用户名: 密码: 验证码:
华北平原典型农田生态系统氮磷平衡动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究立足于华北平原小麦玉米两熟区典型农田生态系统,以“国家土壤肥力与肥料效益长期监测基地网”河南郑州实验站肥料长期试验、中国农大曲周实验站氮磷配施长期施肥试验和山东禹城实验站水氮耦合试验数据为支撑,利用澳大利亚农田生态系统模型(APSIM)作为系统工具将农田生产管理的诸要素有机结合、综合分析,揭示农田生态系统氮磷的循环与平衡规律,并将养分平衡、作物生产力、环境效应置于气候波动背景下,分析长期不同施肥水平与田间管理方式对农田生产力与氮磷平衡的影响。主要研究结果如下:
     (1)通过构建农田生态系统模型(APSIM)氮磷养分平衡模拟系统,利用华北平原3个试验点(河南郑州、河北曲周、山东禹城)的实测数据对模型进行了参数修正和全面验证。验证结果表明:3个实验点小麦的生物量和产量的模拟值和实测值之间的决定系数(r~2)均大于0.73,玉米生物量和产量的模拟值和实测值之间的r~2分别大于0.61和0.81,小麦和玉米植株含氮量多年平均模拟值和实测值之间r~2为0.91和0.97、植株含磷量r~2为0.96和0.88,土壤全氮、有机碳和土壤速效磷的决定系数r~2分别为0.70、0.78和0.64。证明APSIM模型能够在华北平原氮磷养分循环分析中应用并进行有关的情景分析。
     (2)APSIM模型模拟得出郑州点15年间长期施肥条件下,采用长期施肥试验中玉米郑单8号品种和豫麦13号小麦品种模拟的潜在产量均值为6.9 t ha~(-1)和8.3 t ha~(-1),而小麦和玉米所需的最大吸氮量多年分别是170 kg N ha~(-1)和189 kg N ha~(-1),多年平均最大吸磷量是32 kg P ha~(-1)和34 kg P ha~(-1);改善灌溉等田间管理措施最高肥处理(1.5NPKM)处理仍然有0.7 t ha~(-1)和1.6 t ha~(-1)的产量空间可以增长。小麦的氮磷钾配合施肥处理(NPK)比磷钾处理(PK)的AE和REN提高了4.26倍和11.2倍,在小麦各处理中居于最高;小麦秸秆还田可以显著提高玉米的AE和REN,氮磷钾配施并秸秆还田处理(NPKS)的玉米氮肥利用率最高,AE和REN分别比磷钾处理(PK)提高3.1倍和2.3倍。小麦和玉米的磷肥农学效率(AE)以氮磷配施处理(NP)最高,分别为45.2 kg~(-1)P2O5和25.3 kg~(-1)P2O5,小麦和玉米的REP以氮磷配施(NP)和氮磷钾配施(NPK)两个处理最高,分别为25.3%和14.7%。在河南郑州点轻壤质潮土种植区,明确了氮和磷是制约小麦玉米生产的第一要素、第二要素,玉米季施肥配合小麦秸秆还田可以显著提高氮磷肥料利用率。
     (3)利用APSIM模型对华北平原郑州点小麦-玉米轮作系统多年(1961年-2007年)不同施肥水平下的模拟结果表明,小麦氮肥施用量在180kgNha~(-1)以下,玉米施氮量150 kgNha~(-1)以下,为氮肥施用的敏感节点,超过该值后产量对施肥量的增加响应不敏感。46年间施氮水平在150kgNha~(-1)时小麦和玉米产量达6t和7t的保证率分别为75%和46%,施氮水平在120 kgNha~(-1)时玉米6 t ha~(-1)产量的保证率是81%。此外,模拟结果还显示两季作物秸秆全部还田条件下施氮水平越高有机碳的矿化越大;在施氮量为150kgNha~(-1)水平下,不同秸秆还田水平下保证率在75%~25%之间的矿化量为80~132 kgNha~(-1),平均年矿化量为104 kgNha~(-1),矿化水平对农田施肥管理与土壤培肥具有重要意义。通过长期模拟也显示,作物产量、作物吸氮、吸磷量以及土壤有机碳的矿化也在随着气候波动而变化,不同的气候年型,各项指标的变异比较大。
     (4)通过对不同氮磷肥及秸秆还田不同比例综合措施的长期(46年)模拟发现,当氮肥施用量为50kgNha~(-1)以下或者氮肥施用100 kgN ha~(-1)配合磷肥20 kgPha~(-1)水平时发生硝氮淋溶的概率为0;当单施氮肥用量在100 kgNha~(-1)以上而不施加磷肥时发生硝态氮淋溶的概率与秸秆还田比例有关,秸秆还田比例越大淋溶风险越高;当氮肥用量提高到150 kgNha~(-1)磷肥施用40 kgPha~(-1)时淋溶风险最小。从环境效应和作物生产力两者均衡看,配合施肥组合在氮肥150 kgNha~(-1)、磷肥40 kgPha~(-1)、秸秆还田一半或不还田时硝态氮淋溶可以被控制。在充分灌溉条件下,土壤NO3--N淋溶与降水仍有较强的正相关性(相关系数r为0.65),该结论对现实生产中减少氮肥的淋溶风险具有指导意义。
     (5)利用APSIM模型对华北平原2006年298个县域实际施肥水平下的小麦玉米产量进行了模拟测试,模拟结果显示小麦和玉米产量模拟值与统计值的相关系数r分别为0.74,0.62。通过APSIM模型模拟华北平原小麦-玉米轮作系统0-40cm土壤层中全氮含量在1755-8624 kgNha~(-1),平均值为2417 kgNha~(-1),0~(-1)60cm土层NO3--N累积量11~(-1)839 kgNha~(-1)之间,平均值为214.16kgha~(-1),有60%的区域NO_3--N累积量超过100 kgNha~(-1);模拟结果也显示华北平原稳定态磷在0~40cm土层含量平均值为1193 kgha~(-1),有效磷在0~40cm土层的含量在57-200kgha~(-1)之间,在安徽北部、河南东北部地区含磷量较高、环境风险比较明显。
This study combined experimental data analysis and systems modeling to investigate the crop productivity and nitrogen and phosphorous balances in the wheat-maize double cropping system in the North China Plain (NCP), and their responses to different management practices under the background of variable climate. Experimental data used include: 15 years of crop and soil data from Zhengzhou station in Henan province under the National Soil Fertility and Fertilizer Efficiency Long-term Monitoring Network, 5 years of data from a long-term fertilization experiments at Quzhou, Hebei province, and 2 years of data from Yucheng, Shandong province. The main findings are:
     (1) The Agricultural Production Systems Model (APSIM) was calibrated and validated using long-term and short-term experimental data and the performance of APSIM model was evaluated by its ability to predict: (1) biomass, grain yield, and N/P uptakes of both wheat and maize crop, (2) soil nitrogen and phosphorus dynamics, and (3) soil carbon dynamics, in response to different N/P application rates. The results showed that APSIM is able to capture the response of crop growth, yield and N/P uptakes to different fertilizer application levels. The determination values (r~2) were all above 0.73 between simulation and measured data for wheat biomass and yield, r~2 also were above 0.61 and 0.81 for that of maize biomass and yield respectively. It also simulated the soil C, N and P changes with acceptable accuracy, their r were 0.70, 0.78 and 0.64 for total N, soil organic carbon and labile phosphrous in 0-20cm soil, respectively.Therefore, it can be used to conduct scenario analysis for different fertilization treatments.
     (2) Analysis of the long-term data at Zhengzhou showed that both N and P were limiting factors for crop growth. Without additional N and P fertilisation,only a very low yield level (ca 2t ha~(-1) for wheat and 3 t ha~(-1) for maize) could be maintained. To achieve the potential productivity (i.e. yield level free of water and nutrient stresses) of wheat (6.9 t ha~(-1)) and maize (8.3 t ha~(-1)), wheat would need, on average,170 kg N ha~(-1)and 32 kg P ha~(-1), while maize would need 189 kg N ha~(-1),34 kg P ha~(-1).There was still a gaps of 0.7 t ha~(-1) and 1.6 t ha~(-1) for wheat and maize which can be increased in under the high fertilizer treatment depending on the improvement of management. On average the AE and REN of NPK treatment could be 4.26 and 11.2 times than PK treatment and the highest among all treatments. Treatments with nutrient inputs higher than the NPK treatment and treatments without combination of N and P have led to accumulation of N and P in the soil profile. Returning wheat straw to field the AE and RE would be significantly increased for maize.
     (3) At Zhengzhou, long-term (1961-2007) simulation results revealed that the optimal nitrogen application rates for wheat and maize are 180kgNhm-2 and 150kgNhm-2 respectively, above those change point yield did not increase anymore with increased N applications. These rates are significantly lower than the actual N application rates in many part of NCP. The probability of exceedance with 6t and 7t of yields of wheat and maize were 75% and 46% respectively applied 150 kgNha~(-1)fertilizer and the probability of exceedance with 6t yield of maize were 81% applied 120 kgNha~(-1)fertilizer.
     Furthermore, the simulation results also been showed that under the situation of returning all of straw into field the mineralization would be increased with more nitrogen fertilizer input. With the leavel of 150 kgNha~(-1) nitrogen, the mineralization amount were 80~(-1)32 kgNha~(-1) with 75%~25% probability of exceedance. According to the simulation results, the yield, nitrogen and phosphrous uptake and mineralization could be variable and be changed with the varies climate.
     (4) Simulation results also showed that if N application rates were below the optimal rates, little N leaching would occur below the crop root zone. However,if N application rate was higher than the optimal rates,nitrate N starts to accumulate in the soil profile and significant leaching will occur subsequently. N leaching mainly occurred in the maize season due to the concentrated summer monsoon rainfall. N leaching events were significantly related to rainfall events. Combined 150kgNha~(-1) and 40 kgPha~(-1) for each crop were optimal fertilizer levels due to the balances of leaching risk and crop yiled. N leaching events were significantly related to rainfall events (correlation coefficient r = 0.65) although the farm was irrigated enough.
     (5) The APSIM model was also appled to simulate the wheat-maize cropping system in 298 counties of NCP. The correlation coefficient between the statistical and simulated yield were 0.74 and 0.62 for wheat and maize respecively. Under the current nitrogen application rate, the total nitrogen content was in 1755 ~ 8624 kgNha~(-1), average 2417 kgNha~(-1) in 0-40cm soil layers, NO3-N accumulation was 11 ~ 1839 kgNha~(-1), average 214 kgNha~(-1) in 0~(-1)60cm soil. In NCP 60% of the areas with NO3 - N accumulation were more than100 kgNha~(-1). Simulation results also showed that Unavailable-P content averaged 1193 kgP_2O_5ha~(-1) in 0 - 40cm soil layer. The high labile P content was distributed in northern Anhui province, north-east of Henan province with high risk of environment.
引文
1.曹宁.基于农田土壤磷肥力预测的我国磷养分资源管理研究.西北农林科技大学博士学位论文,2006
    2.曹志洪,科学施肥与我国粮食安全保障,土壤,1998,2:57-63.
    3.陈超,华北平原作物生产力-农田水平衡-气候波动/变化的系统分析[博士学位论文].北京:中国科学院,2009.
    4.陈新平,张福锁.可持续农业中的推荐施肥.化肥工业,1996.23(3):7-10.
    5.崔秀珍,魏永超,寇德魁.晚播郑单8好玉米籽粒发育规律研究.河南职技师院学报.1991,Vol(1):44~49.
    6.崔振岭,石立委,徐久飞,李俊良,张福锁,陈新平.氮肥施用对冬小麦产量、品质和氮素表观损失的影响研究.应用生态学报.2005, 16 (11)∶2071~2075.
    7.崔振岭.华北平原冬小麦-夏玉米轮作体系优化氮肥管理—从田块到区域尺度[博士学位论文].北京:中国农业大学.2005.
    8.方玉东,封志明,胡业翠,王霖琳.基于GIS技术的中国农田氮素养分收支平衡研究.农业工程学报,2007.23(7):35~41.
    9.高旺盛,黄进勇,吴大付.华北平原集约化农业生产情况下硝酸盐污染的研究.应用生态学报,1999.(4) :41~43.
    10.关焱,宇万太,李建东.长期施肥对土壤养分库的影响.生态学杂志,2004,23(6):131~137.
    11.郭程瑾,李宾兴,周彦珍,李雁鸣,肖凯.不同磷效率小麦品种的磷吸收特性.植物遗传资源学报2006,7(1):49~53.
    12.韩兴国,李凌浩,黄建辉,生物地球化学概论,高等教育出版社,施普林格出版社,1999年5月.
    13.何振立.土壤微生物量及其在养分循环和环境质量评估中的意义.土壤,1997,29 (2) : 61-69.
    14.黄绍敏,宝德俊,皇甫湘荣,介晓磊.长期定位施肥对玉米肥料利用率影响的研究.玉米科学,2006, 14(4): 129~133.
    15.黄绍敏,宝德俊,皇甫湘荣,许为钢,胡琳,李民.长期定位施肥小麦的肥料利用率研究.麦类作物学报, 2006, 26 (2) : 121~126.
    16.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究.中国农业科学,1989,22(3): 58~66.
    17.孔庆波.基于GIS我国农田土壤磷素管理及磷肥需求预测研究.中国农业科学院博士学位论文,2008.
    18.李宾兴,郭程瑾,王斌,肖凯,李雁鸣.缺磷胁迫下不同磷效率小麦品种及其杂种F1的磷吸收利用特性.作物学报,2006,32(2):267-272.
    19.李贵桐.秸秆还田条件下冬小麦/夏玉米农田土壤氮素的转化与损失[博士学位论文].北京:中国农业大学,2001.
    20.李虎,王立刚,邱建军.黄淮海平原河北省范围内农田土壤二氧化碳和氧化亚氮排放量的估算.应用生态学报,2007,18(9):1994~2000.
    21.李忠佩,唐永良,石华,高坤林.不同施肥制度下红壤稻田的养分循环与平衡规律.中国农业科学,1998,31(1):46~54.
    22.连彦峰,刘树庆.农田土壤中磷素流失与水体富营养化.河北农业科学,2008,12 (7):91~93,99.
    23.梁国庆,林葆,林继雄,荣向农.长期施肥对石灰性潮土氮素形态的影.植物营养与肥料学报2000,6(1):3~10.
    24.林炎金,林曾泉.连续十年施用不同肥料对土壤养分积累的研究.福建省农科院学报, 1994,9(3): 3~5.
    25.林忠辉,陈同斌,周立祥.中国不同区域化肥资源利用特征与合理配置.资源科学,1998,20 (5):26~31.
    26.刘宏斌,李志宏,张维理,林葆.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究.植物营养与肥料学报,2004,10(3):286~291.
    27.刘巽浩,高旺盛,朱文珊.秸秆还田机理与技术模式,北京:中国农业出版社,2000.
    28.刘忠,李保国,傅靖.基于DSS的1978-2005年中国区域农田生态系统氮平衡.农业工程学报,2009,25(4):168~175.
    29.鲁如坤,刘鸿翔,闻大中等,我国典型地区农业生态系统养分循环和平衡研究Ⅰ.农田养分支出参数.土壤通报,1996,27(4):145~151.
    30.鲁如坤,刘鸿翔,闻大中等,我国典型地区农业生态系统养分循环和平衡研究Ⅱ.农田养分收入参数.土壤通报,1996,27(4):151~154.
    31.鲁如坤,刘鸿翔,闻大中等,我国典型地区农业生态系统养分循环和平衡研究Ⅲ.全国和典型地区养分循环和平衡现状,土壤通报,1996,27(5):193-196.
    32.鲁如坤,刘鸿翔,闻大中等,我国典型地区农业生态系统养分循环和平衡研究Ⅳ.农田养分平衡的评价方法和原则,土壤通报,1996,27(5):196-203.
    33.鲁如坤,刘鸿翔,闻大中等,我国典型地区农业生态系统养分循环和平衡研究V.农田养分平衡和土壤有效磷、钾消长规律.土壤通报,1996,27(6):241~242
    34.鲁如坤等,土壤-植物营养学原理和施肥.北京:化学工业出版社,1998
    35.吕家珑, Fortune S, Brookes P C.土壤磷淋溶状况及其Olsen磷“突变点”研究.农业环境科学学报, 2003, 22(2):142~146.
    36.吕家珑.农田土壤磷素淋溶及其预测.生态学报,2003,23(12):2689~2701
    37.门明新,李新旺,许皞.长期施肥对华北平原潮土作物产量及稳定性的影响.中国农业科学, 2008,41(8):2339~2346
    38.潘家荣,巨晓棠,刘学军,张福锁,毛达如.高肥力土壤冬小麦/夏玉米轮作体系中化肥氮去向研究.核农学报,2001,15(4):207~212
    39.邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究.农业工程学报,2008,24(8):40~44
    40.任全明,等.不同小麦品种籽粒灌浆特性的研究.华北农学报,1993,88(3):28-32
    41.任正隆.小麦开花后的物质积累、籽粒相对生长率和灌浆速率在品种间的变异.中国农业科学,1981,(6):12~21
    42.申建波,张福锁,毛达如,根际微生态系统中的碳循环,植物营养与肥料学报,2001,7(2):232~240
    43.沈善敏,长期土壤肥力试验的科学价值,植物营养与肥料学报,1995,1(1):1~9
    44.沈善敏.论我国P肥生产与应用对策.土壤通报,1985,16(3):99~103.
    45.沈禹颖,南志标,Bill Bellotti等.APSIM模型的发展与应用.应用生态学报,2002, 13( 8): 1027-1032.
    46.孙波,林心雄.土壤有机质的生物学稳定性及其转化模型.1994,22(1)18~25
    47.唐莲,白丹.农业活动非点源污染与水环境恶化.环境保护,2003,3: 18~20
    48.唐旭.小麦-玉米轮作土壤磷素长期演变规律研究.[博士学位论文].北京:中国农业科学院,2009
    49.田光明,蔡祖聪,曹金留,李小平.2001.镇江丘陵区稻田化肥氨挥发及其影响因素.土壤学报,38(3):324~331
    50.田纪春,张忠义,梁作勤.高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异的研究.作物学报,1994.Vol(20):76-83
    51.同延安,赵营,赵呼兵,樊红柱.施氮量对冬小麦氮素吸收、转运及产量的影响.植物营养与肥料学报2007,13(1):64-69
    52.王激清,马文奇,江荣风,张福锁,中国农田生态系统氮素平衡模型的建立及其应用.农业工程学报,2007,23(8):210~215
    53.王建林,李雁鸣.小麦籽粒灌浆特性研究概况及其育种学评价.辽宁农业科学,2000,(5):21~23
    54.王立刚,邱建军.区域农业生态系统土壤碳氮循环规律的初步研究.唐华俊主编,农业资源利用与区域可持续发展研究.北京:中国农业科学技术出版社, 2003: 322~338.
    55.王立刚,李虎,邱建军.华北平原典型农田土壤N2O的排放特征.中国农业科学2008,41(4):1248~1254
    56.王立刚,邱建军.华北平原高产粮区土壤碳储量与平衡的模拟研究.中国农业科技导报,2004,6(5):27~32
    57.王琳,郑有飞,于强,王恩利.农田生产系统模型(APSIM)在土地和水肥资源管理中的应用.农业环境与发展,2007,3:27~32
    58.王庆仁,李继云,李振声,不同基因型小麦磷素营养阀值的研究.西北植物学报.1999,19(3):363-370
    59.王文颇,周印富,李彦生,韩金玲.不同密度小麦籽粒生长特性分析.中国农学通报.2005,21(4):172~176
    60.王晓燕.农业非点源污染及其控制管理.农业面源污染与综合防治, 2004,(11): 10-15
    61.王兴仁,曹一平,毛达如.作物施肥调控系统的建立和应用.北京农业大学学报,1995,21 (增刊):1~6.
    62.王兴武,于强,张国梁,李运生.鲁西北平原夏玉米产量与土壤硝态氮淋失.地理研究.2005,24(1):140~150.
    63.王懿波,张庆吉.郑单八号等十个玉米杂交种丰产性和稳产性的分析与评价.河南农业科学,1987(3):1~3
    64.魏金锁.玉米杂交种郑单8号.种子.1988(2):78
    65.武兰芳,陈阜,欧阳竹,朱文珊.2002.华北平原粮食生产持续发展面临的困境与对策―以河北藁城粮食生产为例.中国农业科技导, 4(6): 40-44.
    66.徐长林,曹致中,贾笃敬.优良抗寒苜蓿新品种-甘农一号杂花苜蓿.中国畜牧杂志, 1992,6:43~44.
    67.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002 ,39 (1) :89~96
    68.许毓英.主要作物品种资源潜力及其开发的区域性对策.资源科学,1999, 21(1):9~15
    69.晏维金,章申.模拟降雨条件下生物可利用磷在地表径流中的流失和预测.环境化学,1999, 18 (6):497~506
    70.杨珏,阮晓红.土壤磷素循环及其对土壤磷流失的影响.土壤与环境,2001,10(3):256~258
    71.杨林章,王德建,夏立忠.太湖地区农业面源污染特征及控制对策.中国水利,2004(20):29~30
    72.袁新民,杨学云,同延安,等.不同施氮量对土壤硝态氮累积的影响..干旱地区农业研究.2001,l9(1):7~l3.
    73.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,Vol.45, No.5:915-924.
    74.张福锁等编著.协调作物高产与环境保护的养分资源综合管理技术研究.北京:中国农业大学出版社,2008,1-9.
    75.张璐,沈善敏,宇万太.辽西褐土施肥及养分循环再利用中长期试验土壤养分收支Ⅱ.土壤与环境.2001,10(1):51~54.
    76.张乃风,李家康.科学施用化肥,提高增产效益,降低农业成本.见:陈俊生主编,建设高产优质高效农业.北京:中国农业出版社,1990,490~502.
    77.张维理,冀宏杰,Kolbe H.,徐爱国.中国农业面源污染形势估计及控制对策I:21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1018~1025.
    78.张维理,武淑霞,冀宏杰,中国农业面源污染形势估计及控制对策II.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008~1017.
    79.张晓龙.小麦品种籽粒灌浆研究.作物学报,1982,8(2):81-93.
    80.张秀清,杨世忠,邹秀珍,吴访秋.玉米新杂交种郑单8号试验、示范与展望.河南农业科学,1986(4):36.
    81.张玉铭,胡春胜,毛任钊,董文旭.华北太行山前平原农田生态系统中氮、磷、钾循环与平衡研究.应用生态学报,2003,14(11):1863~1867.
    82.张云贵,刘宏斌,李志宏,林葆,张夫道.长期施肥条件下华北平原农田硝态氮淋失风险.植物营养与肥料学报,2005,11(6):711~717.
    83.张作新,刘建玲,廖文华,郝小雨。磷肥和有机肥对不同磷水平土壤磷渗漏影响研究.农业环境科学学报, 2009,28(4):729~735.
    84.赵宪吉,单玉珊,孙治军,仲崇媛,高延建,牟仁雨,魏寿德.高产小麦需肥规律探讨.高产小麦需肥规律探讨.河南职技师范学报.1990,Vol.18(3):146-153.
    85.中国农业科学院土壤肥料研究所.中国化肥区划.北京:中国农业科技出版社, 1986.
    86.中国农业统计资料.中华人民共和国农业部编.中国农业出版社.
    87.钟茜,巨晓棠,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析.植物营养与肥料学报.2006,12(3):285~293.
    88.周春菊,张嵩午,王林权.冷型小麦磷素吸收积累特性的研究.植物营养与肥料学报.2007,13(6):1062—1067.
    89.周广业,阎龙翔.长期施用不同肥料对土壤磷素形态转化的影响.土壤学报, 1993, 30(4): 443~446.
    90.周晓梅.松嫩平原羊草草地土-草-畜间主要微量元素的研究[博士学位论文].哈尔滨:东北师范大学,2004.
    91.周志红.农业生态系统中磷循环的研究进展.生态学杂志.1996,15(5):62~66.
    92.朱兆良,孙波,杨林章.我国农业面源污染的控制政策和措施.科技导报,2005,23(4):47~51.
    93.朱兆良,中国土壤氮素研究.土壤学报,2008,24(5):778~783.
    94.朱兆良.中国土壤氮素.南京:江苏科技出版社, 1992.
    95.朱兆良.农田中氮肥的损失与对策.土壤与环境,2001,9(1):1~6.
    96. Asseng S and Van Herwaarden A F.2003. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil 256, 217–229.
    97. Asseng S.,Fillery I.R.P.,Anderson G.C.,Dolling P.J.,Dunin F.X., Keating B.A. Use of the APSIM wheat model to predict yield,drainage,and NO3- leaching for a deep sand. Australian Journal of Agricultural Research. 1998,49,363-379.
    98. Bailey L.D. Effects of potassium fertilizer and fall harvests on alfalfa grown on the eastern Canadian Prairies. Canadian Journal Soil Science 1983, 63: 211~219.
    99. Barberis E, Ajmone F—Marsan and Preta M.Phosphorus leaching from five heavily fertilized soils . Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. International Phosphorus Transfer Workshop,2001.25.
    100. Barrow N.J. The slow reactions between soil and anions. 1. Effects of time, temperature, and water content of a soil on the decrease in effectiveness of phosphate for plant growth. Soil Science .1974, 118, 380-386.
    101. Bennett, E.M., S.R. Carpenter, and N.F. Caraco. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience. 2001. 51:227–234.
    102. Bouwman A F, Van Drecht G, Van Derhoe K. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970~2030. Pedosphere, 2005,15(2): 137~155.
    103. Cai GX, Chen DL, Ding H, Pacholski A, Fan XH, Zhu ZL Nitrogen losses from fertilizers appliedto maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosyst .2002, 63:187–195.
    104. CarboneG J, MearnsLO, MavromativsT. EvalutingCROPGRO-Soybean performance foruse in climate impactstudies. Agronomy Journa,2003,95:537~544
    105. Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H., Nonpoint pollution of surface waters with phosphorus and nitrogen. 1998. Ecol. Appl. 8, 559–568.
    106. Cederbe C. Flows of Plant nutrients in food Production and consumption in Swedish district AMBIO,1999, 28(6):503~509.
    107. Chu H, Lin X, Takeshi F. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management . Soil Biology & Biochemistry, 2007, 39 :2971~2976.
    108. Clarke J. M., Campbell C.A., Curnonru H.W. Niwtnklemman G.E. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 1990.70: 965-977 .
    109. Crutzen PJ, Andreae MO.Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science. 1990.250: 1669~1678.
    110. Davis RL, Patton JJ, Teal RK. Nitrogen balance in the Magruder plots following 109 years in continuous winter wheat. J Plant Nutr, 2003, 26:1561–1580. doi:10.1081/PLN-120022364.
    111. Delve RJ, Probert ME, Modelling nutrient management in tropical cropping systems. Australian centre for international agricultural research, Canberra:2004
    112. Domb P.,AC.Edlards,AH.Sinelai. A comparison of N and P to the soil form fertilizer and Manures summarized at farm and catchment level.J.Agri.Sei.Cajmbridge,2000a 134:147~158.
    113. Fang Q, Yu Q, Wang E, Chen Y, Zhang G, Wang J, Li LH. Soil nitrate accumulation,Leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain. Plant Soil 284:335~350.
    114. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth R, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland E A, Karl DM, Michaels AF, Porter JH, Townsend AR,Vorosnmarty CJ.2004. Nitrogen cycles: past, present and future. Biogeochem.,70:153~226.
    115. Gassman PW, Williams JR, Benson VR, Historical development and applications of the EPIC and APEX models [EB/OL]. [2005-06-19]. http :/ / www.card. iastate. edu.
    116. Gaudreau, J.E., Vietor, D.M., White, R.H., Provin, T.L., Minster, C.L., Response of turf and quality of runoff water to manure and fertilizer. 2002.J. Environ. Qual. 31, 1316–1322.
    117. Gburek W J,Sharpley A N and Heathwaite L,et a1. Phosphorus management at the watershed scale:A modification of the phosphorus index.J.Environ.Qua1.2000.29:13O~144.
    118. Goodlass G, Halberg N, Verschuur G. Input output accounting systems in the European community - an appraisal of their usefulness in raising awareness of environmental problems. European Journal Of Agronomy, 2003, 20(1-2):17~24.
    119. Haas G,Caspari B,Kopke U. Nutrient cycling in organic farms: stall balance of asuekler cow herd and beef bulls.Nutrient cycling in Agroeocsystems,2002, 64: 225~230
    120. Hansen S, Jensen HE, Nielsen NE, Svendsen H. Simulation of nitrogen dynamics and biomass p roduction in winterwheat using the Danish simulation model DAISY. Fertiliser Research, 1991, 27: 245~259.
    121. Hart, M.R., Quin, B.F., Nguyen, M.L., Phosphorus runoff from agricultural land and direct fertilizer effects: a review. 2004. J. Environ. Qual. 33, 1954–1972.
    122. He CE,Liu XJ,Fangmeier A,Zhang FS.Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain, Agric.Ecosyst.Environ. 2007, 121:395-400.
    123. Heckrath G,Brookes P C,Poulton P R,Goulding K W T. Phosphorus leaching form soils containing different phosphorus concentrations in the Broadbalk experiment. J Environ. Qual.,1995.24:904~910.
    124. Hochman HZ, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18:267–288.doi:10.1016/S1161-0301(02)00108-9.
    125. Hu Li, Jianjun Qiu, Ligang Wang, Huajun Tang, Changsheng Li, Eric Van Ranst.Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China.Agriculture, Ecosystems and Environment 2010, 135, 24–33. doi:10.1016/j.agee.2009.08.003.
    126. Hutson JL. Leaching Estination and ChemistryModel: A process based model of water and solute movement transformations, plant uptake and chemical reaction in the unsaturated zone. Water Resources Inst. Cornell University, Ithaca, NY. Continuum Vol. 2, Version3, 1995.
    127. IPCC,2001.Climate Change 2001:Synthesis Report. A Contribution of Working GroupsⅠ,ⅡandⅢto the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, New York: Cambridge University Press.
    128. Jagtap S S, Jones J. Adaptation and evaluation of the CROPGRO-soybeanmodel to predict regionalyield and production. Agriculture, Ecosystems and Environment, 2002,93:73~85.
    129. John L Hutson. LEACHM model description and user’s guide. Australia: School of Chemistry,Physics and Earth Sciences the Flinders. University of South Australia. 2003. 1~ 4.
    130. Kaiser J.The other global pollutant:nitrogen proves tough to curb.Science, 2001.94:1268-1269.
    131. Keating BA, McCown RL, Cresswell HP. Paddock scale models and catchment-scale problems: the role for APSIM in the Liverpool Plains. In: Binning P, Bridgman H, Williams B, Proc. MODSIM 95 Int. Congress on Modelling and Simulation. The University of Newcastle, Newcastle, UK , 1995 pp. 158–165.
    132. Ladha JK, Pathak H, Krupnik TJ. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 2005, 87:86~156.
    133. Laubel A,Jacobsen O H and Kronvang B.Subsurface drainage loss of particles and phosphorus from field plot experiments and a tile—drained catchment.Journal of Environmental Qua1ity,1999,28:576~584.
    134. Li C, Frolking S, Frolking TA. A model of nitrous oxide evolution from soil driven by rainfall events: 2. model applications. J. Geophysical Research, 1992b, 97, D9, 9777~9783.
    135. Li C. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystem, 2000, 58: 259 276.
    136. Li C. Quantifying greenhouse gas emissions from soils: Scientific basis and modeling approach. Soil Sci. Plant Nutr. 2007. 53, 344–352.
    137. Li C., Frolking S., Harriss R.,1994. Modelling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles 8,237–254.
    138. Liu GD, Wu WL, Zhang J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agric Ecosyst Environ 1, 2005. 07:211–220.
    139. Liu Xuejun, Ju Xiaotang, Zhang Fusuo, Pan Jiarong, Christie Peter.Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crops Research 83,2003, 111–124
    140. McCown RL, Hammer GL,Hargreaves JNG, Holzworth DP, Freebairn DM. APSIM: a novel software system for model development model testing and simulation in agricultural systems research. Agric. Syst. 1996. 50, 255–271.
    141. Michael C. Cox, Calvin O. Qualset and D. William Rains.Genetic Variation for Nitrogen Assimilation and Translocation in Wheat. II. Nitrogen Assimilation in Relation to Grain Yield and Protein. Crop Sci 1985,25:435-440
    142. Mitchell C C, Arriaga F J, Entry J A, Novak J L, Goodman W R, Reeves D W, Runge M W, Traxler G J. The Old Rotation, 1896~1996.Special Publication of the Ala. Agric. 1996. Exp.Stn., Auburn University
    143. Mitchell C C, Reeves W, Hubbs M D. The Old Rotation 1996~1999.Agronomy and Soils Dep. 2000. Ser. No.228. Alabama Agric. Exp.Stn., Auburn University
    144. Mooney H,Vitousek PM,Matson PA,1987.Exchange of materials between terrestrial ecosystems and the atmosphere.Science,238:926~932
    145. Nosengo N. Fertilized to denth.Nature,2003, 425:894~895
    146. Nsabimana D,Haynes R J,Wallis F M. Size,Activityand catabolic diversity of the soil microbial biomass as affected by land use . Applied Soil Ecology,2004,26 : 81292
    147. OECD 2001.OECD Environmental outlook to 2020.Paris:OECD.1~338
    148. Peter M. Vitousek, John D., Aber. Robert W., Howarth. Gene E., Likens, Pamela A. Matson. David W. Schindler, William H. Schlesinger David G. Tilman, David W. Schindler. Human alteration of the global nitrogen cycle: sources and consquences. Ecological Applications, 1997, 7(3), 737–750
    149. Powlson D S,Poulton P R,Addiscott T M,Mccann D S.1989.Leaching of nitrogen from soils receiving organic or inorganic fertilizer continuously for 135 years.In: Hansen J A, Henriksen K eds.Nitrogen in Organic Wastes Applied to Soils.London:Academic Press.334~345
    150. Probert ME, Keating BA, Thompson JP, Parton WJ. Modelling water, nitrogen and crop yield for a long-term fallow management experiment. Aust. J. Exp. Agric. 1995, 35,941–950.
    151. Probert ME. A conceptual model for initial and residual responses to phosphorus fertilizers. Fertilizer Research, 1985, 131-8.
    152. Probert ME. Modelling nutrient management in tropical cropping systems. ACIAR. Canberra, 2004. 92-100
    153. Probert, M.E. Okalebo, J.R.. Effects of phosphorus on the growth and development of maize. In“A search for strategies for sustainable dryland cropping in semi-arid eastern Kenya”. 1992, ACIAR Proceedings No 41. 55-62.
    154. Probert, ME, Dimes JP, Keating BA, Dalal RC, Strong WM, 1998. APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow TM, 1991. Simulation of nitrogen in soil and winter wheat systems. Agric. Syst. 56, 1–28
    155. Qiu JJ, Li CS, Wang LG, Tang H J, Li H, Van Ranst E. Modeling impacts of carbon equestration on net greenhouse gas emissions from agricultural soils in China. Global Biogeochemical Cycle, 2009, 23, GB1007, doi:10.1029/2008GB003180.
    156. Ritchie JT, Otter S. Description and performance of CERES-Wheat: a user-oriented wheat yield model. 1985. In: USDA-ARS,ARS-38.159~175.
    157. Robertson, M.J., Sakala, W., Benson, T., Shamudzarira, Z., 2005. Simulating response of maize to previous velvet bean (Mucuna pruriens) crop and nitrogen fertilizer in Malawi . Field Crop Res. 91: 91-105.
    158. Shaffer M J. Nitrogen modeling for soil management. Journal of Soil and Water Conservation, 2002: 417~424.
    159. Sharpley, A.N., T.C. Daniel, J.T. Sims, J. Lemunyon, R.A. Stevens, R. Parry. Agricultural phosphorus and eutrophication. 1999. USDA-ARS Report 149, U.S. Gov. Printing Office, Washington, DC.
    160. Shigaki, F., Sharpley, A.N., Prochnow, L.I. Source-related transport of phosphorus in surface runoff. J. Environ. Qual. 2006.35, 2229–2235.
    161. Simunek J, SejnaM and van Genuchten M. The hydrology software package for simulation the one dimensional movement of water, heat and multip le solutes in variably saturated media. U S salinity laboratory. 1998.
    162. Sneh G K, Chander M C, Mundra. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biology and Fertility of Soils, 1999, 29 (2) :196-200
    163. Tang xu, Ma yibing, Hao xiying, Li xiuying, Li Jumei, Huang Shaomin, Yang xueyun.Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 2009, Doi:10.1007/s 11104-009-9919-y.
    164. Tunney H.Carton OT,Brookes P C.Phosphorus loss from soil to water.CAB international,1997.253~271.
    165. Wang Enli, Cresswell H, Xu J, Jiang Q, 2009. Capacity of soils to buffer impact of climate variability and value of seasonal forecasts. Agricultural and Forest Meteorology, 149: 38-50.
    166. Wang Enli, McIntosh P, Jiang Q, Xu J. 2009. Quantifying the value of historical climate knowledge and climate forecasts using agricultural systems modelling. Climatic Change, doi :10.1007/s10584-009-9592-4.
    167. Wang Enli, Smith CJ. Modelling the growth and water uptake function of plant root systems: A review. Australian Journal of Agricultural Research, 2004.Vol 55, Issue 5, 501– 523.
    168. Wang L, Qiu J, Tang H, Li H, Li C, Van Ranst E, 2008. Modelling soil organic carbon dynamics in the major agricultural regions of China. Geoderma 147, 47–55.
    169. Wang, E L, Robertson, M.R., Hammer, G.L., Carberry, P., Holzworth, D., Hargreaves, J., Huth, N., Chapman, S., Meinke, H., McLean, G. Design and implementation of a generic crop module template in the cropping system model APSIM, 2003, Eur. J. Agron. 18: 121-140.
    170. Watson C A, Atkinson D. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm system, a comparison of three methodological approaches. Nutrient Cycle Agro-ecosystem, 1999, 53: 259~267.
    171. Willigen P. de. Nitrogen turnover in the soil-crop system; comparison of fourteen simulation models Fertilizer Research 27: 141-149, 1991.
    172. Willmott C J. Some comments on the evaluation of model performance. Bul.l Am. Meteoro.l Soc., 1982, 63: 1310~1313.
    173. Xing GX, Zhu ZL An assessment of N loss from agricultural fields to the environment in China. 2002, Nutr Cycl Agroecosyst 57:67–73. doi:10.1023/A:1009717603427
    174. Yin CQ, ZhaoM, JinWG. Amultipond system as aprotective zone for the management of lakes in China. Hydrobiologia, 1993, 251:321~329
    175. Zhang WL, Tian ZX, Zhang N, Li XQ (1996) Nitrate pollution of groundwater in northern China. Agric Ecosyst Environ 1996, 59:223–231. doi:10.1016/0167-8809(96)01052-3
    176. Zhang Y S,Werner W,Scherer H W,Sun X. Effect of organic manure on organic Phosphorus fractions in two paddy soils[J].Biol Fertil Soils,1994,17:64~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700