用户名: 密码: 验证码:
好氧颗粒污泥结合共代谢处理石化废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用了气升式内循环间歇反应器(SBAR),利用逐步驯化以及共代谢的方法对好氧颗粒污泥处理石化废水展开了研究,旨在考察好氧颗粒污泥处理石化废水的性能,探索好氧颗粒的活性以及结构等特征,寻求好氧颗粒污泥处理石化废水的适宜途径与方法。
     实验分为好氧颗粒污泥的培养和颗粒污泥处理石化废水两个阶段。阶段一共运行97天,以模拟废水作为进水,成功培养了稳定性较好的颗粒污泥,同时对其稳定性、物理性状、污染物去除效果等性能进行了考察。阶段二共运行126天,从该阶段开始便逐渐加入石化废水,使其在进水中的含量逐渐提高到100%,考察了好氧颗粒污泥污染物处理性能、运行稳定性,以及进水存在石化废水的情况下,颗粒污泥的生物活性、形态和结构等的变化。另外,在实验末期,为了研究好氧颗粒污泥与共代谢结合处理石化废水的效果,选定丙酸钠作为共基质添加到进水中,以促进共代谢作用的发生。
     通过一系列实验分析发现,此研究培养的好氧颗粒生长速率较慢,经过97天的培养,平均颗粒粒径仅从0.06 mm增长到0.49 mm,可能的原因是有机负荷率(OLR)偏低。另外,石化废水对好氧颗粒特性影响较大,在添加石化废水之后,颗粒污泥的微观构成逐渐由球菌变为杆菌和短杆菌,而且随着石化废水添加比例的提高,胞外聚合物(EPS)含量逐渐从50.2 mg/gMLSS降到20.4 mg/gMLSS。在进水为100%的石化废水且未添加额外碳源时,颗粒的沉降性能出现急剧恶化,COD和NH4+-N去除效果也明显下降。但是在添加丙酸钠作为共基质之后EPS含量再次提升,最终增加到40.5mg/gMLSS,颗粒在污泥体积指数(SVI)、混合液挥发性悬浮固体浓度(MLVSS)等方面体现稳定趋势,并且COD、NH4+-N和总氮(TN)的平均去除率分别达到89%、94%和67%。
     实验结果表明合适的共基质可以为好氧颗粒提供良好的营养条件。此研究选取的丙酸钠作为共基质为微生物提供了充足碳源,有利于好氧颗粒的生存和成长。相对于驯化方法,添加额外的共基质以共代谢方式运行,是维持颗粒污泥致密结构以及较好处理石化废水的一种更为有效的方法。
A sequencing batch airlift reactor (SBAR) was used in this study. By the methods of gradual domestication and co-metabolism, the treatment of petrochemical wastewater with aerobic granules was studied. The aim was to survey the properties of aerobic granules treating petrochemical wastewater and explore the features of aerobic granules such as activity, structure, etc. Good experimental results were eventually achieved.
     Experiment was divided into two stages including cultivating aerobic granular sludge and disposing petrochemical wastewater by aerobic granular sludge. Phase 1 ran 97 days with synthetic wastewater as the influent of SBAR, and later the aerobic granular sludge with good stability was successfully obtained. At the same time, the stability, physical properties and pollutant removal performance of granules were investigated. Phase 2 ran 126 days. In this phase petrochemical wastewater was added into SBAR, and the proportion of petrochemical wastewater was gradually increased to 100%. During this time, the pollutant treatment performance, operational stability, biological activity, morphology and structure changes of aerobic granular sludge were investigated with the presence of petrochemical wastewater. Additionally, in order to study the treatment efficiency of petrochemical wastewater based on aerobic granule technology combining with co-metabolism method in the later experiment, sodium propionate was selected as a co-substrate and added to the feed for promoting the occurrence of co-metabolism.
     Through a series of experimental analysis, it was found that the growth rate of aerobic granules cultivated in this study was slow. After 97 days, the mean granule size increased only from 0.06mm to 0.49 mm. A possible reason was that the organic loading rate (OLR) was low. In addition, petrochemical wastewater had a greater impact on the characteristics of aerobic granules. With the addition of petrochemical wastewater, the granular microstructure gradually changed from cocci to rod bacteria and short rod bacteria. Moreover, with the increase of petrochemical wastewater ratio, EPS content decreased gradually from 50.2 mg/gMLSS to 20.4 mg/gMLSS. When the influent was 100% of the petrochemical wastewater without any external carbon, granule settleability deteriorated sharply. Meanwhile, removal efficiencies of COD and NH4+-N obviously decreased as well. However, after sodium propionate was added as a co-substrate, EPS content increased again and eventually increased to 40.5 mg/gMLSS. Meanwhile, aerobic granules exhibited a steady trend in terms of sludge volume index (SVI), mixed liquor volatile suspended solids (MLVSS), etc. Additionally, average removal efficiencies of COD, NH4+-N and TN in petrochemical wastewater reached 89%,94% and 67%, respectively.
     The results showed that a suitable co-substrate could provide good nutrition conditions for aerobic granules. In this study, sodium propionate was selected as a co-substrate and it provided sufficient carbon source for microorganism, which was conducive to the survival and growth of aerobic granules. Compared with acclimatizing granules, adding additional co-substrate to stimulate the co-metabolism was an effective way to maintain compact structure of aerobic granules and ensure effective treatment of petrochemical wastewater.
引文
[1]Schwarzenbeck N, Erley R, Wilderer P A. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter [J]. Water Sci Technol,2004,49(11-12):41-46.
    [2]Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors [J]. Water Res,2004,38(14-15):3389-3399.
    [3]Su K Z, Yu H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater [J]. Environ Sci Technol,2005,39(8): 2818-2827.
    [4]Inizan M, Freval A, Cigana J, et al. Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment [J]. Water Sci Technol,2005,52(10-11): 335-343.
    [5]Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Res,2005,39(19):4817-4823.
    [6]Wang S G, Liu X W, Gong W X, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor [J]. Biores Technol,2006,98(11):2142-2147.
    [7]Wang H L, Yu G L, Liu G S, et al. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment [J]. Biochem Eng,2006,28(1):99-103.
    [8]De Kreuk M K, van Loosdrecht M C M. Formation of aerobic granules with domestic sewage [J]. J Environ Eng,2006,132(6):694-697.
    [9]Raghavacharya C. Colour removal from industrial effluents-comparative review of available technologies [J]. Chemosphere,2003,50(4):517-528.
    [9]凌文华,肖炎初UASB技术在石油化工企业高浓度废水预处理中的应用[J].化工进展,2003,22(7):755-757.
    [10]樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17(1):68-74.
    [11]Lettinga G, Van Velson A F M, Hobma S W, et al. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment [J]. Biotechnol Bioeng,1980,22(4):699-734.
    [12]Alves M, Cavaleiro A J, Ferreira E C, et al. Characterization by image analysis of anaerobic sludge under shock conditions [J]. Water Sci Technol,2000,41(12):207-214.
    [13]Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors [J]. Biotechnol Bioeng,1996,49(3):229-246.
    [14]Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Appl Microbiol Biotechnol,2005,66(6): 711-718.
    [15]Liu Y. Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm [J]. J Environ Eng,1997,123(2):198-202.
    [16]Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules through selecting slow-growing nitrifying bacteria [J]. J Biotechnol,2004,108(2):161-169.
    [17]Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor [J]. Water Res,2003,37(20):4965-4973.
    [18]Tay J H, Yang S F, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors [J]. Appl Microbiol Biotechnol,2002,59(2-3):332-337.
    [19]Liu Y, Yang S F, Liu Q S, et al. The role of cell hydrophobicity in the formation of aerobic granules [J]. Curr Microbiol,2003,46(4):270-274.
    [20]Liu Y, Yang S F, Tay J H. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios [J]. Appl Microbiol Biotechnol,2003, 61(5-6):556-561.
    [21]Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wasterwater [J]. J Biotechnol,2003,106(1):77-86.
    [22]Yang S F, Tay J H, Liu Y. Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios [J]. Curr Microbiol,2004,49(1):42-46.
    [23]Yang S F, Tay J H, Liu Y. Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules [J]. J Environ Eng,2005,131(1):86-92.
    [24]Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor [J]. J Appl Microbiol,2001,91 (1):168-175.
    [25]Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation structure and metabolism of aerobic granules [J]. Appl Microbiol Biotechnol,2001,57(1-2):227-233.
    [26]Tay J H, Liu Q S, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules [J]. Lett Appl Microbiol,2001,33(3):222-226.
    [27]Tay J H, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules [J]. Lett Appl Microbiol,2002,34(4):254-257.
    [28]Liu Y, Woon K H, Yang S F, et al. Influence of Phenol on cultures of acetate-fed aerobic granular [J]. Lett Appl Microbiol,2002,35(2):162-165.
    [29]Liu Y, Yang S F, Tan S F, et al. Aerobic granules:a novel zinc biosoebent [J]. Lett Appl Microbiol,2002,35(6):548-551.
    [30]Tay J H, Tay S T L, Ivanov V, et al. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment [J]. Lett Appl Microbiol,2003,36 (5):297-301.
    [31]Liu Y, Tay J H. State of art of biogranulation technology for wastewater treatment [J]. Biotechnol Adv,2004,22(7):533-563.
    [32]李宗义,王海磊,程彦伟,等.成熟厌氧颗粒污泥的结构及其特征[J].微生物学通报,2003,42(3):172-176.
    [33]郭养浩,孟春,石贤爱,等UASB反应器中影响污泥颗粒化的工程因素[J].生物工程学报,1997,13(1):76-81.
    [34]Wu W M, Jain M K, Zeikus J G. Formation of fatty acid degrading, anaerobic granules by defined species [J]. Appl Environ Microbiol,1996,62(6):2037-2049.
    [35]蒋宇红,黄霞.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-15.
    [36]Tay J H, Pan S, Tay S T L. The effect of organic loading rate on the aerobic glanulation-the develoPment of shear force theory [J]. Water Sci Technol,2003,47(11): 235-240.
    [37]Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Appl Microbiol Biotechnol,2001,57(1-2):227-233.
    [38]Chudoba J. Control of activated sludge filamentous bulking formulation of basic principles [J]. Water Res,1985,19(8):1017-1022.
    [39]Toba T, Hayasaka I, Taguchi S, et al. A new method for manufacture of lactose-hydrolysed fermented milk [J]. Sci Food Agric,1990,52(3):403-407.
    [40]Tay J H, Yang S F, Liu Y. Hydraulic selection prossure-induced nitrifying granulation in sequencing batch reactor [J]. Appl Microbiol Biotechnol,2002,59(2-3):332-337.
    [41]Wirtz R, Dague R. Enhancement of granulation and start-up in the anaerobic sequencing batch reactor [J]. Water Environ Res,1996,68(5):883-892.
    [42]Peng D C, Nicolas B, Jean Philippe D, et al. Aerobic granular sludge:A case report [J]. Water Res,1999,33(3):890-893.
    [43]Morgenroth E, Sherden T, Van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reaetor [J]. Water Res,1997,31(12):3191-3194.
    [44]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,20(2):39-41.
    [45]卢然超,张晓健,张悦,等.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响[J].环境科学,2001,22(2):87-90.
    [46]Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. J Biotechnol,2004,108(2):161-169.
    [47]Moy B Y P, Tay J H, Toh S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Lett Appl Microbiol,2002,34(6): 407-412.
    [48]Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactor [J]. Process Biochem,2004,39(5):579-584.
    [49]Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor [J]. Biochem Eng,2004,21(1):47-52.
    [50]Liu Q S, Tay J H, Liu Y. Substrate concentration independent aerobic granulation in sequential aerobic sludge blanket reactor [J]. Environ Technol,2003,24:1235-1243.
    [51]Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor [J]. Water Res,1999,33(10):2283-2290.
    [52]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的机理[J].中国环境科学,2004,24(5):623-626.
    [53]Liu Y, Tay J H. The essential role of the hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Res,2002,36(4):1653-1665.
    [54]Vandevivere P, Kirchaan D L. Attachment stimulates exopolysaccharide synthesis by bacteria [J]. Appl Environ Microbiol,1993,59(10):3280-3285.
    [55]Zita A, Hermansson M. Effects of bacterial cell surface structure and hydrophobic on attachment to activated sludge flocs [J]. Appl Environ Microbiol,1997,63(3): 1168-1170.
    [56]Selim L S, Sanin F D, Bryers J D. Effects of starvation on the adhesive properties of xenobiotic degrading bacteria [J]. Process Biochem,2003,38(6):909-914.
    [57]Tay J H, Liu Q S, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reaetors [J]. Environ Technol,2002,23(8): 931-936.
    [58]Hunik J H, Tramper J, Wijffels R H. A strategy to scale up nitrification processes with immobilized cells of nitrosomonas europaea and Nitrobacter agilis [J]. Bioprocess Eng,1994,11(2):73-82.
    [59]Bertanza G. Simultaneous nitrification-denitrification process in extended aeration plants:pilot and real scale experiences [J]. Water Sci Technol,1997,35(6):53-61.
    [60]McSwain B S, Irvine R L, Wilderer P A. The effect of intermittent feeding on aerobic granule structure [J]. Water Sci Technol,2004,49(11-12):19-25.
    [61]Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequeneing batch reaetor [J]. Water Res,1999,33(10):2283-2290.
    [62]Bruce E R. Simultaneous denitrif ication with nitrification in single-channel oxidation ditches [J]. JWPCF,1985,57(4):300-303.
    [63]Laanbroek H J, Bodelier P L E, Gerards S. Oxgen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations [J]. Arch Microbiol,1994,161 (2):156-162.
    [64]Grotenhuis J T C, van Lier J B, Plugge C M, et al. Effect of ethylene methanogenic granular sludge [J]. Appl Microbiol Biotechnol,1992,25:113-122.
    [65]Mosquera-Corral A, de Kreuk M K, Heijnen J J, et al. Effects of oxygene concentration on N removal in an aerobic granular sludge reactor [J]. Water Res,2005,39(12):2676-2686.
    [66]Jiang H L, Tay J H, Liu Y, et al. Ca2+ augmentation for enhancement of aerobically grown microbial graules in sludge blanket reactors [J]. Biotechnol Lett,2003,25(2):95-99.
    [67]迟寒,刘毅慧,杨凤林,等.好氧颗粒污泥处理城市生活污水[J].水处理技术,2006,32(8):73-77.
    [68]Wang Q, Dua G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Process Biochem,2004,39(5):557-563.
    [69]Liu Q S, Tay J H, Liu Y. Substrate Concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor [J]. Environ Technol,2003,24(10):1235-1242.
    [70]Shinh S, Lim K H, Park H S. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors [J]. Water Sci Technol,1992,26(3-4):601-605.
    [71]Yon H, Ann K, Lee H, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor [J]. Water Res,1999,33(1):146-154.
    [72]Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in sequencing batch reactor [J]. Water Res,1999,33(10):2283-2290.
    [73]阮文权,陈坚.同步硝化与反硝化(SND)耗氧颗粒污泥脱氮过程初步研究[J].安全与环境学报,2003,3(5):3-7.
    [74]Lin Y M, Liu Y, Tay J H. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reaetors [J]. Appl Microbiol Biotechnol,2003, 62(4):430-435.
    [75]Liu Y, Yang S F, Tan S F. Aerobic granules:a novel zinc biosorbent [J]. Lett Appl Microbiol,2002,35(6):548-551.
    [76]Liu Y, Yang S F, Xu H. Biosorption kinetics of cadmium (Ⅱ) on aerobic granular sludge [J]. Process Biochem,2003,38(7):997-1001.
    [77]Liu Y, Xu H, Yang S F, et al. A general model for biosorption of Cd2+, Cu3+ and Zn2+ by aerobic granules [J]. J Biotechnol,2003,102(3):233-239.
    [78]Tartakovsky B, Michotte A, Cadieux J C A, et al. Degration of Aroclor 1242 in a single-stage coupled anaerobic/aerobic bioreactor [J]. Water Res,2001,35:4323-4330.
    [79]沈东升,徐向阳,冯孝善.厌氧处理含氯酚废水的颗粒污泥形成过程研究[J].环境科学学报,1997,17(1):60-67.
    [80]蓝惠霞,陈中豪,陈元彩,等.微氧条件下培养降解五氯酚的好氧颗粒污泥[J].中国造纸,2004,23(12):7-10.
    [81]Hesse S, Kleiser G, Frimmel F H. Characterization of refractory organic substances in water treatment [J]. Water Sci Technol,1999,40(9):1-7.
    [82]Deanna J R. Biological fate of organic priority pollutants in the aquatic environment [J]. Water Res,1985,20(9):1077-1085.
    [83]胡国臣,张虹,张振家.氯代有机物的生物处理前景[J].上海环境科学,2000,19(4):180-182.
    [84]瞿福平,张晓健,顾夏声.氯代芳香化合物的生物降解性研究进展[J].环境科学,1997,18(2):74-78.
    [85]全向春,王建龙,韩力平,等.喹啉与葡萄糖共基质条件下生物降解的动力学分析[J].环境科学学报,2001,21(4):416-419.
    [86]黄丽萍,周集体,王竞,等.菌株HP3对溴胺酸的降解机理[J].中国环境科学,2001,21(2):180-184.
    [87]沈同,王镜岩.生物化学[M].北京:人民教育出版社,1981.
    [88]张锡辉,BajPai R以关键酶为基础共代谢模型的建立-以甲烷细菌共代谢三氯乙烯为例[J].环境科学学报,2000,20(5):558-562.
    [89]Speitel G E, Segar R L. Cometabolism in biofilm reactor [J]. Water Sci Technol, 1995,31(1):215-225.
    [90]Focht D D, Alexander M, Agric J. Aerobic cometabolism of DDT analogues by Hydrogenomas sp [J]. Food Chem,1971,19:20-22.
    [91]Horvath R S. Microbial co-metabolism and the degradation of organic compounds in nature [J]. Bacteriol Rev,1972,36(2):146-155.
    [92]何苗,张晓健,顾夏声,等.杂环化合物好氧生物降解性能的研究[J].中国环境科学,1997,17(6):181-183.
    [93]Gao J W, Rodney S S. Glucose-induced biodegradation of cis-dichloroethylene under aerobic condition [J]. Water Res,1999,33(12):2789-2796.
    [94]Loh K C, Wang S J. Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources [J]. Biodegra-dation,1998,8(5):329-338.
    [95]孙先锋,张志杰,王晓早.焦化废水中难降解有机物的共代谢降解特性[J].重庆环境科学,2001,23(6):28-33.
    [96]Bagley D M, Gossett J M. Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227 [J]. Appl Environ Microbiol,1995,61(9): 3195-3201.
    [97]Steirt J G, Grauford R L. Catabolism of pentachlorphenol by a Flacobacterium sp [J]. Biochem Biophys Res Commun,1986,141(2):825-830.
    [98]America Public Healthy Association (APHA). Standard Methods for the Examination of Water and Wastewater,20th ed [M]. Washington,DC,1998.
    [99]Frolund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Res,1996,30(8):1749-1758.
    [100]Li Y, Liu Y. Diffusion of substrate and oxygen in aerobic granule [J]. Biochem Eng, 2005,27(1):45-52.
    [101]Liu Y Q, Moy B Y P, Tay J H. COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors [J]. Enzyme Microb Technol,2007,42(1):23-28.
    [102]Wingender J, Neu T R, Flemming H C. What are bacterial extracellular polymeric substances? In microbial extracellular polymeric substances:characterization, structure, and function [M]. Berlin:Springer,1999.
    [103]刘燕,王越兴,莫华娟,等.有机底物对活性污泥胞外聚合物的影响[J].环境化学,2004,23(3):252-257.
    [104]贾智萍,朱宝霞,栾兆坤.不同基质条件对生物膜细胞外聚合物组成和含量的影响[J].环境化学,2002,21(6):546-551.
    [105]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    [106]金仁村,郑平,胡宝兰.好氧污泥颗粒化机理及其影响因素[J].浙江大学学报(农业与生命科学版),2006,32(2):200-205.
    [107]Yi S, Zhuang W Q, Wu B, et al. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor [J]. Environ Sci Technol,2006,40(7):2396-2401.
    [108]Zhu L, Xu X Y, Zheng Y. Mechanism of aerobic sludge granulation and its influencing factors [J]. Acta Sci Circumst,2005,25(11):1448-1456(in Chinese).
    [109]Garcia-Encina P A, Hidalgo M D. Influence of substrate feed patterns on biofilm development in anaerobic fluidized bed reactor (AFBR) [J]. Process Biochem,2005, 40(7):2509-2516.
    [110]Shen D S, Liu X W, Feng H J. Effect of easily degradable substrate on anaerobic of pentchlorophenol in an upflow anaerobic sludge blanket (UASB) reactor [J]. J Hazard Mater,2005,119(1-3):239-243.
    [111]Mosche M, Jordening H J. Comparison of different models of substrate and product inhibition in anaerobic digestion [J]. Water Res,1999,33(11):2545-2554.
    [112]Cheng J, Suidan M T, Venosa A D. Dinitrotoluene with ethanol, methanol, acetic acid and hydrogen as primary substrates [J]. Water Res,1998,32(10):2921-2930.
    [113]董春娟,吕炳南,陈自强,等.处理生物难降解物质的有效方式—共代谢[J].化工环保,2003,23(2):82-86.
    [114]Forster C F. Anaerobic upflow sludge blanket reactors:aspects of their microbiology and their chemistry [J]. J Biotechnol,1991,17(3):221-231.
    [115]Schmidt J E, Ahring B K. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors [J]. Appl Microbiol Biotechnol,1994, 42(2-3):457-462.
    [116]McSwain B S, Irvine R L, Hausner M, et al. Composition and distribution of extrace-llular polymeric substances in aerobic flocs and granular sludge [J]. Appl Environ Microbiol,2005,71(2):1051-1057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700