用户名: 密码: 验证码:
共代谢MBR处理甲基硫醇锡废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲基硫醇锡热稳定剂因其稳定性高、互溶性好而成为当前PVC制品的一种最重要的稳定剂,但其生产过程中产生的废水含有大量氨氮、有机锡、有机硫等有毒有害物质,其造成的环境污染也越来越受到人们的关注。目前对甲基硫醇锡废水的处理工艺并不成熟,探索出一条稳定、有效的处理工艺就显得尤为必要。本课题以081基地生产甲基硫醇锡过程中产生的废水为研究对象,由于其为高浓度、有毒、生物难降解污水,不能直接对其采用生化处理,故本实验主要研究经一系列预处理后废水的好氧可生化性。将共代谢与膜生物反应器(MBR)结合来处理预处理后的水,就处理过程中有机污染物去除特性、污泥特性的变化、膜污染过程及机理、膜清洗方法展开了研究。此外,还采用了间歇反应器(FBR)法评价废水的好氧可生化性,在短时间内达到对废水特性的进一步了解,指导实际生化处理。试验结果表明:
     将原有FBR法的连续进水改为间歇进水,测定项目由测OUR改为测COD,原有的FBR法是整个实验过程全进废水样,而本研究采用前80min进淀粉溶液,后100min进废水。通过以上的改进以及FBR法对光臭氧,Fenton,脱硫,铁炭内电解以及活性炭吸附等预处理后废水好氧可生化性的评价,以及MBR运行试验对其结果的验证。得出FBR法可以在相同的污泥特性,相同的实验条件下评价比较不同废水的好氧可生化性;而单独地评价一种废水的好氧可生化性,污泥特性的不同对其可生化性结论并无影响。
     采用共代谢MBR对吹脱后水进行处理时,外加碳源(麦粉)COD与废水COD之比依次在5/1,2/1,1/1条件下运行,处理效果逐渐变差,生物去除率由最初的60%左右,降到了最后的-84%,主要因为大量难降解有机物积累在膜区,微生物受抑制所致。
     MBR反应器在不排泥的情况下运行,运行期间污泥浓度基本维持在8.6~9.2g/L之间,评价污泥活性的指标VSS/SS在0.64~0.72之间。污泥沉降比为100/100,几乎不沉降,主要由于毒性物质积累,污泥特性变差所致。
     将污泥浓度由最初的1~3g/L提高到8~9g/L时,膜通量下降的速率变快,膜清洗更为频繁,说明污泥浓度越大,膜污染越迅速越严重。采用终端过滤器对膜面污染阻力进行分析,得出在膜固有阻力和内部污染阻力近似为0的情况下,沉积层阻力是造成膜污染的主要污染阻力,且此阻力主要由上清液中物质沉积造成。
     振荡1min只能将膜通量提高60%左右,且在仅仅80min后膜通量就衰减了30%多,而化学清洗不但可以将膜通量恢复到90%以上,还在膜污染相对严重时使运行持续了20天左右。化学清洗时依次采用酸,碱,氧化剂对膜进行清洗,HCL清洗后通量恢复指数为0.86~0.97,NaOH清洗后通量恢复指数为0.98~1.13,NaCLO清洗后通量恢复指数为1.15~1.42,相对于前一种溶液清洗后,后一种溶液的清洗总能使膜通量有进一步的提高,这说明化学清洗时酸洗,碱洗以及氧化剂清洗同时采用比单独采用效果好。其中通量恢复指数大于1,主要由于实验采用的旧膜,之前对其的清洗不彻底造成。
Methyltin mercaptide is one of the most important heat stabilizer for PVC products for its high stability and dissolvability. However, the wastewater generated from methyltin mercaptide's production process consists of large quantities of organic pollutants, ammoniacal nitrogen and toxic substance, such as organotin and organic sulfur, and the pollution caused by the wastewater has drawn more and more attentions. At present, the method for methyltin mercaptide wastewater treatment is immature. It is necessary to explore a stable and effective method to treat the wastewater. The wasterwater got from methyltin mercaptide production process of 081 base can't be treated by biochemical plants directly for its high concentration of organics, toxicity and bad biorefractory. Therefore, this experiment mainly studied pretreated wastewater's aerobic biodegradability. Cometabolism and membrane bioreactor (MBR) are combined to treat the pretreated wastewater by different method. A series of research were carried on based on removal effect of the organic contaminants, changing of sludge characteristic, membrane fouling process and mechanism and membrane washing method. Furthermore, fitful bioreactor (FBR) is used to evaluate aerobic biodegradability of the wastewater in order to know wastewater's characteristic in a relatively short time to instruct biochemical treatment. Experimental results showed:
     The biodegradations of effluents from MBR, UV-03, Fenton, internal electrolysis and adsorption were evaluated by the innovative FBR, measuring COD instead of OUR, whose influent is a intermittent mixture of a starch solution in the first 80 minutes and the 081 wastewater in the later 100 minutes. And It was concluded that FBR could be used to evaluate the aerobic biodegradations of different waters of different qualities under the same condition of sludge characteristics and experimental conditions. When it was used to evaluate the aerobic biodegradation of a single water, the sludge characteristics influent little on the result got from the FBR.
     When the COD ratio of additional carbon and wastewater varies from 5/1 to 1/1, removal rate of pollutants is not ideal in every single condition and declined gradually from 60% to -84% because the accumalation of toxic substances make the micoorganisms inhibited.
     When the MBR is operating normally without sludge discharge, sludge concentration is 8.6~9.2g/L, VSS/SS is in a low level between 0.64 and 0.72, and SV is 100/100 because the accumalation of toxic substances make the sludge characteristic bad.
     The membrane fouling became more serious when the slugde concentration gets higher. The accumalation of toxic substances in the reactor worsen the sludge property and contributes a lot to the membrane fouling. Sedmentary deposit resistance is the main pollute resistance in membrance fouling process and mainly caused by these substances which exist in supernatant.
     Compared with physical washing, chemical washing can improve membrane's filtration capability thoroughly whose life-span is longer. 1 minute' osillation could increase the flux by 60% but declined 30% after 80 minutes' operation. While the chemical washing could increase the flux by 60%, and had performed normally for 20 days with quite a serious membrane fouling. Chemical washing was carried out in the sequence of acid liquor, lye and oxidizer whose flux recovering indexes were respectively 0.86-0.97, 0.98-1.13, 1.15-1.42. A better washing result can be obtained in the combination of lye, acid liquor and oxidizer than applying only one of them. More than 100% of the flux was recovered because the old membrane was not cleaned thoroughfully.
引文
[1] Sadiki A I, Williams D T. A study in organotin levels in Canadian drinking water distributed throughPVC pipes [J]. Chemosphere, 1999, 38 (7): 1541~1548.
    [2] 高俊敏,胡建英等.水环境中的有机锡污染调查.中国给水排水,2004,20(7):25~27.
    [3] Montigny C B, Lespes G, Gautier M P. Improved routine speciation of organotin compounds in environmental samples by pulsed flame photometric detection [J]. Journal of chromatographA , 2000, 896: 149~158.
    [4] Gao J M, Hu J Y, Wan Y, et al. Butyltin compounds distribution in the coastal waters of Bohal Bay in China [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 5: 72~76.
    [5] 江桂斌.国内外有机锡污染研究现状[J].卫生研究,2001,30(1):1~3.
    [6] Chao Y K, Maguire R J, Brown M, et al. Occurrence of organotin compounds in Canadian aquatic environment five years after the regulation of antifouling uses oftributyltin [J]. Water QualResJCanda, 1997, 32 (3): 453~521.
    [7] Strmae M. Effects of triphenyltin acetate on survival hatching success, and liver ultrastructure of early life stages of zebrafish [J]. Eeotoxicol Environ Safety, 1999, 44 (1): 25~29.
    [8] Ema M, Harazono A. Adverse effects of dibutyltin dichloride on initiation and maintenance ofratpregnaney[J].ReprodToxicol, 2000, 14 (5): 451~456.
    [9] Harazono A. Evaluation of early embryonic loss induced by tributyltin chloride in rats :phase and dose dependent antifertility effects [J]. Arah Environ Contam Toxicol, 1998, 34 (1): 94~99.
    [10] Chemoff N, Setzer R W, Miller D B. Effects of chemically induced maternal toxicity on prenatal development inthe rat [J]. Teratogy, 1990, 42 (3): 651~658.
    [11] Ema M, Miyawaki E, Kawashima K. Development toxicology of TPTCL after edministration on three consecutive days during organagenesis in rats [J]. Bull Environ Contam Taxicol, 1999, 62 (2): 363~370.
    [12] D.阿那尼,黄玉瑶.氯化二丁基锡对雌小鼠的生殖毒性[J].环境科学学报,2000,20(6):746~750.
    [13] Rice C D. Immunotoxicity in channel catfish ,ictalurus punctatus, following accute exposure to tributyltin [J]. Arah Environ Contam Toxicol, 1995, 25 (4): 464~470.
    [14] Boyer I J. Toxicity of dibutyltin and other organotin compound to human and to experimental animals [J]. Toxicology, 1989, 55 (3): 253~298.
    [15] Heidrich D D, Steckelbroedk S, Klingmuller D. Inhibition of human cytochrome P450 aromatase activity by butyltins [J]. Steroids, 2001, 66 (10): 763~769.
    [16] Whalen M M, Loganathan B G, Kannan K. Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro [J]. Environ Res, 1999, 81 (2): 108~116.
    [17] Whalen M M, Loganathan G B. Butyltin exposure causes a rapid decrease in cyclic AMP levels in human lymphocytes [J]. ToxicolAppl Pharmacol, 2001, 171 (3): 141~148.
    [18] De Santiage A, Aguilar-Santelises M. Organotin compounds decrease in vitro survival, proliferation and differentiation of normal human B lymphocytes [J]. Hum Exp Toxicol, 1999, 18 (10): 619~624.
    [19] Tam N F Y, Chong A M Y, Wong Y S. Removal of tributyltin(TBT) by live and dead microalgal cells[J] .Marine Pollution Bulletin ,2002,45:362 - 371.
    [20] 顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:化学工业出版社[M],2002.
    [21] Broekmann M, Seyfried C F. Sludge activity and crossflow microfiltration-a nonbenificial relationship. Wat.Sci.Tech, 1996, 34 (9): 205~213.
    [22] 王永波,赵文蕾,赵文蓓.膜生物反应器的实验研究及在水处理中的应用[J].水利科技与经济,2003,9(4):291~293.
    [23] Ueda T, Hata K. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Wat.Res., 1999, 33 (12): 2888~2892
    [24] Yeom I-T, Nah Y-M, Ahn K-H. Treatment of household wastewater using an intermittendly aerated membrane bioreactor [J]. Desalination, 1999, 124:193~204
    [25] 张军,王宝贞等.复合淹没式膜生物反应器脱氮除磷效能研究.中国给水排水,2000,16(9):9~11.
    [26] 杨造燕等.膜生物反应器无剩余污泥排放的研究.城市环境和城市生态[J],1999,12 (1):16~18
    [27] Katsuki Kimura et al. Irreversible membrane fouling during ultrafiltration of surface water [J].Wat.Res., 2004, 38 (14~15): 3431~3441.
    [28] 申欢,金奇庭等.膜生物法处理城市垃圾渗滤液.中国给水排水[J],2004,20(3):56~59.
    [29] Manam, Jand Sanderson, E. Membrane bioreactors In: Water Treatment:Membrane Processes, Megaw Hill (Ed), 1996, chapterl7.
    [30] Brindle K. Membrane bioreactor--today' s effulent treatment process for tomorrow. UTA International, 1997, 2.
    [31] 张军等.MBR在污水处理与回用工艺中的应用[J].环境科学,2001,19(5):9~11.
    [32] Sebastian Hesse, et ai. Characterization of refractory organic substances in water treatment [J]. Water Science and Technology, 1999, 40 (9): 1~7.
    [33] Deanna. J. R., et al. Biological fate of organic priority pollutants in the aquatic environment [J]. Water Research, 1985, 20 (9) 1077~1085.
    [34] 张锡辉,R.Bajpai.以关键酶为基础共代谢模型的建立——以甲烷细菌共代谢三氯乙烯为例[J].环境科学学报,2000,20(5):558~562.
    [35] Gerald E. Speital J r and Robert L. Segar J r. Cometabolism in biofilm reactor [J]. Water Sci. and Technology , 1995, 31 (1) : 215~225.
    [36] 何苗,张晓健,瞿福平.杂环化合物及多环芳烃厌氧酸化降解性能研究[J].中国给水排水,1997,13(3):13~16.
    [37] 付莉燕,文湘华,钱易.厌氧条件下活性翠蓝生物降解性能的研究[J].上海环境科学, 2001, 20 (6): 274~276.
    [38] R.E. Speece. Anaerobic Biotechnology f orlndust rial Wastewater [M]. Arche Press Pub, 1996.
    [39] 瞿福平,张晓健,何苗.氯苯类有机物生物降解性及共代谢作用研究[J].中国环境科学,1997,17 (2):142~146.
    [40] John P. T., Janice A. G Cometabolic biotransformation of tfinitrotoluene supported by aromatic and non-aromatic cosubstrates [J]. Chemosphere, 1999, 38 (6): 1323~1330.
    [41] 巩宗强,李培军,王新.芘在土壤中的共代谢降解研究[J].应用生态学报,2001,12 (3):447~450.
    [42] 徐向阳等.受酚污染地表水生物修复技术的基础研究[J].浙江大学学报(农业与生命科学版),1999,25(4):409~413.
    [43] Sandra L Woods, Darin J Trobaugh, Kim J Carter. Polychlorinated biphenyl reductive dechlorination by vitaminB_(12s): Thermodynamics and Regiospecifieity [J]. Environmental Science and Teehnology,, 1999, 33 (6): 857~863.
    [44] Pavlu L etal. Characterization of chlorobenzoate degraders isolated from polychlorinated biphenyl-contaminated soil and sediment in the Czech Republic [J]. Journal of Applied Microbiology, 1999, 87: 381~386.
    [45] 罗宇煊,张甲耀,管莜武.嗜碱细菌降解木质素的复合碳源共代谢研究I[J].城市环境与城市生态,2000,13 (2):8~10.
    [46] Cambotra S S, Bolla J M. Biosurfactant-Enhanced Bioremediation of Polycyclic Aromatic Hydrocarbons [J]. Environmental Science and Technology, 2003, 30 (2): 111~126.
    [47] 赵郁梅,秦勇,张高勇.表面活性剂生物降解度的测定[J].日用化学工业,2002,32 (6): 60~62.
    [48] 钱忠宁,张腾江等.难降解废水生物处理中的共代谢作用[J].福建环境,2003,20 (5): 37~39.
    [49] Jianwei Gao and Rodney S Skeen. Glucose-induced biodegradation of cis-dichloroet hylene under aerobic condition [J]. Water Research, 1999, 33 (12): 2789~2796.
    [50] Van der Waarde J. J., Kork, R. and Janssen, D. B. Cometabolic degradation of ehoroallylalcohols in batch and continuous culture [J]. Appl. Microbiol. Biotechnol., 1994, 42: 158~166.
    [51] K. Miserez, S. Philips & W. Verstraete. New biology and advanced waste water treatment [J]. WaterSci. and Technology, 1999, 40 (4~5): 137~144.
    [52] 国家环境保护总局水和废水监测分析方法编委会编.水和废水监测分析方法 (第三版)[M].北京:中国环境科学出版社,1997.
    [53] 张希衡主编.水污染控制工程[M].北京:冶金工业出版社,1993.
    [54] 陈建.一体式膜生物反应器中高浓度氨氮的硝化特性研究 (硕士学位论文,导师:金奇庭).西安:西安建筑科技大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700