中的贫困与发展。贵阳:贵州人民出版社。2001。
    [371].李天煜。我国采矿废弃地生态恢复问题剖析.有色金属(矿山部分),2003,(in press).
    [372].李天煜。冶金矿山废弃地的生态恢复。金属矿山(增刊),p66-71。2003年8月。
    [373].李天煜,熊治廷。南方离子型稀土矿开发中的资源环境问题与对策。国土与自然资源研究,2003,3:42-44.
    [374]. Dirilgen, N., Ince, N. Inhibition effect of the anionic surfactant SDS on duckweed, Lemna minor with considerations of growth and accumulation. Chemosphere. 1995, 31(9): 4185-4196.
    
    
    [375]. Wang, W. Toxicity tests of aquatic pollutants by nsing common dnckweed. Environ. Pollut. (Ser. B). 1986, 11: 1-14.
    [376]. Rowe, E. L., Ziobro, R. J., Wang, C. J. K., Dence, C. W. The use of an alga Chlorella pyrenoidesa and a duckweed Lemna perpusilla as test organisms for toxicity bioassays of spent bleaching liquors and their compounds. Environ. Pollut. (Ser. A). 1982, 27:289-296.
    [377]. Hughes, J. S., Alexander, M. M., and Balu, K. An evaluation of appropriate expressions of toxicity in aquatic plant bioassay as demonstrated by the effects of atrazine on algae and duckweed. ASTM STP 921. American Society Testing and Materials, 1988. p531-547.
    [378]. Huber, W., Schuber, V., Sauter, C. Effects of pentachlorophenoy on the metabolism of the aquatic maceophyte Lemna minor L. Environ. Pollut. (Ser. A). 1982, 29: 215-223.
    [379]. Hartman, W. A., Martin, D. B. Effects of four agricultural pesticides on Daphnia pulex, Lemna minor and Potamogeton pectinatus. Bull, Environ. Contain. Toxicol. 1985, 38:646-651.
    [380]. Huebert, D. B., Shay, J. M. Considerations in the assessment of toxicity using duckweed. Environ. Toxicol. Chem. 1993, 12:481-483.
    [381]. Lockhart, W. L., Billeck, B. N., Baron, C. L. Bioassay.s with a floating aquatic plant (Lemna minor) for effects of sprayed and dissolved glyphosate.Hydrobiologia. 1989, 188/189:353-359.
    [382]. Wang, W. Toxicity of nickel to common duckweed (Lemna minor). Environ. Toxicol. Chem. 1987, 6: 961-967.
    [383]. Wang, W, and Williams J.W. Screening and biomonitodng of industrial effluents using phytoxicity tests.Environ. ToxicoL Chem. 1988, 7: 645-652.
    [384]. Walbridge, C. T. A flow-through testing procedure with duckweed (Lemna minor L.). Environmental Research Laboratory - Duluch, Minnesota 55804. US EPA Report No. EPA-600/3-77 108. 1977. September 1977.
    [385]. Bishop, W. E., Perry, R. L. Development evaluation of a flow through growth inhibition test with duckweed (Lemna minor). In: ASTM STP 737, 1981, p421-435. Amer. Soc. Testing Materials.
    [386]. Bruce, R.D., Versteeg, D.J. A statistical procedure for modeling contin uous toxicity data. Environ. Toxicol. Chem. 1992, 11: 1485-1494.
    [387]. Taraldsen, J.E., Norberg-King, T.J. New method for determining effluent toxicity using duckweed (Lemna minor). Environ. Toxicol. Chem. 1990, 9: 761-7.
    [388]. Huebert, D.B., Dyck, B.S., Shay, J.M. The effect of EDTA on assessment of Cu toxicity in the submerged macrophyte, Lemna trisulca L. Aquat..Toxicol. 1993, 24: 183-94.
    [389].凯恩斯,J.([美]John Caims,Jr.)等著,曹凤中,于亚平译。水环境的生物监测。中国环境科学出版社。1989,p1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700