用户名: 密码: 验证码:
南极海洋石油烃低温降解菌Shewanella sp.NJ49加氧酶及其基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着南极地区人类活动的增加,尤其是旅游和科研活动的增加,南极环境污染状况正日益加剧;石油烃污染是南极环境污染中最引人注目的问题,大量的石油制品以各种方式进入南极水域,对南极环境构成巨大的威胁。生物修复是消除海洋石油烃污染的重要途径,然而南极海洋系统独特的低温,高盐和强紫外辐射的环境条件,使得普通的常温微生物很难发挥其生物修复功能;本文以从南极海水海冰样品中筛选到的能降解石油烃的低温降解菌为研究对象,以期为海洋石油烃污染的低温生物修复技术应用奠定基础。
     本文以从南极海水样品中筛选到的能够高效降解烷烃和芳香烃的南极石油烃低温降解菌Shewanella sp. NJ49为材料菌株,对其烷烃降解特性、石油烃微生物降解的拉曼光谱实时监测、降解酶的定域、单加氧酶的分离纯化及理化性质和加氧酶的分子生物学表征等方面进行了研究,主要获得以下结果:
     南极石油烃低温降解菌Shewanella sp. NJ49可以在低温环境下高效降解正十六烷烃。将激光光镊拉曼光谱技术应用于烷烃微生物低温降解的研究,实时监测烷烃降解过程中降解菌单细胞、细胞群生长过程和降解前后培养基中产物的变化,初步推断南极菌NJ49的拉曼光谱峰值所代表的物质,其中位于783 cm-1、812 cm-1峰值处主要代表物质是磷脂类和油酸,1004 cm-1附近的峰主要代表物质是脂类,峰值1156 cm-1处代表的物质是葡聚糖类,1370 cm-1处是核苷酸类遗传物质,1435 cm-1和1516 cm-1处为蛋白质类,首次从细菌细胞水平获得对南极细菌低温降
     解正十六烷的新认识。对南极石油烃低温降解菌Shewanella sp. NJ49的降解酶定域研究表明,正烷烃的微生物降解通过氧化酶系酶促反应进行;南极菌NJ49降解正十六烷过程中起主要作用的是胞外酶和膜周酶(尤其以胞外酶为主),其中胞外酶和膜周酶通过正十六烷烃末端氧化完成其初步降解,并生成正十六醛、正十六醇等产物;胞内酶在正十六烷降解过程中所起作用较小,GC-MS图谱分析结果与上述结论一致。
     采用细胞静息技术获得胞外酶后,用超滤的方法收集分子量分别为>100000、30000-100000、10000-30000、5000-10000等4种不同分子量区段的酶,测定并比较酶活性,气相色谱分析结果可知分子量为3-10万区段的酶为降解正十六烷的关键酶;经硫酸铵盐析、酶的透析与超滤浓缩和葡聚糖凝胶SephardexG-75柱层析后,SDS-PAGE凝胶电泳结果显示得到了由α、β、γ三个亚基组成,分子量分别为56kD、45kD和36kD的单加氧酶。
     南极石油烃低温降解菌Shewanella sp. NJ49中存在能够降解石油烃的单加氧酶alkB,通过基因克隆和基因组步移技术得到长度为1176 bp的单加氧酶alkB全长序列;实时荧光定量PCR表达结果显示正十六烷浓度、温度、高盐和紫外辐射对南极菌NJ49降解正十六烷的能力均有不同程度的影响,对应温度梯度的最大相对表达量是15℃,单加氧酶alkB对应正十六烷浓度的最大相对表达量的是20 mg/L,对应UV-B紫外辐射时间梯度的最大相对表达量是6 h,对应高盐不同时间梯度的最大相对表达量是90‰NaCl 2 h。
     此外,通过基因克隆和基因组步移技术,从南极石油烃低温降解菌Shewanella sp. NJ49克隆到全长为924 bp的双加氧酶序列;实时荧光定量PCR表达结果显示萘浓度、温度和紫外辐射对南极菌NJ49降解萘的能力均有不同程度的影响,南极菌NJ49双加氧酶对应的最大相对表达量的萘浓度是50 mg/L,温度梯度是15℃,UV-B紫外辐射时间梯度中双加氧酶对应的最大相对表达量是4 h。
In recent years, the Antarctic environmental pollution is aggravating with the increase of human activities, especially for the increase of Antarctic tourism and scientific research activities. Petroleum hydrocarbon pollution is one of the most remarkable problems for the Antarctic environment pollution. A lot of petroleum products entered into the Antarctic waters in a variety of ways and caused huge threat for the Antarctic environment. Bioremediation is an important way to eliminate offshore oil hydrocarbon pollution, however, the normal temperature microbe is hard to exert its biological repair function because of the unique environment conditions of Antarctic ocean systems such as high salt, low temperature and the strong ultraviolet radiation. In order to lay the foundation for the application of low-temperature bioremediation technology of marine oil hydrocarbon pollution, the low temperature bacteria that can degrade petroleum hydrocarbon and be separated from Antarctic sea ice samples as the research object.
     The psychrophilic bacterium NJ49 that can degrade alkane and aromatic hydrocarbons efficiently and be separated from Antarctic sea ice samples as materials strains with hexadecane used as sole carbon source. The alkane degradation characteristics of Antarctic psychrophilic degradation bacterium, Raman spectroscopy real-time monitoring of petroleum hydrocarbon microbial degradation, localization of degradation enzyme, purification and physical and chemical properties of hydroxylase and molecular characterization of oxygenase were researched. The results were as follows:
     Antarctic psychrophilic degradation bacterium Shewanella sp. NJ49 could degrade hexadecane efficiently at low-temperature environment. The variation of individual cells of degradation bacteria in the process of alkane degradation and the variation of products in the process of cells growth were monitored synchronously by Laser optical tweezers Raman spectroscopy. The representative materials of the Raman spectrum peak for Antarctic psychrophilic bacterium NJ49 were preliminary inferred. The phospholipids and oleic acid were mainly located in the peak of 783 cm- 1 and 812 cm~(-1) and the lipid was located in the peak of 1004 cm~(-1). The peak of 1156 cm~(-1) was mainly represented the glucan. The genetic material of nucleotide was located in the peak of 1370 cm~(-1) and the protein was located in the peak of 1435 cm~(-1) and 1516 cm~(-1). The new cognition of alkane degradation of Antarctic psychrophilic bacteria was obtained from the level of individual and colonial cells.
     The research of localization of degradation enzyme of Antarctic psychrophilic bacteria indicated that micro-biological degradation of alkane needed the enzymatic reaction of oxidase system. The extracellular enzyme played key role in the process of hexadecane degradation of Antarctic psychrophilic bacterium NJ49. It accomplished the preliminary degradation of hexadecane by the terminal oxidation and produced the products of n-hexadecanal and cetyl alcohol. The intracellular enzyme played little role in the process of hexadecane degradation. The analysis result of GC-MS was in accordance with this conclusion.
     The extracellular enzyme was obtained by the cell resting technology. Four enzymes of different molecular weight (greater than 100000, 30000~(-1)00000, 10000-30000 and 5000~(-1)0000, respectively) were collected by ultrafiltration and then determined and compared the enzymatic activity. Gas chromatography analysis indicated that the enzyme of molecular weight of 30000~(-1)00000 was the key enzyme of hexadecane degradation. Polyacrylamide gel electrophoresis revealed purified hydroxylase was obtained finally. It was composed ofα,βandγsubunits but the contents were less.
     Monooxygenase can degrade oil hydrocarbon and exist in Antarctic psychrophilic bacterium NJ49. The gene full-length sequence of 1176 bp of monooxygenase was cloned by genome walking method. The expression results of real-time fluorescence quantitative PCR technology showed concentration of hexadecane, temperature, high salt and ultraviolet radiation influenced the ability of hexadecane degradation with varying degrees for Antarctic psychrophilic bacterium NJ49. The maximum relative express quantities of monooxygenase were 20 mg/L of hexadecane, 15 ?C of temperature gradient, 90‰NaCl 2 h of time gradient of high salt, 6 h of time gradient of ultraviolet radiation, respectively.
     In addition, The gene full-length sequences of 924 bp of dioxygenase was also cloned by genome walking method from Antarctic psychrophilic bacterium NJ49. The expression results of real-time fluorescence quantitative PCR technology revealed that concentration of naphthaline, temperature and ultraviolet radiation affected the ability of naphthaline degradation with varying degrees for Antarctic psychrophilic bacterium NJ49. The maximum relative express quantities of dioxygenase were 50 mg/L of naphthaline, 15 ?C of temperature gradient, 4 h of time gradient of ultraviolet radiation, respectively.
引文
(1)牛志卿,刘建荣,吴国庆. TTC-脱氢酶活力测定法的改进.微生物学通报,1994,21(1):15-18.
    (2)王丽萍,刘昱慧,邵宗泽.一株来自大西洋表层海水的烷烃降解菌Gordoniasp. S14-10的分离鉴定及其降解相关特性的分析.微生物学报,2009,49(12):1634-1642.
    (3)王绍玲,熊运实,向兰,郑远扬,等.石油及其它有机污染的生物治理法[J].油气田环境保护,1994,4:33-38.
    (4)王洋,王秋玉.生物表面活性剂在生物修复石油污染中的应用.中国农学通报,2009,25(24):455-458.
    (5)王桂文,姚辉璐等.一种酵母细胞生长现象的实时单细胞拉曼光谱观察.微生物学通报,2007,34(6):1109-1113.
    (6)王桂文,彭立新,姚辉璐等.基于光镊与拉曼光谱的红菇担孢子分析.激光生物学报,2008,17(2):186-190.
    (7)申本昌,江红,乔传令.基因组步移法克隆小菜蛾CYP9G2基因的上游序列.动物学杂志,2009,44(5):112-116.
    (8)光南,傅世宗,蔡海洋.极端环境微生物研究概况[J].福建热作科技,2000(2):l2-l5.
    (9)刘芳明.南极海洋石油烃低温降解菌的筛选、鉴定及低温其降解特性研究.国家海洋局第一海洋研究所硕士学位论文,2008.
    (10)刘陈立,邵宗泽.海洋石油降解微生物的分类鉴定[J].海洋学报,2005,27(4):114-120.
    (11)刘怡辰,曹娟,高国庆.萘降解菌N19-3的分离、鉴定和萘双加氧酶基因的检测.环境科学研究,2008,21(5):27-31.
    (12)孙艳,钱世钧.芳香族化合物生物降解的研究进展[J].生物工程进展,2001,21(1):42.
    (13)孙雷,朱孝霖,李环,韦萍.木聚糖酶分离纯化技术.生物技术通报,2005,5:51-54.
    (14)牟伯中,苏荣国,王修林等.微生物对芳香烃的降解作用.环境与开发,2000,15(4):12-18.
    (15)张子间,刘勇弟,孟庆梅,张立辉.微生物降解石油烃污染物的研究进展.化工环保,2009,29(3):193-198.
    (16)张代钧,卢培利,陈丹琴.传统活性污泥法COD去除及脱氮改造的模拟[J].环境科学学报,2002,22(4):448-454.
    (17)张承东,张爱茜,韩朔睽.含硫芳香族化合物降解酶的定域及胞内产物的鉴定[J].环境科学,2000,21(4):90-94.
    (18)张金丽,郑天凌.多环芳烃污染环境的控制与生物修复研究进展.福建环境,2002,19(2):26-29.
    (19)李习武,刘志培.石油烃类的微生物降解.微生物学报,2002,42(6):764-767.
    (20)李艺潇,钟卫鸿,陈建孟.醚类物质降解过程中的加氧酶研究进展.环境污染与防治,2008,30(4):63-67.
    (21)李亚选,负英伟,焦瑞虎,等.低温耐冷菌在寒冷地区生活污水处理中的应用[J].应用科技,2007,34(4):63-67.
    (22)李宝珍.降解石油烃微生物菌种的筛选及降解特性.中国环境科学,2003,23(2):157-161.
    (23)辛明秀.嗜冷酵母分类学及酶系的研究[A].北京:中国科学院微生物研究所,1999,12-14;56-64.
    (24)陈尧.中国近海石油污染现状及防治.工业安全与环保,2003,29(11):20-24.
    (25)陈延君,王红旗,熊樱.正十六烷微生物降解酶的定域和酶促降解性.环境科学研究,2007,20(6):120-125.
    (26)陈秀丽,王桂文,刘军贤等.功能红细胞研究的拉曼光谱技术与进展.激光生物学报,2008,17(6):845-852.
    (27)陈熹兮,等.低温微生物及其在生物修复领域中的应用[J].自然杂志,2001,23(3).
    (28)卓诚裕.海洋油污染防治技术.北京:国防工业出版社,1996.
    (29)周定.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14(5):51.
    (30)周德平,闵航,夏颖等.少动鞘氨醇单胞菌ZX4儿茶酚2,3-双加氧酶基因的克隆与序列分析.农业生物技术学报,2006,12(2):192-196.
    (31)郑天凌,庄铁诚,蔡立哲,田蕴,郭楚玲,徐美珠,李少菁.微生物在海洋污染环境中的生物修复作用.厦门大学学报,2001,40(2):524-534.
    (32)郑洲,缪锦来,刘芳明,王以斌.南极多环芳烃低温降解菌的筛选及其降解特性研究.现代农业科技,2008,19:264-265.
    (33)姚辉璐,王桂文,何碧娟等.单个红细胞的拉曼光谱研究.济南大学学报,2005,19(4):328-330.
    (34)凌晓良,温家洪,陈丹红,李升贵.南极环境与环境保护问题研究.极地考察,2005,5:3-15.
    (35)贾贞,王廷璞,安建平,等.低温微生物的研究及应用[J].天水师范学院学报,2003,23(5).
    (36)郭清根.海洋石油污染的生物强化修复.当代经理人,2006,12:35-40.
    (37)常建华,董绮功.波谱原理及解析[M].北京:科学出版社.2001,113-118.
    (38)曹雪莲,刘均洪.烷烃加氧酶系的研究进展.上海化工,2007,32(4):30-32.
    (39)隋天娥,陶征义.低温微生物的适冷性及其应用.河北化工,2009,32(2):7-9.
    (40)黄海平,田英芬,何尚锦,等.拉曼光谱在高分子中的应用新进展[J].热固性树脂,2001,16(3):38-44.
    (41)曾胤新,陈波.南极低温微生物研究及其应用前景[J].极地研究,1999,11(2):143-152.
    (42)曾锋,傅家馍,盛国英.邻苯二甲酸二丁酯的酶促降解性的研究[J].应用与环境生物学报,2000,6(5):477-482.
    (43)Acevedo JP, Reyes F, Parra LP, Salazar O, Andrews BA, Asenjo JA. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol, 2008, 133:277-286.
    (44)Atlas RM, et al. Microbial degradation of petroleum hydrocarbons: an environmental perspective [J]. Microbiology Reviews, 1981, 45:180-209.
    (45)Bataillon M, Cardinali APN, Castillon N. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme and Microbial Technology, 2000, 26:187-192.
    (46)Bego?a PM, Hidalgo A, Serra JL, Llama MJ. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite? in a packed-bed reactor. J Biotechnol, 2002, 97:1-11.
    (47)Bezalel L, Hadar Y, Cerniglia CE. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus [J]. Appl Environ Microbiol, 1996, 62:292-295.
    (48)Buzy A, Millar AL, Legros V. The hydroxylase component of soluble methane monooxygenases from Methylococcus capsulatus (Bath) exists in several forms as shown by electrospray-ionisation mass spectrometry. Eur J Biochem, 1998, 254:6022-6029.
    (49)Deschenes L, et al. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil [J]. Appl. Microbiol. Biotechnol., 1996, 46:638-646.
    (50)Dibble JT, Bartha R. Effect of Environmental Parameter on the Biodegradation of Oil Sludge [J]. Applied and Environmental Microbiology, 1979, 37:729-739.
    (51)Edwards HG, Moody C D, Viller S E, et al. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: Evaluation for Mars Lander missions. Icarus, 2005, 174: 560.
    (52)Eggink G, Lelyveldg PH, Arnberg A. Structure of the Pseudomonas putida alkBAC operon [J]. The Journal of Biological Chemistry, 1987, 262.
    (53)Feller G, et al. Molecular adaptations of enzymes from psychrophilic organisms [J]. Comp. Biochem. Physiol., 1997, 118(3):495-499.
    (54)Feller G, et al. Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria [J]. Appl. Microbiol. Biotechnol., 1994, 41:477-479.
    (55)Guo HT, Xiong J. A specific and versatile genome walking technique. Elsevier, 2006, 381:18-23
    (56)Harayama S, Shaw JP. Purification and characterization of the NADH : acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWWO of Pseudomonas putida mt-2. Eur. J. Biochem., 1992,209, 51-61.
    (57)Jarvimen TK, Milln ES. Puhakkm JA. High-Rate Bioremediation of Chlorophenol Contaminated Ground water at Low Temperature [J]. Environ. Sci Tech., 1994, 28(13):2387-2392.
    (58)Kennedy RS, Finnerty WR, Sudarsanan K, et al. Microbial assimilation of hydrocarbonsI: the fine structure of a hydrocarbon oxidizing acinetobacter sp [J]. Archives of Microbiology, 1975, 102 (2):75-83.
    (59)Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature, 1970, 227:680-685.
    (60)Lee, et al. Rapid screening for bacterial phenotypes capable of biodgrading anionic surfactants: development and validation of a microtitreplate method [J]. Microbiology, 1995,141:2801-2810.
    (61)Lin H, Doddapaneni H, Bai X, Yao J, Zhao X, Civerolo EL. Acquisition of uncharacterized sequences from Candidatus Liberibacter, an unculturable bacterium, using an improved genomic walking method. Mol Cell Probes, 2008, 22:30-37.
    (62)Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 2001, 25:402-408.
    (63)Marchesi, et al. Effects of surfactant adsorption and biodegradability on the distribution of bacteria between sediments and water in a freshwater microcosm [J]. Appl. Environ. Microbiol., 1991, 57:2507-2513.
    (64)Marcon R, Bestetti G, Frati F, et al. Naphthalene and biphenyl oxidation by two marine Pseudomonas strains isolated from Venice Lagoon sediment. Int Biodeteri or Biodegrad, 2007, 59 (1):25-31.
    (65)Margesin R, Schinner E. Properties of cold-adapted microorganisms and their potential roel in biotechnology [J]. Journal of Biotechnology, 1994, (33):1-14.
    (66)Margesin R. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils [J]. International Biodeterioration & Biodegradation, 2000, 46:3-10.
    (67)Miyazaki K. Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii B14 [J]. Anaerobe, 1997 3:373-381.
    (68)Morita RY. Psychrophilic bacteria [J]. Bacteriological Reviews, 1975, 39:144-167.
    (69)Oliveira AC, Vallim MA, Semighini CP, Araújo WL, Goldman GH, Machado MA. Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay. Phytopathology, 2002, 92:1048-1054.
    (70)Park SJ, Lee SY. Efficient recovery of secretory recombinant proteins from protease negative mutant Escherichia colistrains [J]. Biotechnol Technol, 1998, 12(11):815-818.
    (71)Paula SP, Helena P, Maria CF et a1. Molecular Biotechnology, 2003, 24:257-281.
    (72)Pini F, Grossi C, Nereo S, Michaud L, Giudice AL, Bruni V, Baldi F, Fani R. Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). Eur J Soil Biol, 2007, 43:368-379.
    (73)Quiroz FG, Posada OM, Gallego-Perez D, Higuita-Castro N, Sarassa C, Hansford DJ, Agudelo-Florez P, López LE. Housekeeping gene stability influences the quantification ofosteogenic markers during stem cell differentiation to the osteogenic lineage. Cytotechnology, 2010, 62:109-120.
    (74)Smits THM, Withoh B, vanBeilen JB. Functional characterization of genes involved in alkane oxidation by Pseu-domonasaeruginosa [J]. Antonie Van LeeuwenhoeL 2003, 84:193-200.
    (75)Tao Ying, Bentley WE, Thomas K, et al. Wood regio-specific oxidation of naphthalene and f luorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1. Biotechnol Bioeng, 2005, 90 (1) : 85-94.
    (76)Tippmann, Helge-Friedrich. Analysis for free: Comparing programs for sequence analysis. Briefings in Bioinformatics, 2004, 5:82-87.
    (77)van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, R?thlisberger M, Li Z, Witholt B. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol, 2006, 72:59-65.
    (78)van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol, 2007, 74:13-21.
    (79)van Beilen JB, Penninga D, Witholt B. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem, 1992, 267:9194-9201.
    (80)Viller SE, Edwards HG, Cockell CS. Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst, 2005, 130: 156.
    (81)Wardell LJ, et al. Potential for bioremediation of fuel-contaminated soil in Antarctica. Soil Sediment Contam, 1995, 4:111-121.
    (82)Westlake WS, Jobson A,, Phillippe R, Cook F. Biodegradability and CrudeOil Composition [J]. Can. J. Microbiol, 1974, 20(3):915-928.
    (83)Whyte LG, et al. Biodegradation of variable chain length Alkanes at low temperatures by a psychrotrophic Rhodococcus sp [J]. Appl. Environ. Microbiol., 1998, 64(7):2578-2584.
    (84)Winterhalte C, Liebl W. Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Applied and Environmental Microbiology, 1995, 61:1810-1815.
    (85)Xie CA, Li YQ, Tang W, et al. Study of dynamical process of heat denaturation in optically trapped single microorganisms by near-infrared Raman spectroscopy. Journal of Applied Physics, 2003, 94: 6138-6142.
    (86)Yakimov MM, Gentile G, Bruni V, Cappello S, D'Auria G, Golyshin PN, Giuliano L. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol, 2004, 49:419-432.
    (87)Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Golyshin PN. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol, 2003, 53:779-785.
    (88)Zhang JD, Li AT, Yang Y, Xu JH. Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation. Appl Microbiol Biotechnol, 2010, 85:615-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700