用户名: 密码: 验证码:
北亚热带次生栎林与火炬松人工林土壤碳动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究探讨了北亚热带天然次生栎林与火炬松人工林土壤有机碳输入和释放的动态变化以及土壤中各种形式有机碳含量的动态变化特征,并初步分析了其主要调控因子及调控机理。研究结果表明:(1)两种林分土壤呼吸均表现出明显的日动态和季节动态变化,土壤呼吸的季节性变异主要受土壤温度的控制,表现为夏季土壤呼吸速率最大而冬季最小,栎林土壤呼吸对温度的敏感性大于松林;(2)两种林分土壤微生物生物量碳含量均具有显著的季节动态变化,表现为在林木生长旺季土壤微生物生物量碳维持在较低水平,而在林木休眠季节,土壤微生物生物量碳维持在较高水平,这种季节性变异可能与土壤碳和养分的限制或与林木的生长发育节律有关;(3)土地利用方式的改变对土壤微生物生物量及土壤CO_2的释放有显著的影响,森林改变为农田可能潜在地增加土壤CO_2的释放;(4)两种林分土壤有机碳及土壤有效碳含量均具有一定的季节动态变化,并且变化特点各异;两种林分土壤有机碳的含量均呈现出下降趋势,并且栎林下降趋势更为明显;林地凋落物的输入和分解对于维持土壤有机碳及土壤有效碳的含量具有重要的作用。我们的研究成果为阐明北亚热带区域土壤碳循环特征及我国森林在全球碳平衡中的作用提供了科学依据。
The dynamics and its main influence factors of soil organic carbon, soil labile carbon, soil microbial biomass carbon, soil respiration and plant litter fall input were studied in a secondary oak forest and a pine plantation in Xiashu Forest Experimental Site of Nanjing Forestry University, Jiangsu Province, South-eastern China. The field experients lasts two years with randomized block design. The results showed that: (1) There were significant diurnal variation and seasonal variation of soil respiration both in oak forest and pine plantation, the seasonal variation of soil respiration was mainly controlled by soil temperature, which was maximum in summer and minimum in winter, the Q_(10) value in oak forest was higher than in pine plantation; (2) There were significant seasonal fluctuations of soil microbial biomass carbon both in secondary oak forest and pine plantation, which maintained at a lower level through the growing season in summer, but at a higher level during non-growing season in winter, the fluctuation of soil microbial biomass carbon wasn't directly regulated by soil temperature, soil moisture, or aboveground litter fall input, which might be regulated by the availability of soil carbon and soil nutrients or competition for soil nutrients from plant roots at local scales within northern subtropical forests; (3) Land use change significantly influenced the soil respiration and soil microbial biomass, the land use change from forest to cropland may potentially increase the release of soil carbon dioxide; (4) There were determinate seasonal fluctuations of soil organic carbon and soil labile carbon in both secondary oak forest and pine plantation, but the characteristics of the seasonal fluctuations of soil organic carbon or soil labile carbon were different with different land types and different treatments, there were apparent downtrend of soil organic carbon in both oak forest and pine plantation, but the downtrend in oak forest was more significant than in pine plantation, the input and decomposition of plant litter fall had important influence on maintaining the pool size of soil organic carbon and soil labile carbon.
引文
[1] Alef K and Kleiner D. Arginine ammonification, a simple method to estimate microbial activity potential in soil. Soil Biol. & Biochem, 1986, 18:233-235.
    
    [2] Amy K, Barg and Robert L Edmonds. Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington. Canadian Journal of Forest Research; Jun 1999; 29, 6; Research Library pg.705.
    
    [3] Anderson J P E and Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol.& Biochem., 1978,10:215-221.
    [4] Anderson J P E. Soil respiration. In Methods of soil analysis, Part 2 (eds Miller A L & Keeney R H.): 831-871 (Am. Soc. Agron, Soil Sci. Soc. Am, Madison, Wisconsin, 1982).
    [5] Andersom T H, Domsch K H. Rations of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem., 1989, 21:471-479.
    [6] Andrew M, Gordon Robert E, Schlentner K V C. Seasonal patterns of soil respiration and CO_2 evolution following harvesting in the white spruce forest of interior Alaska[J]. Can J For Res. 1987,17: 304-310.
    [7] Atkin O K, Edwards E J, Loveys B R. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol., 2000, 147: 141-154
    [8] Barbhuiya A R, Arunachalam A, Pandeyb H N, et al. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 2004, 40: 113-121
    [9] Batjes N H. Total carbon and nitrogen in soils of the world[J]. European Journal of Soil Science, 1996, 47:151-163.
    [10] Bauhus and Barthel R. Mechanisms for carbon and nutrient release and retention in beech forest gaps: The role of soil microbial biomass. Plant and Soil, 1995, 168-169: 585-592.
    
    [11] Bauhaus J, Pare D, Cote L. Effects of tree species stand age, and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry, 1998, 30: 1077-1089.
    
    [12] Bazzaz F A, Williams W E. Atmospheric CO_2 concentrations within a mixed forest: Implications for seedling growth. Ecology, 1991, 72: 12-16.
    [13] Boois H M. Measurement of seasonal variations in the oxygen uptake of various litter layers of an oak forest. Plant and Soil, 1974, 40: 545-555.
    [14] Basu S. Joshi S K, Pati D P, et al. Soil respiration in relation to microbial biomass in a tropical deciduous forest floor from India. Rev. Ecol. Biol. Sol. 1991, 28: 377-386.
    [15] Berger T W, Neubauer C, Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria[J]. Forest Ecology and Management, 2002, 159:3-14.
    [16] Boone R D, Nadelhoffer K J, Ganary J D & Kaye J P. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 396: 570-572.
    [17] Bowman R A, Vigil M F, Nielsen D C, et al. Soil organic matter changes in intensively cropped dry-land systems[J]. Soil Science Society of American Journal, 1999, 63: 186-191.
    [18] Brye K R, et al. Short-term effects of land-leveling on soil chemical properties and their relationships with microbial biomass. Soil Science Society of America Journal, 2004; 68, 3; Research Library, pg.924.
    [19] Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 2000, 32: 1625-1635.
    [20] Bunnell F, Tait D E N, Flanagan P W, et al. Microbial respiration and substrate weight loss 1. A general model of the influences of abiotic variables. Soil Biology and Biochemistry, 1977, 9: 153-160.
    [21] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56:777-783.
    [22] Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 1993, 57:1071-1076.
    [23] Cao G M, Tang Y H, Mo W H, et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology & Biochemistry, 2004, 36: 237-243.
    [24] Chen Su-Ying, Hu Chun-Sheng. Soil respiration rate of farmland ecosystem in Taihang Piedmont. Eco-Agric Res, 1997, 5(2): 42-46.
    [25] Chen Tsai-Huei, Chiu Chih-Yu, Tian Guanglong. Seasonal dynamics of Soil microbial biomass in coastal Sand dune forest. Pedobiologia, 2005, 49: 645-653.
    
    [26] Clark F E and Pawl E A. The microflora of grassland. Adv. Agron., 1970, 22: 375-435.
    [27] Coleman D C, Rcid C P P, Cole C. Biological strategies of nutrient cycling in soil systems [J]. Advances in Ecological Research, 1983,13: 1-55.
    
    [28] Coleman D C and Crossley D A. Fundamentals of soil ecology. NewYork: Academic Press. 1996.
    
    [29] Cole L C. Protect the friendly microbes, fragile breath of life. 1966, 46-47.
    [30] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 480: 184-187
    [31] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998. 4:217 227.
    [32] Davidson E A. Trumbore S E, Amundson R. Soil warming and organic carbon content[J]. Nature, 2000, 408(14):789-790.
    [33] Devi, N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-East India. Applied soil Ecology, 2006, 31: 220-227.
    [34] Dick W A, Blevins R L, Frye W. W, et al. Impacts of agricultural management practices on C sequestration in forest-derived soil of the eastern Corn Belt[J]. Soil Tillage Res.. 1998, 47: 235-244.
    [35] Duiker S W. Crop residue and tillage effects on carbon sequestration in a luvisol in central Ohio[J]. Soil Tillage Res., 1992, 52: 73-81.
    [36] Dixon R K, Brown S, Hough R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263:185-190.
    
    [37] Doran J W. Defining soil quality for a sustainable environment [M]. 1994, 3-234.
    [38] Dray J R, Gorham E. Litter production in forests of the world[J]. Adv.Res., 1964,2:101-157.
    [39] Drewitt G B, Black T A, Nesic Z, et al. Measuring forest floor CO_2 fluxes in a Douglas-fir forest. Agric. For. Meteorol., 2002, 110: 299-317.
    [40] Edwards K A, Jennifer Mcculloch, G. Peter Kershaw, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology & Biochemistry, 2006, 38(9): 2843-2851.
    [41] Epron D, Nouvellon Y, Roupsard O, et al. Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. For Ecol Manage, 2004, 202: 149-160.
    [42] Ewel K C, Cropper W P. Gholz H L. Soil CO_2 evolution in Florida slash pine plantations I. Changes through time. Can. J. For. Res., 1987, 17: 325-329.
    
    [43] Eswaran W. L. et al. Organic carbon in soils of the word. Soil Sci. Soc. Am. J, 1993,57:192-194.
    [44] Fang C, Moncrieff J B. The dependence of soil CO_2 efflux on temperature. Soil Biology and Biochemistry, 2001,33: 155-165.
    [45] Fang C, Moncrieff J B, Gholz H L, et al. Soil CO_2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil, 1998, 205: 135-146.
    [46] Fang C, Smith P, Moncrieff, J. B. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 2005, 433: 57-59.
    [47] Flanagan P W, Bunnell F. Decomposition models based on climatic variables, substrate variables, microbial respiration and production. In: Anderson J M, Maefadyen A, eds. The Role of Terrestrial and Aquatic Organisms in Decomposition Processes [C]. Oxford, England: Blackwell Scientific, 1976, 47-457.
    
    [48] Freeman C, et al. Export of organic carbon from peat soils. Nature, 2001, 412:785-787.
    [49] Fierer N, Allen A S, Schimel J P, et al. Controls on microbial CO_2 production: A comparison of surface and subsurface soil horizons. Global Change Biology, 2003, 9: 1322-1332.
    [50] Fung I Y, Tucker C J, Prentice K C. Application of advanced very high resolution vegetation index to study atmosphere-biosphere exchange of CO_2. Geophys. Res., 1987, 92: 2999-3015.
    [51] Gaumont-Guay, Black T A, Griffis T J, et al. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology, 2006. 140: 220-235.
    [52] Goreau T J. Balancing atmospheric carbon dioxide. Ambio, 1990, 19: 230-236.
    [53] Gough C M, Weiler J R. The influence of environmental, soil carbon, root and stand characteristics on soil CO_2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management, 2004, 191: 353-363.
    [54] Groffman P M, Zak D R, Christensen S, et al. Early spring nitrogen dynamics in a temperate forest landscape. Ecology, 1993, 74:1579-1585.
    [55] Gu L H, Post W M, King A W. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis [J]. Global Biogeochemical Cycles, 2004, 18(1): 1022-1032.
    [56] Guanghui Lin, James R E, Paul T R, et al. Elevated CO_2 and temperature impacts on different components of soil CO_2 efflux in Douglas-fir terracosms[J]. Global Change Biology, 1999, 5:157-168.
    [57] Gaelle Vincent, et al. Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biology & Biochemistry. 2006, 38: 2527-2535.
    [58] Han G X, Zhou G S, Xu Z Z, et al. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology & Biochemistry, 2007, 39: 418-425.
    [59] Hanson P J, Wullschleger S D, Bohlman S A, et al. Seasonal and topographic patterns of forest floor CO_2 efflux from an upland oak forest. Tree Physiol., 1993, 13: 1-15.
    [60] Harte J C and Kinzig A P. Mutualism and competition between plants and decomposers: implications for nutrient allocations in ecosystems. American nature, 1993,141: 829-846.
    [61] Hogberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 2001, 411: 789-791.
    [62] Hong S. Liu, Ling H. Li, Xing G.Han, et al. Respiratory substrate availability plays a curcial role in the response of soil respiration to environmental factors [J]. Applied Soil Ecology, 2006, 32:284-292.
    [63] Hook P B, Burke I C. Biogeochemistry in a shortgrass landscape: Control by topography, soil texture, and macroclimate[J], Ecology, 2000, 81(10):2686-2703.
    [64] Houghton J T, Jenkins G T, Ephraums J J. Climate change: the IPCC scientific assessment. NewYork: Cambridge Univ Press, 1990: 283-310.
    [65] Houghton J. Global Warming [M]. Translated by Dai X-S, Shi G-Y & Dong M. Beijing: Meteorology Press, 2001.
    
    [66] Huang Changyong. Pedology [M]. Beijing: Chinese Agriculture Press, 2000.
    [67] Hunter M D, Linnen C R, Reynolds B C. Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians. Pedobiologia, 2003, 47: 231-244.
    [68] IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implication for the Kyoto protocol. Science, 1998,280:1393-1394.
    [69] Illeris L, Christensen T. R, Mastepanov M. Moisture effects on temperature sensitivity of CO_2 exchange in a sub-arctic heath ecosystem. Biogeochemistry, 2004, 70(3):315-330.
    [70] Ingram J, Freckman D W. Soil biota and global change preface. Global Chang Biol. 1998, 4: 699-701.
    [71] Ivan J, Ferndadez, Yowhan Son, et al. Soil carbon dioxide characteristics under different forest types and after harvest. Soil Sci Soc Am J, 1993,57: 1115-1121.
    [72] James W, Raich, Aydin Tufekcioglu. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 2000, 48:71-90.
    [73] Jenkinson D S and Powlson D S. The effects of biocidal treatments on metabolism in soil: A method for measuring soil biomass. Soil Biol. & Biochem., 1976, 8:189-202.
    [74] Jenkinson D S and Ladd J N. Microbial biomass in soil: Measurement and turnover. In Soil Biochem. Paul E A and Ladd J N (eds.), Marcel Dekker; New York, 1981, 5:415-471.
    [75] Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soil. In Advances in Nitrogen Cycling in Agricultural Ecosystem. International Symposium, Brishane, Australia, 11-15, May, 1987.
    [76] Janssens I A, Pilegaard K. Large seasonal changes in Q_(10) of soil respiration in a beech forest. Global Change Biology, 2003, 9: 911-918.
    [77] Jobbgy E G., Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10:423-436.
    [78] Johns M M, Skogley E O. Application of carbonaceous resin capsules to soil organic matter testing and labile C identification. Soil Sci. Soc Am J., 1994, 58(3):751-757.
    [79] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 2003, 165(4):275-301.
    [80] Kaye J P and Hart S C. Competition for nitrogen between plants and soil microorganisms. Trends Ecology Evolution, 1997,12:139-143.
    [81] Kehing D L, Burger J A, Edwards G S. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biology and Biochemistry, 1998, 30: 961-968.
    [82] Kicklighter D W, et al. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils. Geophys. Res., 1994, 99:1303-1315.
    [83] Kirscbaum, M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil biology and biochemistry, 1995, 27: 753-760
    [84] Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming[J]. Biogeochemistry, 2000, 48:21-51.
    [85] Knowles C J. Symp. Soc. Gen. Microbid., 1977, 27:241-283.
    [86] Kucera C, Kirkham D. Soil respiration studies in tallgrass prairie in Missouri. Ecology, 1971, 52: 912-915.
    [87] Lange O L, Green T G A. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature [J]. Oecologia, 2005, 142(1): 11-19.
    [88] Laurie A T, Mary A A, Ruth D Y. Forest floor microbial biomass across a northern hardwood successional sequence. Soil Biol Biochem, 1998, 31:431-439.
    
    [89] Lawer A. Research lime light falls on carbon cycle. Science, 1998, 280: 1683-1684.
    [90] Li L H, Han X G, Wang Q B. Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin river basin of Inner Mongolia. Acta Botanica Sinica, 2002, 44: 593-597.
    [91] Liang N S, Nakadai T, Hirano T, et al. In situ comparison of four approach approaches to estimating soil CO_2 efflux in a northern larch (Larix kaempferi Sarg.) forest. Agric. For. Meteorol., 2004, 123: 97-117.
    [92] Linn D M, Doran J W. Effects of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 1984, 48: 1267-1272.
    [93] Lloyd J, Taylor I A. On the temperature dependence of soil respiration. Functional Ecology, 1994, 8: 315-323.
    [94] Lipson D A and Monson R K. Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia, 1998,113: 406-414.
    [95] Lipson D A, Schmidt S K and Monson R K. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology, 1999, 80,1623-1631.
    [96] Liu X Z, Wan S Q, Su B, et al. Response of soil CO_2 efflux to water manipulation in a tall grass prairie ecosystem[J]. Plant and Soil, 2002, 240:213-223.
    [97] Liu Chun-Jiang, et al. Aboveground litterfall in Eurasian forests[J]. Journal of Forestry Research, 2003,14(1):27-34.
    [98] Longdoz B, Yernaux M, Aubinet M. Soil CO_2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biol., 2000, 6: 907-917.
    [99] Lu Yahai, Jun Murase, Akira Watanabe, et al. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiology Ecology, 2004, 48(2):179-186.
    [100] Luizao F J, Proctor J, Thompson J, et al. Rain forest on Maraca Island, Roraima, Brazil: Soil and litter process response to artifical gaps. For. Ecol. Manag. 1998, 102: 291-303.
    [101] Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413: 622-625.
    [102] Maier C A, Kress L W. Soil CO_2 evolution and root respiration in 11 year-old loblolly pin (Pinus taeda) plantation as affected by moisture and nutrient availability. Canadian Journal of Forestry Research, 2000. 30: 347-359.
    [103] Matthew WARREN and Xiao-Ming ZOU. Seasonal nitrogen retention in temperate hardwood forests: the "vernal dam" hypothesis and case studies. Acta Phytoecologica Sinica, 2003. 27(1): 11-15(In Chinese).
    [104] McGill W B, et al. Dynamics of soil microbial biomass and water soluble organic C in Breton after 50 years of cropping to two rotations [J]. Can.J. Soil Sci., 1986, 66:1-19.
    [105] Melillo J M, Steudler P A, Aber J D, et al. Soil warming and Carbon-Cycle Feedbacks to the Climate System. Science, 2000, 298: 2173-2176.
    [106] Mielnick P C, William A D. Soil CO_2 flux in a tallgrass prairie. Soil Biology and Biochemistry, 2000, 32: 221-228.
    [107] Muller R N, Bormann F H. Role of Erythronium americanum Ker. in energy flow and nutrient dynamics in the northern hardwood forest. Science, 1976, 193:1126-1128.
    [108] Myroslava Khomik, M Altaf Arain, J H McCaughey. Temporal and spatial variability of soil respiration in a boreal mixed wood forest. Agricultural and Forest Meteorology, 2006, 140: 244-256.
    [109] Needelman B A, Wander M M, Bollero G A, et al. Interaction of tillage and soil texture: biological active soil organic in Illinois[J]. Soil Sci. Soc Amer, 1999, 63:1326-1334.
    [110] Niinisto S M, Silvola J, Kellomaki S. Soil CO_2 efflux in a boreal pine forest under atmospheric CO_2 enrichment and air warming [J]. Global Change Biology, 2004, 10(8): 1363-1376.
    [111] Norgby R. Carbon cycle: inside the black box. Nature, 1997, 388: 522-523.
    [112] Orchard V A and Cook F J. Relationship between soil respiration and soil moisture. Soil Biology & Biochemistry, 1983, 22: 153-160.
    [113] Ohashi M, Gyokusen K, Saito A. Contribution of root respiration to total soil respiration in a Japanese cedar artificial forest. Ecological Research, 2000, 15: 323-333.
    [114] Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperature. Ecological Applications, 1994, 4: 617-625.
    [115] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands [J]. Soil Science Society of America Journal, 1987, 51:1173-1179.
    [116] Paul E A and Clark F E. Soil Microbiology and Biochemistry. Academic Press, New York, USA, 1996.
    [1 17] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(8):156-159.
    [118] Post W M, Peng T H, Emanuel W R, et al. The Global Carbon Cycle[J]. American Scientist, 1990, 78: 310-326.
    [119] Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon[A]. In: Powlson D S, et al eds. Evaluation of Soil Organic Matter Models[C]. Berlin, Heidelberg: Springer-Verlag, 1996,201-224.
    [120] Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provide an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Biol. Biochem., 1987, 19:159-164.
    [121] Raich J W & Schlessinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation. Tellus B, 1992, 44: 81-99.
    [122] Raich J W & Tufekcioglu A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48: 71-90.
    [123] Raghubanshi A S, Srivastava S C, Singh R S, et al. Nutrient release in leaf litter. Nature, 1990, 346: 227.
    [124] Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO_2 efflux in a Canadian boreal forest. Soil Biology & Biochemistry, 2000, 32: 35-45.
    [125] Raphael Calbrix, Sylvie Barray, Olivier Chabrerie, et al. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Applied Soil Ecology, 2007, 35: 511-522
    [126] Reynolds B C, Hunter M D. Responses of soil respiration, soil nutrients, and litter decomposition to inputs from canopy herbivores. Soil biology &biochemistry, 2001, 33: 1641-1652.
    [127] Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology Cycles, 2005, 11: 1024-1041.
    [128] Ruan HH, Zou XM, Scatena FN, et al. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest. Plant and Soil, 2004, 260: 147-154.
    [129] Saggar S, Yeates G W, Shepherd T G. Cultivation effects on soil biological properties, micro-fauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand[J]. Soil Tillage Res., 2001,58: 55-68 .
    [130] Saynes V, Hidalgo C, Etchevers J D, et al. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Applied Soil Ecology, 2005, 29: 282-289
    [131] Savage K, Davidson E A. Interannual variation of soil respiration in two New England Forests. Global Biochemical Cycle, 2001, 15: 337-350.
    [132] Schlentner R E, Van C K. Relationships between CO_2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res., 1985, 15: 97-106.
    [133] Schinner F, Ohlinger R, Kandeler E & Margesin R. Methods in Soil Biology. (Springer-Verlag, Berlin Heidelberg, Germany, 1996).
    [134] Schlessinger W H. An overview of the carbon cycle. In: Lai R J, Kimble M, Levine E R & Stewart B A eds. Soils and global change. Florida :CRC Press. 1995, 9-25.
    [135] Schlessinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000. 48: 7-20.
    [136] Schlessinger W H. In Biogeochemistry: an Analysis of Global Change [M]. San Diego, California, USA: Academic Press, 1997, 161-165.
    [137] Sedjo R A. The carbon cycle and global forest ecosystem[J]. Water,Air and Soil Pollution, 1993, 70:295-307.
    [138] Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. The botanical review, 1977, 43:449-528.
    [139] Singh J S, Raghubanshi A S, Singh R S, et al. Microbial biomass acts as a source of plant nutrient in dry tropical forest and savanna. Nature, 1989, 399: 499-500.
    [140] Sikora L J, McCoy J L. Attempts to determine available carbon in soils. Biology and Fertility of Soils, 1990,9: 19-24.
    [141] Silver W L. The potential effects of elevated CO_2 and climate change on tropical forest soils and biogeochemical cycling. Climate Change, 1998, 39: 337-361.
    [142] Smolander A, Priha O, Paavolainen L, et al. Nitrogen and carbon transformations before and after clear-cuting in repeatedly N-fertilized and limed forest soil. Soil Biology & Biochemistry, 1998, 4: 477-490.
    [143] Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology & Biochemistry, 2002, 34(5): 651-660.
    [144] Sollins P, Spycher G, Topik C. Processes of soil organic-matter accretion at a mudflow chronosequence Mt. Shasta, California. Ecology, 1983, 64: 1273-1282.
    [145] Sonu Singh, Nandita Ghoshal, K.P. Singh. Variations in soil microbial biomass and crop roots due to differ in resource quality inputs in a tropical dryland agroecosystem. Soil Biology & Biochemistry, 2007, 39: 76-86.
    [146] Sparling G P. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In Pankhurst C E, Doube B M, Gupa V. V. S. R. ed. Biological Indicators of soil health. CAB INTERNATIONAL. 1997, 97-119.
    [147] Stanford G, Smith S J. Nitrogen mineralization potentials of soils [J]. Soil Sci. Soc Amer. J., 1972, 36: 465-472.
    [148] Subke J A, Reichstein M, Tenhunen J D. Explaining temporal variation in soil CO_2 efflux in a mature spruce forest in Southern Germany. Soil Biology & Biochemistry, 2003, 35: 1467-1483.
    
    [149] Thuille A, Buchmann N, Schulze E D. Carbon stocks and soil respiration rates during deforestation,grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy[J]. Tree Physiology, 2000, 20:849-857.
    [150] Tisdall J M. Formation of soil aggregates and accumulation of soil organic matter Carter MR, Stewart BA, eds. Structure and Organic Matter Storage in Agricultural Soils. Boca Raton FL: Lewis Publishers, 1996. 57-96.
    [151] Trumbore S E, et al. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 1996, 272: 393-396.
    [152] Uvarov A V, Tiunov A V, Scheu S. Long-term effects of seasonal and diurnal temperature fluctuations on carbon dioxide efflux from a forest soil. Soil Biology & Biochemistry, 2006, 38 : 3387-3397.
    [153] Vance E D, et al. An extraction method for measuring soil microbial biomass C. Soil Biol. & Biochem., 1987, 19:703-707.
    [154] Visser S, Parkinson D. Siol biological criteria as indicators of soil quality: soil microorganisms. Am. J.Agr. 1992, 7:33-37.
    [155] Wander M M, Traina S J, Srinner B R, et al. The effects of organic and conventional management on biological cutive soil organic matter fraction [J]. Soil Sci. Soc Amer. J, 1994, 58:1130-1139.
    [156] Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China. Global Change Biology, 2006, 12: 1-12.
    [157] Wang W J, Dalai R C, Moody P W, et al. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol.& Biochem., 2003, 35: 273-284.
    [158] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 1992,67:321-358.
    [159] Wenhong Mo, Mi-sun Lee, Masaki Uchida,et al. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan[J]. Agricultural and Forest Meteorology, 2005,134:81-94.
    [160] Whitbread A M, Lefroy R D B and Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales. Australian Journal of Soil Research, 1998, 36:669-681.
    [161] Widen B. Seasonal variation in forest floor CO_2 exchange in a Swedish coniferous forest. Agric For Meteorol, 2002, 111: 283-297.
    [162] W. Knorr, C. Prentice, J I House. Long-term sensitivity of soil carbon turnover to warming. Nature, 2005, 433:298-301.
    [163] Xiao X, et al. Transient climate change and net ecosystem production of the terrestrial biosphere. Global Biogeochemical, 1998, 12: 345-360
    [164] Xu M. & Ye Q. Spatial and seasonal variations of Q_(10) determine by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical, 2001, 15: 687-696.
    [165] Xu M, Ye Q. Soil surface CO_2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California. Global Change Biology, 2001, 7: 667-677.
    [166] Xu Q F, Xu J M. Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere, 2003, 13: 271-278.
    [167] Yang J C, Insam H. Microbial bilmass and relative contributions of bacteria and fungi in beneath tropical rain forest, Hainan Island, China. J. trop. Ecol. 1991, 7: 385-395.
    [168] Ye Q, Xu M, & Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprise[J], Ecological modeling, 2002, 153:131-142.
    [169]Yoshiko Kosugi,et al.Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest.Agricultural and Forest Meteorology,2007,article in press,accepted 12 June 2007.
    [170]Yuan Dao-Xian.Carbon cycle in earth system and its effects on environment and resources.Quaternary Sciences,2001,22(3):223-232.
    [171]Zak D R,Groffman P M,Pregitzer K S,et al.The "Vernal Dam":plant-microbe competition for nitrogen in northern hardwood forests.Ecology,1990,71:651-656.
    [172]Zheng Wen-Jiao,Shao Cheng,Wang Liang-Mu and Lin Peng.Dynamic of nutrient elements in litterfall of subtropical rain forest of Hexi in Fujian[J].Journal of Tropical and Subtropical Botany,1995,3(4):38-43.
    [173]Zoe lindo and Suzanne Visser.Microbial biomass,nitrogen and phosphorus mineralization,and mesofauna in boreal conifer and deciduous forest floors following partial and clearcut harvesting.Canadian Journal of Forest Research;Sep 2003,33,9;Research Library pg.1610.
    [174]Zou X M,Ruan H H,et al.Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure[J].Soil Biology & Biochemistry,2005,37:1923-1928.
    [175]鲍士旦主编.土壤农化分析[M].中国农业出版社.2000,12,22-24.
    [176]曹慧,杨浩,孙波等.不同种植时间菜园土壤微生物生物量和酶活性变化特征.土壤,2002(4):197-200.
    [177]曹建华,Song L-H,姜光辉等.路南石林地区土壤呼吸及碳稳定同位素日动态特征[J].中国岩溶,2005,24(1):23-27.
    [178]曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学D辑,2004,34(增刊Ⅱ):1-14.
    [179]曹志平,胡诚,叶钟年等.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响.生态学报,2006,26(5):1486-1493.
    [180]程伯容等.长自山红松阔叶林的生物养分循环[J].土壤学报,1987,24(2):160-169.
    [181]陈国潮,何振立,姚槐应.红壤微生物量的季节性变化研究.浙江大学学报(农业与生命科学版),1999,25(4):387-388.
    [182]陈金林,潘根兴,吴春林等.苏南丘陵森林土壤磷的固定特性研究.南京农业大学学报.2002,25(4).113-115.
    [183]陈全胜,李凌浩,韩兴国等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应.植物生态学报,2003,27(4):441-447.
    [184]陈全胜,李凌浩,韩兴国等.土壤呼吸对温度升高的适应.生态学报,2004,24(11):2649-2655.
    [185]陈珊,张常钟,刘东波等.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系.生态学报,1995,15(1):91-94.
    [186]陈华,Mark E.Harmon,田汉勤.全球变化对陆地生态系统枯落物分解的影响.生态学报,2001,21:1549-1563
    [187]常建国,刘世荣,史作民等.锐齿栎林土壤呼吸对土壤水热变化的响应.林业科学,2006,42(12):21-27.
    [188]褚金翔,张小全.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分.生态学报,2006,26(6):1693-1700.
    [189]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展.生态学报,2001,21(2):315-325.
    [190]董云社,章申,齐玉春等.内蒙古典型草地CO_2,N_2O,CH_4通量的同时观测及其日变化.科学通报,2000,45(3):318-322.
    [191]方精云,陈安平,赵淑清等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明.植物生态学报,2002,26(2):243-249.
    [192]房秋兰,沙丽清.西双版纳热带季节雨林与橡胶林土壤呼吸.植物生态学报,2006,30(1):97-103.
    [193]冯锐,王晓.不同培肥措施对土壤微生物生物量的影响.宁夏农林科技,1991,01:5-7.
    [194]耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,56(1),2001.44-53.
    [195]郭继勋.羊草草原土壤微生物的数量和生物量.生态学报,1997,17(1):79-82.
    [196]郭剑芬.杨玉盛,陈光水等.森林凋落物分解研究进展.林业科学,2006,42(4).93-100.
    [197]郭忠玲,郑金萍,马元丹等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究.生态学报,2006,26(4).1037-1046.
    [198]韩兴国,李凌浩,黄建辉.生物化学基础.北京:高等教育出版社,1999,177-185.
    [199]郝占庆,吕航.木质物残体在森林生态系统中的功能评述[J].生态学进展,1989,6(3):179-183.
    [200]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,1997(2):61-67.
    [201]何振立.土壤微生物量的测定方法:现状和展望.土壤学进展,1994,22(4):36-44.
    [202]洪坚平,谢英荷,Markus Kleber等.德国西南部惠格兰牧草区土壤微生物生物量的研究.生态学报.1997,17(5):493-496.
    [203]胡亚林,汪思龙,颜绍馗等杉木人工林取代天然次生阔叶林对土壤生物活性的影响.应用生态学报,2005,16(8):1411-1416.
    [204]黄承才,葛滢,常杰等.中亚热带东部三种主要木本群落土壤呼吸的研究.生态学报,1999,19(3):324-328.
    [205]黄承才.马尾松林和茶园土壤微生物生物量垂直分布研究.绍兴文理学院学报,2002,22(1).62-65.
    [206]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    [207]姜培坤,徐秋芳,俞益武.土壤微生物量碳作为林地土壤肥力指标.浙江林学院学报,2002,19(1):17-19.
    [208]蒋高明,黄银晓.北京山区辽东栎林土壤释放CO_2的模拟实验研究.生态学报,1997,17(5):476-482.
    [209]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报,2005,16(12):2248-2252.
    [210]李博.生态学.北京:高等教育出版社,2002,331-332.
    [211]李东坡,武志杰,陈利军等.长期培肥黑土微生物量碳动态变化及影响因素.应用生态学报,2004,15(8):1334-1338.
    [212]李刚仁,于荣,王伯仁.土壤活性有机质的研究发展.土壤肥料,2002,35(6):3-7.
    [213]李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环.气象出版社,2002.
    [214]李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报,1998,22(4):300-302.
    [215]李凌浩等.武夷山甜槠林粗死木质残体的贮量、动态及其功能评述[J].植物生态学报,1996,20(2):132-143.
    [216]李玉强,赵哈林,赵学勇等.土壤温度和水分对不同类型沙丘土壤呼吸的影响.干旱区资源与环境,2006,20(3):154-158.
    [217]李忠,孙波,赵其国.我国东部土壤有机碳的密度和储量.农业环境保护,2001,(06).385-389.
    [218]梁文举,闻大中.土壤生物及其对土壤生态学发展的影响.应用生态学报,2001,12(1):137-140.
    [219]梁巍,岳进,史奕等.微生物生物量C、土壤呼吸的季节性变化与黑土稻田甲烷排放.应用生态学报,2003,14(12):2278-2280.
    [220]廖军,王新根.森林凋落量研究概述[J].江西林业科技,2000,1:31-34.
    [221]林波,刘庆,吴彦,何海.森林凋落物研究进展.生态学杂志,2004,23(1):60-64.
    [222]林大仪主编.土壤学实验指导[M].中国林业出版社,2004,7,88-91.
    [223]林启美.土壤微生物生物量测定的简单方法—精氨酸氨化分析.生态学报,1999,19(1):80-83.
    [224]林启美.精氨酸氨化法干扰因素分析.生态学杂志,1998,17(2):68-70.
    [225]林心雄.中国土壤有机质状况及其管理[A].见:沈善敏主编.中国土壤肥力[C].北京:中国农业出版社,1998,111-153.
    [226]刘长怀,罗汝英.宁镇丘陵区森林土壤腐殖质的化学特征.南京林业大学学报,1990,14(1):1-6.
    [227]刘建军,余仲东,李华.油松与锐齿栎林土壤微生物生物量初步研究.陕西林业科技,2001,2:7-10.
    [228]刘满强,胡锋,何园球等.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义.土壤学报,2003,40(6):937-944.
    [229]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17(5):469-476.
    [230]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸.植物生态学报,1998,22(2):119-126.
    [231]栾军伟,向成华,骆宗诗,宫渊波.森林土壤呼吸研究进展.应用生态学报,2006,17(12):2451-2456.
    [232]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(5)692-703.
    [233]毛青兵.天台山七子花群落下土壤微生物生物量的季节动态.生物学杂志,2003,20(3):16-18.
    [234]聂道平,徐德应,王兵.全球碳循环与森林关系的研究——问题与进展[J].世界林业研究,1997,(05)33-40.
    [235]潘超美,杨风,郑海水等.橡胶林在间种砂仁与咖啡的模式下土壤微生物生物量.土壤与环境,2000,9(2):114-116.
    [236]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,(05)330-332.
    [237]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报,2002,22(9)1534-1544.
    [238]朴河春,洪亚汤,袁芷云等.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇.生态学杂志,2001,20(1):33-37.
    [239]朴河春,洪业汤,袁芷云等.贵州喀斯特地区土壤中微生物量碳的季节性变化.环境科学学报,2000,20(1):106-110.
    [240]任天志.持续农业中的生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [241]阮宏华,孙多,叶镜中.下蜀林场主要森林类型凋落物水文特征的研究.见:姜志林主编.下蜀森林生态系统定位研究论文集.北京:中国林业出版社,1992:36-41.
    [242]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律.生态学杂志,1997,16(6):17-21.
    [243]施莱杰H.G.(联邦德国).陆卫平等译.普通微生物学.复旦大学出版社,1990.
    [244]施政,汪家社,何容等.武夷山不同海拔土壤呼吸及其主要调控因子.生态学杂志,2008,27(4):563-568.
    [245]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [246]苏静,赵世伟,马继东,杨永辉,刘娜娜.宁南黄土丘陵区不同人工植被对土壤碳库的影响[J].水土保持研究.2005,(3):276-280.
    [247]苏永春,勾影波.东北高寒地区麦田土壤活性有机质和环境因素关系的灰色分析.生态学杂志,2003,40(2):232-237.
    [248]孙儒泳,李博等编.普通生态学.高等教育出版社,1993.
    [249]孙向阳,乔杰,谭笑.温带森林土壤中的CO_2排放通量[J].东北林业大学学报,2001,29(1):34-39.
    [250]孙维侠,史学正,于东升.土壤有机碳的剖面分布特征及其密度的估算方法研究——以我国东北地区为例[J].土壤,2003,(03)236-241.
    [251]孙维侠,史学正,于东升,王库,王洪杰.我国东北地区土壤有机碳密度和储量的估算研究[J].土壤学报,2004,(02)298-301.
    [252]唐燕飞,王国兵,阮宏华.土壤呼吸对温度的敏感性研究进展.南京林业大学学报(自然科学版),2008,32(1):124-128.
    [253]陶水龙,林启美,赵小蓉等.土壤微生物量研究方法进展.土壤肥料,1998(5).15-18。
    [254]同小娟,陶波,曹明奎.陆地生态系统土壤呼吸、氮矿化对气候变暖的响应.地理科学进展,2005,24(4):84-96.
    [255]王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82-89.
    [256]王国兵,阮宏华,唐燕飞等.天然次生栎林和火炬松人工林土壤微生物量碳动态变化研究.应用生态学报,2008,19(1):37-42.
    [257]王晶.谢宏图,朱平等.土壤活性有机质的内涵和现代分析方法概述.生态学杂志,2003,22(6):109-112.
    [258]王艳芬,陈佐忠,Larry T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551.
    [259]王岩,沈其荣,史瑞和等.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45-51.
    [260]王岩,沈其荣,史瑞和等.有机、无机肥料施用后土壤生物C、N、P的变化及N素转化.土壤学报,1998,35(2):226-233.
    [261]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,(04):349-356.
    [262]王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,(05)533-544.
    [263]王绍强,周成虎,刘纪远,李克让,杨晓梅.东北地区陆地碳循环平衡模拟分析[J].地理学报,2001,(04)390-400.
    [264]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,(05)797-802.
    [265]汪家社等.武夷山自然保护区螟蛾科昆虫志[M].中国科学技术出版社,2003.
    [266]汪杏芬,白克智,匡廷云.大气CO_2浓度倍增对植物暗呼吸的影响[J].植物学报,1997,9(9):849-854.
    [267]汪杏芬,李世仪,白克智等.CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响.植物学报,1998,40(12):1169-1172.
    [268]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,(05):29-35.
    [269]尉海东,马祥庆.中亚热带3种主要人工林的土壤呼吸动态.福建农林大学学报(自然科学版),2006,35(3):272-277.
    [270]吴承祯,洪伟,姜志林,郑发辉.我国森林凋落物研究进展.江西农业大学学报,2000,22(3).405-410.
    [271]吴仲民,曾庆波,李意德等.尖峰岭热带森林土壤碳储量和二氧化碳排放量的初步研究.植物生态学报,1997,21(5):416-423.
    [272]小佩尔扎M.J.,里德R.D.,詹E.C.S.编著.武汉大学生物学系微生物学教研室译.微生物学.科学出版社,1987.
    [273]肖辉林,郑习健.土壤变暖对土壤微生物活性的影响.土壤与环境,2001,10(2):138-142.
    [274]许光辉,郑洪元主编.土壤微生物分析方法手册.北京:农业出版社,1986,91-141.
    [275]徐明岗,于荣,王伯仁.土壤活性有机质的研究进展.土壤肥料,2000(6).3-7.
    [276]徐阳春,沈其荣,冉炜.长期免耕与施用化肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    [277]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究.水土保持学报,2003,17(4):15-21.
    [278]杨芳,吴家森,钱新标等.不同施肥雷竹林土壤微生物量碳的动态变化.浙江林学院学报,2006,23(1):70-74.
    [279]杨劲峰,韩晓日,阴红彬等.不同施肥条件对玉米生长季耕层土壤微生物量碳的影响.中国农学通报,2006,22(1):173-175.
    [280]杨金艳.东北天然次生林生态系统地下碳动态研究[D].东北林业大学,2005.
    [281]杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态.中国农业气象,1996,17(1):48-50.
    [282]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35(4):502-506.
    [283]杨玉盛,陈光水,董彬等.格氏栲天然林和人工林土壤呼吸对干湿交替的响应.生态学报,2004,24(5):953-958.
    [284]杨玉盛,董彬,谢锦升等.森林土壤呼吸及其对全球变化的响应.2004,24(3):583-591.
    [285]杨清培,李鸣光,王伯荪.南亚热带森林群落演替过程中林下土壤的呼吸特征[J].广西植物,2004,24(5):443-449.
    [286]姚拓,杨俊秀.森林枯落层及土壤层微生物生态研究.西北林学院学报,1997,12(4):97-103.
    [287]殷士学.土壤微生物生物量及其养分循环关系的研究进展.土壤学进展,1993(4):1-6.
    [288]于贵瑞,温学法,李庆康等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征.中国科学D辑,2004,34(增刊Ⅱ):84-94.
    [289]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.
    [290]余慎,李振高.熏蒸提取法测定土壤微生物量研究进展.土壤学进展,1994,22(6):42-50.
    [291]俞慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,1999.36(3):413-421.
    [292]俞益武,徐秋芳.天然林改为经济林后土壤微生物量的变化.水土保持学报,2003,17(5).103-113.
    [293]俞元春,阮宏华.费世民.苏南丘陵森林凋落物量及养分归还量.姜志林.下蜀森林生态系统定位研究论文集.北京:中国林业出版社,1992,50-55.
    [294]俞元春.苏南丘陵不同林分类型土壤养分的动态特征.浙江林学院学报,1998,15(1):32-36.
    [295]易志刚,蚁伟民,周国逸.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报,2003,23(8):1673-1678.
    [296]张成娥,陈小莉,郑粉莉.子午岭不同环境土壤微生物生物量与肥力关系研究.生态学报,1998,18(2):218-222.
    [297]张崇邦,金则新,施时迪.天台山不同林型土壤微生物区系及其墒值.生态学杂志,2003,22(2):28-31.
    [298]张电学,韩志卿,李东坡等.不同促腐条件下秸秆还田对土壤微生物量碳氮磷动态变化的影响.应用生态学报,2005,16(10):1903-1908.
    [299]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,No.7 Jul.,2005.
    [300]张军辉,韩士杰,孙晓敏等.冬季强风条件下森林冠层/大气界面开路涡动相关CO_2净交换通量的UU修正.中国科学D辑,2004,34(增刊Ⅱ):77-83.
    [301]张其水.杉木连栽地营造不同混交林后的土壤生物特征及土壤肥力的研究.福建林学报.1990,10(10):197-205.
    [302]张一平,赵双菊,窦军霞等.西双版纳热带季节雨林热力效应时空分布特征初探.北京林业大 学学报,2004,26(4):1-7.
    [303]张凤荣.土壤地理学[M].北京:中国农业出版社,2001.
    [304]张甲绅,陶澍,曹军等.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报,2000,31(4):174-176.
    [305]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标.生态环境,2003,12(4):500-504.
    [306]张金波,宋长春,杨文燕.不同土地利用下土壤呼吸温度敏感性差异及影响因素分析.环境科学学报,25(1),2005.1537-1542.
    [307]张雷,严红.土壤有机碳储量及影响其分解因素.东北农业大学学报,2004,35(6):744-748.
    [308]张林波,曹洪法,高吉喜等.大气CO_2浓度升高对土壤微生物的影响[J].生态学杂志,1998,17(4):33-38.
    [309]张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响.应用生态学报,2006,17(11):2029-2033.
    [310]张萍.西双版纳次生林土壤微生物生态分布及其生化特性的研究.生态学杂志,1995,14(1):2-126.
    [311]钟哲科,高智慧.杨树、水杉林带枯落物对土壤微生物C、N的影响.林业科学,2003,39(2).153-157.
    [312]周存宇,周国逸,王迎红等.鼎湖山针阔叶混交林土壤呼吸的研究.北京林业大学学报,2005,27(4):23-27.
    [313]周广胜,王玉辉,蒋延玲等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.
    [314]周广胜.全球碳循环[M].北京:气象出版社,2003.
    [315]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展.地球科学进展,2005,20(1):99-105.
    [316]周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响.地球科学进展,2006,Vol.21,No.2.138-143.
    [317]邹碧,李志安,丁永祯等.南亚热带4种人工林凋落物动态特征.生态学报,2006,26(3):715-721.
    [318]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,(05)518-522.
    [319]朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较.林业科学研究,2006,19(4):523-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700