用户名: 密码: 验证码:
氮肥水平和种植密度对冬小麦冠层结构与功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验采用大穗型品种泰农18(T18)和多穗型品种山农15(S15)为供试材料,2008-2009年两个品种设3个氮肥水平0、180、240kg·hm~(-2),分别为N0、N180、N240;和两个种植密度150×10~4hm~(-2)、225×10~4hm~(-2)基本苗,分别为D150、D225。2009-2010年根据2008-2009年的试验结果,泰农18增加了1个氮肥水平300kg·hm-2和1个种植密度300×10~4hm~(-2)基本苗,分别为N300和D300。研究了氮肥水平和种植密度互作条件对冬小麦群体动态变化和产量、冠层结构与光合性能、小麦茎秆结构特征与抗倒性能、土壤硝态氮时空分布以及肥料利用效率的影响,主要研究结果如下:
     1氮肥和密度对冬小麦群体动态变化和产量的影响
     在本试验条件下,两个不同穗型的小麦品种群体数量均随氮肥水平和种植密度的增加而增加。大穗型品种T18叶面积系数、干物质积累量随氮肥水平和种植密度的增加而增加;中穗型品种S15叶面积系数、干物质积累量变化趋势在生育阶段的前中期与大穗型品种T18一致,但生育阶段的后期,高氮肥水平和高密度处理密度反而低于低氮肥水平和低密度处理,但都高于不施氮处理。
     两个不同穗型小麦品种的单位面积穗数均随氮肥水平和种植密度的增加而增加。大穗型品种T18千粒重随氮肥水平的增加而降低,随种植密度的增加先增加后降低;中穗型品种S15千粒重随氮肥水平和种植密度的增加而降低。大穗型品种T18穗粒数随氮肥水平的增加和种植密度的降低而增加;中穗型品种S15的穗粒数表现为高氮肥水平和高密度处理密度反而低于低氮肥水平和低密度处理,但都高于不施氮处理。氮肥水平和密度处理对产量的影响存在显著的交互效应,对于大穗型品种T18来说,在同一密度条件下产量随氮肥水平的增加而增加,在同一氮肥水平条件下产量随密度的增加而增加;对于中穗型品种S15来说,在同一密度条件下产量随氮肥水平的增加先增加后降低,在同一氮肥水平条件下产量随密度的增加而降低。大穗型品种T18以N300D300处理产量最高但与N240D225、N180D225差异不显著;中穗型品种S15的N180D150处理产量显著高于其他处理。
     增加氮肥水平和降低密度不利于花前贮藏同化物向籽粒的运转。除大穗型品种T18低氮低密度(N180D150)处理外,两个品种的经济系数施氮处理间均差异不显著但显著低于不施氮处理,合理氮肥水平和种植密度提高产量是通过提高生物量,而不是通过提高经济系数来实现的。
     2氮肥和密度对冠层结构与光合性能的影响
     对于大穗型品种T18来说,与不施氮处理相比,施氮可以增加旗叶叶面积但施氮处理间差异不显著,同一氮肥水平下受密度影响不大;旗叶厚度、含氮量、叶绿素含量、净光合速率、气孔导度、蒸腾速率、PSII最大光化学效率、PSII实际光化学效率、SOD、POD、CAT活性均随氮肥水平的增加和密度的降低而升高;胞间CO2浓度随氮肥水平和密度的增加而增加。对于中穗型品种S15来说,随氮肥水平和种植密度的增加,旗叶叶面积显著增加;旗叶厚度、含氮量、叶绿素含量、净光合速率、气孔导度、蒸腾速率、PSII最大光化学效率、PSII实际光化学效率、SOD、POD、CAT活性均随氮肥水平的增加先增加后降低,随密度的增加而降低;胞间CO2浓度随氮肥水平和密度的增加而增加。
     两个穗型品种的旗叶净光合速率与旗叶厚度、叶绿素、含氮量之间呈显著或极显著的正相关关系。大穗型品种T18的旗叶净光合速率与旗叶叶面积呈呈显著或极显著的正相关关系,但中穗型品种S15的旗叶净光合速率与旗叶叶面积相关关系不显著。
     大穗型小麦品种T18的WLAI和TLAI整个灌浆期内随氮肥水平和种植密度的增加而增加,整个生育期内N240D225>N180D225>N240D150>N180D150>N0D225>N0D150。中穗型小麦品种S15在灌浆前中期(开花-花后14天)WLAI和TLAI的变化趋势与大穗型小麦品种T18相似。但灌浆中后期(花后14天-成熟),WLAI和TLAI在同一种植密度下随氮肥水平的增加先增加后降低;在低氮水平下,高密度处理WLAI和TLAI高于低密度处理,在中氮和高氮水平下趋势相反,灌浆中后期WLAI和TLAI表现为N180D150>N180D225>N240D150>N240D225>N0D150>N0D225。
     对于大穗型品种T18来说,LLAI在同一密度水平下随氮肥水平和种植密度的增加而增加,整个灌浆期内N240D225>N180D225>N240D150>N180D150>N0D225>N0D150。对于中穗型品种S15来说,LLAI在同一密度条件下随氮肥水平的增加先增加后降低;高密度处理LLAI在同一氮肥水平条件下低于低密度处理,N180D150>N180D225>N240D150>N240D225>N0D150>N0D225。
     对于大穗型品种T18来说,CAP在同一密度水平下随氮肥水平和种植密度的增加而增加,N240D225、N180D180、N240D150之间差异不显著,但都显著高于N180D150、N0D225、N0D150。对于中穗型品种S15来说,CAP在同一密度条件下随氮肥水平的增加先增加后降低;高密度处理CAP在同一氮肥水平条件下低于低密度处理,N180D150最高,且显著高于其它处理。
     在下部叶片持绿期内,冬小麦下部叶片叶面积系数(LLAI,下部两片叶)与群体净光合速率(CAP)和产量呈极显著的正相关关系;从开花到花后14天之前,上部叶片叶面积系数(TLAI,上部三片叶)和全部叶面积系数(WLAI,下部叶片和上部叶片之和)与群体净光合速率(CAP)和产量并不呈必然的显著正相关关系(T18显著正相关,S15相关不显著),但花后14天至成熟,两个品种的TLAI和WLAI均与群体净光合速率和产量呈显著的正相关关系。
     3氮肥和密度对中穗型品种S15茎秆结构特征与抗倒性能的影响
     施氮水平和种植密度间存在显著的互作效应,施氮水平由180 kg·hm~(-2)增至240 kg·hm-2或种植密度由150×10~4·hm~(-2)增加到225×10~4·hm~(-2),中穗型小麦品种S15茎秆重心高度、基部节间长度显著提高,基部节间直径、厚度、充实度、机械强度和抗倒指数显著降低,同时茎秆基部节间纤维素含量、木质素含量显著减少,含氮量显著升高,碳氮比(C/N)以及木质素合成相关酶活性显著降低。逐步回归分析表明,在影响小麦抗倒性能方面,氮肥水平的作用大于种植密度。本试验条件下,虽然氮肥水平为180 kg·hm~(-2)、种植密度为150×10~4 hm~(-2)的处理穗数较低,但穗粒数、千粒重显著高于其它处理,产量最高。因此,降低氮肥用量至180 kg·hm~(-2)的同时降低种植密度至150×10~4 hm~(-2),可在增强植株抗倒伏能力的同时获得高产。
     4施氮对土壤硝态氮时空分布的影响
     小麦生育前期(出苗-拔节),土壤耕层NO_3~--N含量较高。随施氮量增加,土壤0-40cm土层中NO_3~--N含量显著增加,而40cm-200cm土层NO_3~--N含量处理间差异不明显。小麦生育中后期(拔节-成熟)NO_3~--N累积峰明显下移,处理间相比较表现为随施氮水平的增加土壤NO_3~--N含量显著升高。年季间比较,2009-2010生长季低氮处理0-200cm土层硝态氮含量显著低于2008-2009生长季的低氮处理0-200cm土层硝态氮含量,连续减量施氮可以降低土壤硝态氮含量。
     5氮肥和密度互作对肥料利用效率的影响
     在冬小麦生育阶段的前中期,两个小麦品种的氮、磷、钾吸收量均随氮肥水平和种植密度的增加而增加;在小麦生育阶段的中后期,大穗型品种T18的氮、磷、钾吸收量仍表现为随氮肥水平和种植密度的增加而增加;但中穗型品种S15表现为在同一种植下随氮肥水平的增加先增加后降低,在同一氮肥水平下随种植密度的增加而降低。氮、磷、钾吸收量呈显著或极显著的正相关关系,氮素可以促进磷和钾的协同吸收。
     对于大穗型品种T18和中穗型品种S15来说,在同一密度条件下,氮素养分利用效率(NUE)、氮肥农学效率(AEN)、氮肥生理效率(PEN)和氮肥偏生产力(PFPN)均随氮肥水平的增加而降低。大穗型品种T18在同一氮肥水平条件下,NUE、AEN、PEN和PFPN随种植密度的增加先增加后降低,中穗型品种S15在同一氮肥水平条件下,REN、AEN、PEN和PFPN则随种植密度的增加而降低。对于大穗型品种T18来说,适当增加种植密度可以同步提高NUE、AEN、PEN和PFPN;对于中穗型品种S15来说,增加密度不利于NUE、AEN、PEN和PFPN的提高。
     对于两个穗型的品种来说,在同一种植密度条件下,磷素养分利用效率(PUE)和钾素养分利用效率(KUE)均随氮肥水平的增加而降低;大穗型品种T18磷肥偏生产力(PFPP)和钾肥偏生产力(PFPK)随氮肥水平的增加而提高,中穗型品种S15的PFPP和PFPK随氮肥水平的增加先增加后降低。大穗型品种T18的PUE、PFPP、KUE和PFPK随种植密度的增加先增加后降低,中穗型品种S15的PUE、PFPP、KUE和PFPK随种植密度的增加而降低。说明,在本试验条件下,对于大穗型品种T18来说,适当增加种植密度可以同步提高PUE、PFPN、KUE、PFPK;对于中穗型品种S15来说,增加密度不利于KUE、AEN、PEN和PFPN的提高。
     综合考虑产量、冠层结构与光合性能之间的关系、形态特征与抗倒性能之间的关系、土壤硝态氮的变化以及肥料利用效率等以上结果,大穗型品种T18以N180D225处理,中穗型品种S15以N180D150处理是高产、稳产、生态、高效的氮肥密度组合方式。
In this study, T18, a winter wheat variety with multi-grain number per spike, and S15, a winter wheat variety with middle grain number per spike, were used as experimental materials for investigating the effects on the changes of population and grain yield, canopy architecture and ability of photosynthesis, the characteristic of culm and lodging resistance, the changes of NO3--N content in 0-200cm soil profile with time and space and fertilizer use efficiency under different nitrogen rate and plant density. The main results were as follows:
     1 Effects of nitrogen rate and plant density on the changes of population and grain yield in two types of wheat cultivars.
     The population of two types of wheat cultivars increased with the increasing of nitrogen rate and plant density in this study. The LAI and drymatter accumulation increased with increasing of itrogen rate and plant density for T18 in the whole growing stage. These were in same with T18 for S15 only during early and middle growing period but during late growing period the LAI and drymatter accumulation of high nitrogen and high density treatments were less than that of low nitrogen and low density treatments which both more than no nitrogen application treatments.
     With nitrogen rate and plant densit increasing, the total ears per unit area increased. Weight per 10~3 kernels of T18 decreased with nitrogen rate increasing, and increased first and then decreased with plant density increasing. For S15, Weight per 10~3 kernels of high nitrogen and high density treatments is less than that of low nitrogen and low density treatments which both more than no nitrogen application treatments. There existed significant interaction on grain yield between nitrogen rate and plant density. In the same plant density, the yield of T18 increased with the nitrogen rate increasing; in the same nitrogen rate, the yield of T18 increased first and then decreased with plant density increasing. For S15, the yield increased first and then decreased with nitrogen increasing in the same plant density; in the same nitrogen rate, the yield decreased with the plant density increasing. The treatment N300D300 gained the highest yield but was not significant to N240D225 and N180D225 for T18. For S15, the treatment N180D150 gained the highest yield and was significant to other treatments.
     Decreasing nitrogen rate and increasing plant density made reserves in vegetable organs before anthesis of wheat plant for translating to grain. Except for treatment of N180D150 the economic coefficient was not signicant among treatments of nitrogen application but all higher significantly than the treatments of no nitrogen application. So the yield elevation was achieved by increasing of dry matter weight not by improving the economic coefficient.
     2 The effects of nitrogen rate and plant density on canopy architecture and ability of photosynthesis
     For T18, the flag leaf area of nitrogen application treatment was bigger than that of no nitrogen treatment. The flag leaf area was not affected significantly by plant density in the same nitrogen. The weight/area, nitrogen content, chlorophyll content, Pn, Cond, Tr, Fv/Fm,ΦPSII, SOD activity, POD activity, and CAT activity increased with the increasing of nitrogen rate and the decreasing of plant density; Ci of T18 increased with nitrogen rate and plant density increasing. The flag leaf area of S15 increased with the increasing of nitrogen and plant density. For S15, the weight/area, nitrogen content, chlorophyll content, Pn, Cond, Tr, Fv/Fm,ΦPSII, SOD activity, POD activity, and CAT activity increased first and then decreased with the increasing of nitrogen rate but decreased always with increasing of plant density; Ci of S15 increased with nitrogen rate and plant density increasing.
     There existed significant positive correlation between the Pn of flag leaf and the weight/area, nitrogen content, chlorophyll content in two types of wheat cultivars. For T18, there existed significant positive correlation between the Pn and area of flag leaf but not for S15.
     WLAI and TLAI increased with nitrogen rate and plant density increasing, and it was showed that N240D225>N180D225>N240D150>N180D150>N0D225>N0D150during the entire growing stage which was from anthesis to 14 days after anthesis for T18. For S15, they were in same with T18 during the early and middle filling stage. But during the late filling stage which from14 days after anthesis to maturity, WLAI and TLAI increased first and then decreased with the nitrogen rate increasing in the same plant density; and WLAI and TLAI of high density treatment was higher than low density treatment when no nitrogen applied, but it was contrary to the nitrogen application treatments. It was showed that N180D150>N180D225>N240D150>N240D225>N0D150>N0D225 for WLAI and TLAI of S15 during the late filling stage.
     For T18, LLAI increased with the increasing of nitrogen rate and plant density, and it was showed that N240D225>N180D225>N240D150>N180D150>N0D225>N0D150 in the whole filling stage. For S15, LLAI increased first and then decreased with increasing of nitrogen rate in the same plant density; LLAI decreased with plant density increasing in the same nitrogen rate, and it was showed that N180D150 > N180D225 > N240D150 >N240D225>N0D150>N0D225 during the whole filling stage.
     For T18, CAP increased with the increasing of nitrogen rate and plant density. There was no significant difference among N240D225、N180D180、N240D150, but they were all significant higher than 180D150、N0D225、N0D150. For S15, CAP increased first and then decreased with nitrogen rate increasing, CAP of high plant density was lower than that of low plant density in the same nitrogen rate. The CAP of N180D150 was higher significantly than other treatments.
     Lower leaf area index (LLAI) was positively significantly correlated with CAP and grain yield during the lower leaf stay-green stage , which consists of the lower two layers of leaves on the stem ; Top leaf area index (TLAI) consists of the top three layers of leaves on the stem and Whole leaf area index (WLAI) which consists of all of the leaves on the stem were positively significantly correlated with CAP and grain yield for T18 but not for S15 so the relationship were not certainly within 14 days after anthesis; TLAI and WLAI were positively significantly correlated with CAP and grain yield for two kind of wheat from 14 days after anthesis to maturity.
     3 Effects of nitrogen rate and plant density on the characteristic of culm and lodging resistance for S15
     The effects of nitrogen rate and plant density on lodging resistance related traits including morphological character, chemical components of basal internode, culm lodging resistance index, enzyme activities of lignin metabolism and grain yield of winter wheat were investigated. The results showed that grain yield were decreased and culm height of center of gravity and length of basal internode were raised as nitrogen rate increased from 180 kg·ha-1 to 240 kg·ha-1 or plant density increased from 150 ha-1 to 225 ha-1, while diameter, thickness, filling degree, mechanical strength of basal internode, and culm lodging resistance index were reduced. At the same time, cellulose content, lignin content, C/N ratio of basal internode were decreased but nitrogen content was increased with the increase of nitrogen rate or plant density. There existed significant interaction on lodging resistance between nitrogen rate and plant density, which led to worst lodging resistance in wheat plant under higher nitrogen rate plus higher plant density. Stepwize regression analysis indicated that nitrogen rate played a more important role in affecting lodging resistance compared with plant density. The highest kernels per spike, 1000 kernel weight and grain yield were gained with 180 kg·ha-1 nitrogen application rate plus 150 ha-1 basic seedlings. Therefore, proper combination with 180 kg·ha-1 nitrogen application rate plus 150 ha-1 basic seedlings could not only improve lodging resistance but also raise grain yield.
     4 Effects of nitrogen application on the changes of NO_3~--N content in 0-200cm soil profile with time.
     During the early growing stage, Content of NO_3~--N in 0-40cm soil profile is higher relatively. With nitrogen rate increasing, content of NO_3~--N in 0-40cm soil profile increased significantly but not significantly for that in 40-200cm. During the middle and late state, the peak value of NO_3~--N accumulation moved downwards obviously. The content NO_3~--N of 2009-2010 growing season was lower significantly than that of 2008-2009 growing season. It was showed reducing nitrogen amount successively in two growing seasons could decrease the content of NO_3~--N effectively.
     5. Efffect of interactions of nitrogen and density on fertilizer use efficiency
     In the early and middle growing stages of two types of wheat cultivars, nitrogen, phosphorus and potassium absorption volume improved with increasing of nitrogen rate and plant density. In the late stage of wheat, N, P and K uptake of T18 were still improved with increase of density and nitrogen, but for S15 showed that N, P and K uptake increased first and then decreased in the same plant density. There were significant positive correlations among N, P, K, and uptake of nitrogen could improve the absorption of phosphourus and potassium.
     In the same density condition, NUE, AEN, PEN and PFPN with the nitrogen rate increasing are increased for two types of wheat cultivars. In the same nitrogen levels, NUE, AEN, PEN and PFPN of T18 with the increasing of density increased and then decreased. NUE, AEN, PEN sand PFPN of S15 with the increasing of density decreased. For T18, increasing density appropriately could be increased NUE, AEN, PEN and PFPN at the same time, but increasing density was not conducive to improve NUE, AEN, PEN and PFPN of S15.
     For two ear types of wheat, in the same density conditions, PUE and KUE decreased with increasing of nitrogen rate. PFPP and PFPK of T18 increased with increasing nitrogen rate, but for S15 PFPP and PFPK increased and then decreased with nitrogen rate increasing. PUE, PFPP, KUE and PFPK of T18 increased and then decreased with the increase of density, but PUE, PFPP, KUE and PFPK of S15 decreased with the increasing of plant density in the same nitrogen rate.Under the experimental conditions, for T18, increasing density appropriately could increased PUE, PFPP, KUE, PFPK at the same time, but increasing density was not conducive to improve PUE, PFPP, KUE, PFPK of S15.
     As far as the relationship between yield, canopy structure and photosynthetic performance, between the morphological characteristics and lodging, changes of soil nitrate and fertilizer use efficiency were considered, N180D225 treatment of T18 and N180D150 of S15 were high-stable yield, ecological and efficient treatments of nitrogen and density combinations.
引文
曹承富,孔令聪,汪建来,等.施氮量对强筋和中筋小麦产量和品质及养分吸收的影响.植物营养与肥料学报, 2005, 11(1):46- 50.
    陈际型.钾素营养对水稻根系生长和养分吸收的影响.土壤学报, 1997, 34(2): 182-188.
    陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003, 29(5): 730-734.
    董树亭,于松烈,齐新华.高产冬小麦群体呼吸速率变化与光合作用关系的研究.华北农学报, 1989, 4(4): 6-10.
    董树亭.高产冬小麦群体光合能力与产量关系的研究.作物学报, 1991, 17(6): 461- 469.
    董树亭.玉米生态生理与产量品质形成.北京:高等教育出版社,2006: 54-72.
    范仲学,王志敏,梁振兴,等.优化灌溉与施肥对冬小麦冠层结构的影响研究. 中国生态农业学报, 2005, 13(3): 79-81.
    冯绍元,黄冠华.试论水环境中的氮污染行为.灌溉排水, 1997, 16(2): 34-36.
    傅兆麟,马宝珍,王光杰,等.小麦旗叶和穗粒重之间的关系.麦类作物学报, 2001, 21(1): 92-94.
    郭天财,王之杰,胡廷积,等.不同穗型小麦品种群体光合特性及产量性状的研究.作物学报, 2001, 27(5): 632-639.
    郭维俊,王芬娥,黄高宝,张锋伟,魏时来.小麦茎秆力学性能与化学组分试验. 农业机械学报, 2009, 40(2): 110-114.
    韩清瑞.小麦基部节间的形态结构与倒伏的关系.北京农业科学, 1990(3): 10-13.
    何萍,金继运.氮钾互作对春玉米养分吸收动态及模式的影响.玉米科学, 1999, 7(3): 68-72.
    胡延积,杨永光,马元喜,等.小麦生态与生产技术[ M] .郑州:河南科学技术出版社, 1986: 19-23.
    黄益宗,张福珠.化感物质对土壤N2O释放量地影响的研究.环境科学学报,1999,19(5):479-482
    吉艳芝,刘辰琛,巨晓棠,等.根层调控对填闲作物消减设施蔬菜土壤累积硝态氮的影响.中国农业科学, 2010, 43(24): 5063-5072.
    姜慧敏,张建峰,杨俊诚.不同氮肥用量对设施番茄产量、品质和土壤硝态氮累积的影响.农业环境科学学报, 2010, 29(12): 2338-2345.
    井长勤,周忠,张永.氮肥运筹对小麦倒伏影响的研究.徐州师范大学学报,2003, 21(4): 46-49.
    巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3- - N在土壤剖面的累积及移动.土壤学报, 2003,40(4): 538-546.
    康国章,王永华,郭天财,朱云集.氮素施用对超高产小麦生育后期光合特性及产量的影响.作物学报, 2003, 29(1): 82-86.
    李斌,董召荣,葛琳琳,等.密度和氮肥运筹对超高产小麦产量和群体质量的影响.安徽农业大学学报, 2009, 36(3): 446-450.
    李金才,尹钧,魏凤珍.播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31(5): 662-666.
    李生秀等.氮肥品种和用量对氮素淋失的影响.见:干旱农田肥水关系原理与调控技术.中国农业科技出版社,1995,341-345
    李天杰.土壤环境学.北京:高等教育出版社,1995,225-260
    刘春生,杨守祥主编.农业化学分析.北京:中国农业大学出版社, 1996,10.
    刘天华,龚继续,冯启明.川西平原小麦倒伏原因的初步研究.西南农业学报, 1995(3): 12-14.
    刘晓燕,金继运,何萍,高伟,李文娟.氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系.中国农业科学, 2007, 40(12): 2780-2787.
    鲁如坤.土壤-植物营养学原理和施肥.北京:化学出版社,1998,423-426
    罗茂春,田翠婷,李晓娟,等.水稻茎秆形态结构特征和化学成分与抗倒伏关系综述.西北植物学报, 2007, 27(11): 2346-2353.
    马富裕,张旺锋,李锦辉,张勇,刘莉君.棉花群体光合作用测定方法探讨.石河子大学学报, 1998, 1: 46-50.
    马跃芳,金晓平,龚辉,等.大麦倒伏原因的初步研究.作物研究, 1990, 4(4): 22-25.
    彭波,王阳,李永祥,等.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报, 2010, 36(10): 1624-1633.
    齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素.地理学报.1999,54(6):534-542
    钱雪娅,景蕊莲,王辉,昌小平不同水分条件下小麦灌浆期功能叶片的遗传特性. 应用生态学报, 2009, 20( 12): 2957-2963.
    任智慧,李花粉,陈清,李晓林.甜玉米填闲减缓菜田土壤硝酸盐淋溶的研究. 农业工程学报, 2006, 22(9): 245-249.
    申建波,张福锁.水稻养分资源综合管理理论与实践.北京:中国农业大学出版社, 2006.
    沈善敏,宇万太,陈欣,等.施肥进步在粮食增产中的贡献及其地理分异.应用生态学报, 1998, 9(4): 386-390.
    沈文飚,叶茂炳,徐朗莱,张荣铣.小麦旗叶自然衰老过程中清除活性氧能力的变化.植物学报, 1997, 39: 634-640.
    史正军,樊小林.干旱胁迫对不同基因型水稻光合特性的影响.干旱地区农业研究, 2003, 21( 3) : 123-126.
    王宝山,植物生理学.北京:科学出版社, 2004. 215-220.
    王法宏,王旭清,任德昌,曹宏鑫,董玉红, Ken. Sayre.水浇地冬小麦垄作栽培技术研究.麦类作物学报, 2004, 24(2): 68-72.
    王法宏,杨洪宾,徐成忠,等.垄作栽培对小麦植株形态和产量性状的影响.作物学报, 2007,33(6): 1038-1040.
    王庆成,王忠考.作物高产高效生理学研究进展[ M] .北京:科学出版社, 1994: 25-34.
    王焱,毕建杰,刘建栋,叶宝兴.水分胁迫对冬小麦冠层内的光分布影响的研究.华北农学报, 2009, 24, 119-125.
    王勇,李朝恒,李安飞,等.小麦品种茎秆质量的初步研究.麦类作物, 1997, 17(3): 28-31.
    王勇,李晴祺.小麦品种茎秆的质量及解剖学研究.作物学报, 1998, 24: 452-458.
    王月福,姜东,于振文,曹卫星.氮素水平对小麦子粒产量和蛋白质含量的影响及其生理基础.中国农业科学, 2003, 36(5):513-520.
    王之杰,郭天财,王化岑,王永华.种植密度对超高产小麦生育后期光合特性及产量的影响.麦类作物学报, 2001, 21 (3) : 64-67.
    王之杰,朱云集,郭天财,等.超高产小麦冠层光辐射特征的研究.西北植物学报, 2003, 23(10): 1657-1662.
    魏凤珍,李金才,王成雨,屈会娟,沈学善.氮肥运筹模式对小麦茎秆抗倒性能的影响.作物学报, 2008, 34(6): 1080-1085.
    武永胜,薛晖,刘洋,龚月桦.持绿型小麦叶片衰老和叶绿素荧光特征的研究. 干旱地区农业研究, 2010, 28 (4) : 117-122.
    肖凯,谷俊涛,张荣铣,方敏.杂种小麦光合特性的初步研究.作物学报, 1997, 23(4): 425- 431.
    肖凯,张荣铣,钱维朴.氮素营养对小麦群体光合碳同化作用的影响及其调控机制.植物营养与肥料学报, 1999, 5( 3): 235-243.
    肖世和,张秀英,闫长生,等.小麦茎秆强度的鉴定方法研究.中国农业科学, 2002, 35: 7-11.
    熊又升,袁家富,郝福新,等.氮肥用量对不同小麦品种产量和品质的影响.华中农业大学学报, 2009, 28(6): 697-700.
    徐璇,周瑞,谷艳芳,丁圣彦.不同水氮耦合对小麦旗叶主要光合特性的影响.河南大学学报, 2001, 40(1): 53-57.
    阎素红,杨兆生,柴升,小麦上三叶性状与产量及其构成因素的关系.麦类作物学报, 2004, 24 (4) : 39-42.
    杨国敏,孙淑娟,周勋波,等.群体分布和灌溉对冬小麦农田光能利用的影响.应用生态学报, 2010, 28 (4) : 117-122.
    杨淑慎,高俊凤,李学俊,吕金印,高梅.杂交春性小麦叶片衰老与保护酶系统活性的研究.中国农业科学, 2004, 37(3): 460-463.
    杨文平,郭天财,刘胜波,等.行距配置对‘兰考矮早八’小麦后期群体冠层结构及其微环境的影响.植物生态学报, 2008, 32(2): 485-490.
    于经川,刘兆晔,马淑丽,等.上三叶与小麦单茎穗粒重关系的研究.莱阳农学院学报, 2006, 23( 1) : 116-118.
    于振文.作物栽培学各论.北京:中国农业出版社, 2003, 31-34.
    鱼欢,冯佰利,张英,刘鹏涛,何永艳,代惠萍,李生秀.不同栽培模式下冬小麦叶片衰老与活性氧代谢研究.作物学报, 2007, 33(10): 1729-1732.
    袁新民,王周琼.硝态氮的淋失及其影响因素.干旱地区研究,2000,17(4): 46-52. 翟丙年,李生秀.水氮配合对冬小麦产量和品质的形响.植物营养与肥料学报,2003,9(1): 26-32.
    张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报, 2008, 45(5): 915-923.
    张福锁.协调作物高产与环境保护的养分资源综合管理技术研究与应用.北京: 中国农业大学出版社, 2008, 1-3.
    张继宗,刘培财,左强,等.北方设施菜地夏季不同填闲作物的吸氮效果比较研究.农业环境科学学报, 2009, 28(12): 2663-2667.
    张洋,张继,强晓敏,等不同氮效率基因型冬小麦生理特征的比较研究.植物营养与肥料学报, 2010, 16(6): 1319-1324.
    张志良.植物生理学实验指导.北京:高等教育出版社, 2003 .
    赵会杰,薛延丰,董中东,等.密度及追氮时期对大穗型小麦旗叶及子粒碳水化合物代谢的影响.河南农业大学学报, 2004,38(1): 1-4.
    中国农业年鉴编辑委员会.中国农业年鉴.北京:中国农业出版社, 1980-2006.
    周春菊,张嵩午,王林权,苗芳.灌浆结实期冷型小麦叶片氮含量变化的研究. 土壤通报2006, 37(3): 550-554.
    朱兆良.我国氮肥的使用现状、问题和对策.见:李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南京:江苏科学技术出版社, 1998. 38 -51.
    Aebi H. Catalase in vitro. Methods of Enzymol, 1984, 105: 121-126.
    Alejandro D P, Pilar P, Diego G, et al. Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany, 2007, 59: 371-380.
    Anabayan KessaValow. Bromide and Nitrogen- 15 Tracers of Nitrate Leaching under Irrigated Corn in Central Nebraska. J.Environ. Qual. 1996, 25: 1008~1014.
    Bergstrom, L and Brink, N., Effects of differentiated application of fertilizer N leaching Losses and distribution of inorganic N in soil, Plant and Soil, 1986 93(3): 333~345.
    Berry P M, Griffin J M, Sylvester-Bradley R, et al. Controlling plant form through husbandry to minimize lodging in wheat. Field Crops Res., 2000, 67: 59-81.
    Berry P M, Spink J H, Gay A P. Comparison of root and stem lodging risks among winter wheat cultivars. J. Agric. Sci Camb, 2003, 141: 191-202.
    Berry P M, Spink J H, Griffin J M, et al. Research to understand, predict and control factors affecting lodging in wheat. Home-Grown Cereals Authority Research Project, HGCA, London, 1998.
    Berry P M, Spink J, Sterling M, Agarwal U P, Atalla R H. Methods for rapidly measuring the lodging resistance of wheat cultivars. J Agron Crop Sci, 2003, 189: 390- 401.
    Berry P M, Sterling M, Baker C J, et al. A calibrated model of wheat lodging compared with field measurements. Agricultural and Forest Meteorology, 2003, 119: 167-180.
    Berry P M, Sterling M, Mooney S J. Development of a model of lodging for barley. J. Agronomy and Crop Science, 2006, 192: 151-158.
    Berry P M, Sterling M, Spink J H, Baker C J, et al. Understanding and reducing lodging in cereals. Adv. Agron., 2004, 84: 217-271.
    Berry P M, Sylvester-Bradley R, Berry S. Ideotype design for lodging-resistant wheat. Euphytica, 2007, 154: 165-179.
    Berstrom L and Brink N. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil. Plant and Soil, 1986, 93(3): 333- 345
    Bhaskara Reddy M V, Arul J, Angers P, Couture L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem., 1999, 47: 1208- 1216
    Blum A, Sullivan C Y, Nguyen H T. The effects of plant size on wheat response to agents of drought stress: II. Water deficit, heat and ABA. Austrilian Journal of plant physiology, 1997, 24: 43- 48.
    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.
    Breet C T, Waldron K W. Physiology and biochemistry of plant cell walls. London: Chapman & Hall, 1996, 42-43.
    Campbell C A, Zentner R P, Selles F, Akinremi. Nitrate leaching as influenced by fertilization in the brown soil zone. Canadian Journal of Soil Science, 1993, 73(4): 387-397
    Carpita, N., Vergara, C.. A recipe for cellulose. Science, 1998, 279: 672-673.
    Cassman K G, Peng S, Olk D C, et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Research, 1998, 56: 7~38
    Cook R J, Ownley B H, Zhang H, Vakoch D. Influence of paired- row spacing and fertilizer placement on yield and root diseases of direct- seeded wheat diseases of direct- seeded wheat. Crop science, 2000, 79: 39- 51.
    Craufurd PQ, Wheeler T R, Ellis R H, et al. Effect of temperature and water deficit on water- use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop science, 1995, 39: 136- 142.
    Crook M J, Ennos A R. The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two cultivars of winter wheat. J Exp Bot, 1995, 46: 931- 938
    Cui Z L, Zhang F S, Chen X P, Dou Z X, Li J L. In- season nitrogen management strategy for winter wheat: maximizing yields, minimizing environmental impact in an over- fertilization context. Field Crop Res, 2010, 116: 140- 146
    Cui Z L,Chen X P, Zhang F S,et al. On- farm evaluation of the improved soil Nmin- based nitrogen nmanagement for summer wheat in North China Plain. Agronomy Journal, 2008, 100: 517~525
    De Bruin J L, Pedersen P. Effect of row spacing and seeding rate on soybean yield. Agronomy Journal, 2008, 100: 704- 710.
    Dechard E L, etal, nitrate reductase assays test for crosses and lines in soring wheat, Crop Sci., 1978, 18: 289-294.
    Dhindsa R S, Plumb-Dhindsa P L, Reid D M. Leaf senescence and lipid peroxidation:Effects of some phytohormones, and scavengers of free radicals and singlet oxgen. Physiologia Plantarum, 1982, 56(4): 453-457.
    Donald C M, Hamblin J. The biological yield and harvest index of cereals as agronomic and palnt breeding criteria. Advanced Agronomy, 1976, 28: 361- 405.
    Duncan W G. Maize. Cambridge, U K: Cambridge University Press, 1975, 23-50.
    Eagle A J, Bird J A, Horwath W R, et al. Rice yield and nitrogen utilization efficiency under alternative straw management practices. Agronomy Journal, 2000, 92: 1096 -1103.
    Esechie H A, Rodriguez V, Al- Asmi H. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. Eur J Agron, 2004, 21:21- 30
    Fageria N K, Baligar V C, Clark R B. Physiology of crop production, 1st. New York: Food Products Press, 2005, pp 8- 12
    FageriaN K, BaligarV C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. Journal of Plant Nutrition, 2003, 26: 1315-133.
    Fang Y, Xu B C, Turner N C, Li F M. Grain yield , dry matter accumulation and remobilization, and root respiration in winter wheat and affected by seeding rate and root pruning. European Journal of Agronomy, 2010, 33: 257-268.
    FAO. FAO statistical databases, agriculture date. http: //faostat fao. org/faostat. 2005. Ford D M, Shibles R. Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence. Plant Physiol, 1988, 86: 108-111.
    Gianibelli M C, and Sarandon.S J. Effect of late nitrogen fertilization and the gluten content and technological quality of bread wheat (Triticum aestivum L.),Gluten proteins 1990,edited by Bushuk W and Tkachuk R.1991,755-764.
    Giannopolitis C N and Ries S K. Superoxide dismutases. I. Occurrence in higher plants. Plant physiology, 1977, 59: 309-314.
    Giunta F, Motzo R, Pruneddu G. Has long- term selection for yield in durum wheat also induced changes in leaf and canopy traits? Field Crops Research, 2008, 106: 68- 76.
    Grima-Pettenati J, Goffner D. Lignin genetic engineering revisited. Plant Sci, 1999, 145: 51- 65
    Guo R Y, Li X L, Christie P. Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant and Soil, 2008, 313: 55- 70.
    He C E, Liu X J, Fangmeier A, et al. Quantifying the total air- borne nitrogen- input into agroeco-systems in the North China Plain. Agriculture, Ecosystems and Environment, 2007, 121: 395-400.
    Hergert, G W. Nitrate leaching through sandy soil as affected by sprinkler irrigationmanagement. Journal of Environmental Quality, 1986, 15: 272- 278
    Hiltbrunner J, Streit B, Liedgens M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Res, 2007, 102: 163- 171
    Huppe L P, Turpin D H. Intergration of carbon and nitrogen metabolism in plant and algal calls. Ann Rev Plant Physical Plant Mol Biol., 1994, 45: 577-607.
    Jacqueline G P, Deborah G. Lignin genetic engineering revisited. Plant Sci, 1999, 145: 51-65.
    Jessica B, Pierre M, Bruno A. Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant physiology, 2008, 148: 1707-1720.
    Johnson C B, W J Whittington, and G C Blackwood, nitrate reductase as a possible predictive test of crop yield, Nature, 1977, 262: 133-134.
    Kajita S, Hishiyama S, Tommura Y. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate coenzyme A ligase is depressed. Plant Physiol., 1997, 114: 871-879.
    Kato T. Variation in grain-filling process among grain position within a panicle of rice. Journal of breeding and genetics 1993, 25: 1-10.
    Klapheck S, Zimmer I, Cosse H. Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiology, 1990, 31: 1005- 1013.
    Knobloch K H, Hahlbrock K. Isoenzymes of p-coumarate: CoA ligase form cell suspension cultures of Glycine max. Eur. J. Biochem., 1975, 52: 311- 320
    Kulshrestha V P, Jain H K. Eighty years of wheat breeding in India: Past selection pressures and future prospects. Z. Pflanzenz, 1982, 89: 19- 30.
    Lee D, Kmeyer K, Kchapple C. Down- regulation of 4-coumarate CoA ligase( 4CL) in arabidopsis effect on lignin composition and implication for the control of monlignol biosynthesis. Plant Cell, 1997, 9: 1985- 1998.
    Legg J O, Meisinger J J. Soil nitrogen budguets. In F J Stevenson (ed), Nitrogen in agricultral soils . Am. Soc. of Agron. Madison, Wis. Agronomy ,1982, 22: 53-566.
    Li H C, Li L, Wegenast T, Longin C F, Xu X W, Melchinger A E, Chen S J. Effect of N supply on stalk quality in maize hybrids. Field Crops Res, 2010, 118: 208- 214
    Liang, B C and Mackenzie A F. Changes of soil nitrate- nitrogen and denitrification as affected by nitrogen fertilizer on two qubec soils. Journal of Environmental quality, 1994, 23(3): 521-525.
    Liu X J, Ju X T, ZhangY,et al. Nitrogen deposition in agroeco-systems in the Beijing area. Agriculture, Ecosystems and Environment, 2006, 113: 370-377.
    Mae T, Kai N, Makino A, Ohira K. Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant cell Physiol, 1984, 25: 333-336.
    Magalhase JR. The response of ammonium assimilation enzymes to nitrogen from in different plant. Journal of plant Nutrition, 1991, 14(2): 175-185.
    Minamic K, Fukushi S. Effects of phosphate and calcium carbonate application on emission of N2O form soils under aerobic conditions. Soil Sci. plant Nutr. , 1983,29: 517-524
    Monnio S, Uhlig C, et al. Ecophysiological response of Empetrum nigrum to heavy metal pollution . Envio Pollu. , 2001,112: 121- 129
    Morrison T A, Kessler J R, et al. Activity of two lignin biosynthesis enzymes during development of a maize internode. J Sci Food Agric, 1994, 65: 133- 139
    Mukherjee K K, Kohli S P, Sethi K L. Lodging resistance in wheat. Indian J. Agron., 1967, 12: 56-61.
    Mulder E G. Effect of mineral nutrition on lodging of cereals. Plant Soil, 1954, 5: 246-306.
    Murthy B N, Rao M V. Evolving suitable index for lodging resistance in barley. The Indian journal of genetics and Plant Breeding, 1980, 40: 253-261.
    Nakajima T, Yoshida M, Tomiumura K. Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. J. Gen. Plant Pathol, 2008, 74: 289-295.
    Neenan M. An analysis of the problem of lodging with particular reference to wheat and barley. J. Agric. Sci., 1975, 85: 495-507.
    Norden A J, Frey K J. Factors associated with lodging resistance in oats. Agron. J., 1970, 51: 335-338.
    Novoa R, Loomis R S. Nitrogen and plant production. Plant and soil, 1981, 58: 177- 204.
    Ollett R F, Keeney D R, and Cruse R M. (eds.) 1991. Managing nitrogen for groundwater and farm profitability. Madison, WI: Soil Science Society of America.
    Ookawa T, Ishihara K V. Difference of cell wall components affecting the ding stress of the culm in relating to lodging resistance in paddy rice. Japanese Journal of crop science, 1993, 62: 378-384.
    Patterson T G, Moss D N, Brun W A. Enzymatic changes during the senescence of field-grown wheat. Crop Science, 1980, 20: 15-18.
    Pearmen I, Thomas S M and Thorne G N. Effects of nitrogen on photosynthesis ofseveral varieties of winter wheat. Annals of Botany, 1997,43: 613- 621
    Peng, L., Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production, Planta, 2000, 211: 406 - 412.
    Peng, L., Yasushi K., Pat H. et al., Sitosterol-β-1,4-glucoside as primer for cellulose synthesis in plants, Science, 2002, 295: 147-150.
    Pinthus M J. Lodging in wheat, barely, and oats: the phenomenon, its cause, and preventive measure. Advance in Agronomy, 1973, 25: 209-263.
    Pu D F, Zhou J R, LI B F, et al. Evaluation method of root lodging resistance in wheat. Acta Agri Breali-Occidentalis Sinaica, 2000, 9: 58-61.
    Qaudhy W, Morris R, Mumm R F, et al. Chromosomal location of genes for traits associated with lodging in winter wheat. Crop Science, 1988, 28: 631-635.
    Rajala A, Peltonen-Sainio P. Plant growth regulator effects on spring cereal root and shoot growth. Agronomy Journal, 2001, 93: 936-943
    Rowe E C, Hairiah K, Giller K E, et, al. Testing the safety- net role of hedgerow tree roots by 15N placement at different soil depths. Agroforestry Systems, 1999, 43: 81- 93.
    Ruiqin Z, Amy R, Zheng-Hua Y. Ectopic deposition of lignin in the pith of stems of two arabidopsis mutants. Plant Physiol, 2000, 23: 59-70.
    Salem A H, Rabie H A, Nigam S A, et al. Mean performance, heritability, genetic advance from selection and correlations for lodging measurement in wheat (Triticum aestivum L.). Zagazig J. Agric. Res., 1992b, 19: 1611-1623.
    Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 2002, 79: 39-51.
    Sewalt V J H, Ni W, Blount J W. Reduced lignin content and altered lignin composition in transgenic tobacco down- regulated in expression of L-phenylalanine ammonia- lyase or cinnamate 4- Hydroxylase. Plant Physiol, 1997, 115: 41-50.
    Shimono H, Okada M, Yamakawa Y, et al. lodging in rice can be alleviated by atmospheric CO2 enrichment. Agriculture, Ecosystems and Environment, 2007, 118: 223-230.
    Simonetta F, Rosella M, Francesco G. The effect of nitrogenous fertiliser application on leaf traits in durum wheat in relation to grain yield and development. Field Crops Research, 2009, 110: 69-75.
    Sincalir T P. Historical changes in harvest index and crop nitrogen accumulation. Cropscience, 1998, 38: 638- 643.
    Singh I D, Stoskopf N C. Harvest index in cereals. Agronomy Journal, 1971, 63:224- 226.
    Smith C J and Whitifield M. Nitrogen accumulation and redistribution of late applied of 15N- labelled fertilizer by wheat. Field Crop Res., 1990,24(4): 221- 228
    Smith S J, and Cassel D K. Estimating nitrate leaching in soil materials. 1991, 165-188.
    Snape J W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breeding, 2005, 124: 234-241.
    Snyder F W, Carlson G E. Selecting for partitioning of photosynthetic products in crops. Advanced Agronomy, 1984, 37:47-72.
    Sparkers D L, Berry P, King M. Effects of shade on root characters associated with lodging in wheat(Triticum aestivum). Ann Appl Biol., 2008, 152: 389-395.
    Sparkes D L, King M. Disentangling the effects of PAR and R:FR on lodging associated characters of wheat(Triticum aestivum L.). Annals of Applied Biology, 2008, 152: 1-9.
    Sterling A, Baker C J, Berry P M, et al. An experimental investigation of the lodging of wheat. Agricultural and Forest Meteorology, 2003, 119(34): 149-165.
    Steve M. Read, Tony Bacic., Prime time for cellulose, Science, 2002, 295: 59-60.
    Strivastava L M. Histochemical studies on lignin. Tappi, 1966, 49: 173-183.
    Strong W M. Effects of late application of nitrogen on the yield and protein content of wheat. Aust. J. Exper. Afric. and Ani.Husb., 1982,22: 54-61.
    Swati M S, Swati U, Ahmad K. The response of wheat genotypes towards fertilizer based on lodging, grain yield and other relevant characters. Sarhad J. Agric., 1987, 3: 365-373.
    Tang Q Y, Peng S B, Buresh R J, Zou Y B, Castilla N P, Mew T W, Zhong X H. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Res, 2007, 102: 219-227.
    Taylor N G, Scheible W R, Cutler S, et al. The irregular xylem 3 locus of Arabidiopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 1999, 11: 769-779.
    Tony Arioli, Liangcai Peng, Andreas S. et al. Molecular Analysis of Cellulose Biosynthesis in Arabidopsis, Science, 1998, 279, 717-720.
    Tripathi S C, Sayre K D, Kaul J N, et al. Lodging behavior and yield potential ofspring wheat (Triticum aestivum L.): effects of ethephon and genotypes. Field Crops Research, 2004, 87: 207-220.
    Tripathi S C, Sayre K D, Kaul J N, Narang R S. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271-290
    Tripathi S C, Sayre K D. Growth and morphology of wheat culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Research, 2003, 84: 271-290 UNEP Enwironement Library. 1996,No. 15: 15-29
    Updegraff D M. Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 1969, 32: 420-424.
    Van der Ploeg R R, Ringe H, Machulla G, et al. Postwar nitrogen use efficiency in West Germany agriculture and groundwater quality. Journal of Environmental Quality, 1997, 26: 1203-1212.
    Vanholme R, Morreel K, Ralph J, Boerjan W. Lignin engineering. Cur Opin Plant Bio, 2008, 11: 278- 285.
    Verma V, Worland A J, Sayers E J, et al. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breeding, 2005, 124: 234-241.
    Wang J, Zhu J M, Lin Q Q, et al. Effects of stem structure and cell wall components on bending strength in wheat. Chinese Science Bulletin, 2006, 51(7): 815-823.
    Wardley T M, Bhalla P L, Dalling M J. Changes in the number and composition of chloroplast during senescence of mesophyll cells of attaches and detached primary leaves of wheat (Triticum aestivumL.). Plant Physiol, 1984, 75: 421-424.
    Welton F A. Lodging in oats and wheat. Botanical Gazatte, 1928, 85: 121.
    White E M. Effects of management and development on stem characteristics related to lodging in winter barley. Eur. J. Agron., 1995, 4: 327: 334.
    White E M. Response of winter barley cultivars to nitrogen and a plant growth regulator in relation to lodging. J. Agric. Sci., 1991, 116: 191-200.
    Wiersma D W, Oplinger E S, Guy S O. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator. Agronomy Journal, 1986, 78: 761-764.
    Wilcox J R, Tuneo Sediyama. Interrelationships among height, lodging and yield in diterminate and indeterminate soybeans. Euphytica, 1981, 30: 323-326.
    Wollenweber E, Dorr M Stelzer. Lipopjhilic phenolics from the leaves of Empetrum nigrum-chemical structures and exudates localization . Botanica Acta, 1992, 105:200- 205.
    Xing Y Z, Tan Y F, Hua J P, et al. Characterization of the main effects, epistastic effects and their environmental interactions of QTLs on the genetic basis of yield trait in rice. Theor Appl Genet., 2002, 105: 248-257.
    Xingjun Li, Sanyu Li, Jinxing Li. Effects of GA3 on lignin and auxin contents and the correlated enzyme activities in bayberry (Myrica rubra Bieb.) during flower- bud induction. Plant Sci, 2003, 164: 549-556.
    Xue L H, Cao W X, Yang L Z. Predicting Grain Yield and Protein Content in Winter Wheat at Different N Supply Levels Using Canopy Reflectance Spectra. Pedosphere, 2007, 17(5): 646- 653.
    Yuan Z H, Li Y J. Relationship between bending property and density of wheat stem. Agricultural Science and Technology, 2009, 10(5): 100-101.
    Zahour A, Rasmusson D C, Gallagher L W. Effect of semi-dwarf stature, head number, kernel number on grain yield in barley in morocco. Crop science, 1987, 27: 161-165
    Zhang Y, Liu X J, Fangmeier A,et al.Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmospheric Environment, 2008, 42: 1 436-1 448
    Zhong R Q, Morrison H, Forsskahl I. Sequential treatment of mechanical and chemi-mechanical pulps with light and heat: A Raman spectroscopic study. Holzforschung, 1995, 49: 300-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700