用户名: 密码: 验证码:
高频雷达目标数据处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频雷达以其特有的超视距警戒能力和对低可观测性目标的优良探测能力,成为一种执行大范围远程战略监测的有效手段,日益受到世界各国的普遍重视。目标数据处理作为雷达系统的关键部分,实现对多目标的实时跟踪处理,估计目标的运动状态参数,并完成数据关联及航迹处理等功能,有效地抑制类目标干扰引起的虚警,提高雷达对目标的连续跟踪能力,以期获得较好的态势表达。高频雷达的目标数据处理是在空间分辨力和位置量测精度较低、量测误差统计特性不确定、数据率低、目标运动形式未知、目标可能暂时丢检的恶劣条件下进行的。随着观测环境变得日趋复杂,目标的多样性、机动性、密集性和低可观测性也在不断加强,因此研究适应性更强、可靠性更好的目标数据处理方法具有十分重要的意义。本文深入研究了提高高频雷达目标航迹处理的稳健性、建立航迹的快速有效性以及保持目标航迹连续性的处理方法与技术途径。
     针对高频雷达的特殊数据处理环境,提出以目标量测数据为驱动的跟踪系统建模方法,克服了理想化先验模型存在的局限性。在雷达坐标系中通过改进型自学习方法建立目标状态转移模型,用双重中值平滑算法自适应估计量测噪声的统计参数,再进行限定记忆自适应滤波处理来获得较为准确的目标运动状态估计,并对跟踪滤波效果进行评估。量测数据预处理中,利用估值精度较高的多普勒速度来修正径向距离量测数据的异常情况,并建立一种基于模糊集合理论的实时野值判别准则,对数据进行合理性检验,提高了量测信息的准确性,避免引起滤波发散。仿真和实测数据的处理结果都表明,改进的跟踪滤波方法对先验信息依赖较小,能够自适应地反映跟踪系统状态,性能稳健可靠。
     引入空间轨迹匹配原理,对目标运动轨迹的光滑性进行约束,并利用径向速度与径向距离之间的匹配原理来提高径向距离的量测精度。该方法不受雷达体制的限制,不受工作参数变化、数据率不一致、数据丢失的影响,可以独立使用,快速有效地建立起目标的航迹。进一步结合前面的跟踪滤波改进算法构成两步跟踪处理:通过空间轨迹匹配处理保证目标运动轨迹的空间合理性,并估计跟踪系统的噪声特性;再对上步的处理结果建立自学习目标运动模型,进行限定记忆自学习适应滤波。空间轨迹匹配原理能够有效地控制跟踪模型的准确性,削弱航迹的起伏抖动,保证数据处理系统的稳定性。两步跟踪滤波方法可以推广应用于多雷达组网工作的点迹融合处理中。在同步融合和顺序量测异步融合中,只需在第二步时域滤波时进行序贯处理。对于非顺序量测异步融合,则可以单独使用空间轨迹匹配处理进行目标状态估计。
     分析了造成目标暂时丢检的原因,研究了量测数据缺失的情况下对目标航迹的续断处理方法,以保证对同一目标跟踪的连续性。多目标杂波环境下,目标间歇出现也可以进行关联处理,并采用修正逻辑法完成航迹起始。航迹稳定建立后,目标暂时丢失时并不立即进行航迹撤销,而是采用自适应盲跟踪方法锁定其运动规律,向前延续适当批次的航迹,以期对目标的再次俘获。深入研究盲跟踪涉及的多步状态预测技术、盲跟次数设置、关联范围调整、目标再次检出后的航迹平滑处理及航迹终止逻辑。针对目标航迹交叉引起的航迹中断,提出一种多假设简易联合概率数据关联算法来解决数据分配问题。
     跟踪与检测的结合使用,能够保护被发现的目标不轻易丢失,有效抑制非背景噪声类干扰引起的虚警,提高对目标数据的连续处理性能。信号检测首先是在单批次的频谱数据上进行的,强目标回波通过基本信号检测就能够检出。低信噪比目标回波则依据跟踪处理得到的目标状态预测信息来动态调整信号检测的区域,进行保护性的低门限跟踪信号检测。针对探海时低径向速度区域常见的目标密集情况,提出一种整峰野值剔除准则来降低虚高的检测门限,有效地避免了弱目标被遮蔽的现象。应用跟踪中的目标检测,引入暂时航迹质量参数来进行目标确认,虚假航迹的识别与杂波图的建立。
     设计实现了高频雷达目标数据处理系统,并已应用于实际工程项目中。该系统主要包括系统参数设定、目标运动设计、频谱数据生成、检测跟踪处理、态势显示等组成部分。对实验数据和仿真产生各种情况的目标点迹数据的处理结果,验证了本文提出的目标数据处理方法具有连续、稳定、快速有效的航迹处理能力。
High frequency (HF) radar is an effective means to execute large-scale and long-range strategic surveillance due to its over-the-horizon alert ability and excellent detection ability to the low-observability targets, so the world pays more attention to it. As the key section in radar system, target data processing is used to accomplish multiple targets tracking realtimely, estimating the motion state parameters, data association and trace processing, etc, which can suppress effectively the false alarms caused by target-like disturbances, improve the continuous tracking ability of target sequence, and obtain the better situation display. Target data processing in HF radar is carried on under the bad conditions of low space resolution, low precision of position measurement, uncertain statistical characteristics of measurement error, low data rate, unknown target motion mode and target may be lost. As the observation environment gets more complex, target’s maneuverability, diversity, density and low-observability are enhanced correspondingly. Therefore, it is necessary to do some research on adaptive and reliable target data processing algorithm. In this paper, the algorithm and technique are studied detailed to improve the abilities of making target trace processed stably, formed rapidly and effectively and maintained continuously in target data processing system of HF radar.
     Considering the special data processing environment in HF radar, a method of tracking system modeling driven by target measuring data is presented, which overcomes the limitations in the ideal prior knowledge models. The target state transformation model is built in radar coordinate through improved self-learning method. The statistical parameters of measuring noises are estimated adaptively by dual median smooth algorithm, and more accurate estimations of target state are acquired by limited memory adaptive filter algorithm. Then the effects of tracking filter are evaluated. In the preprocessing of measuring data, Doppler velocity which estimation is more precise is used to correct the false radial range measurement. A realtime outlier discrimination criterion based on fuzzy set theory is presented, which can verify the rationality and improve the veracity of those data to avoid the filter diverging. Through the results of simulation and processing of actual measuring data, it is shown that the improved tracking filter has less dependence on the prior knowledge information, can reflect the tracking system state adaptively and has the stable and credible performance.
     The spatial trace matching principle is introduced to restrict the smoothness of target movement trace. And the measuring precision of radical range is improved according the matching principle between the radical velocity and range. This method is not restricted by the radar system style, not influenced by the change of working parameters, the difference of data rate and the lost of measuring data. The target trace can be formed rapidly and effectively only using this method. Combining with the former improved tracking filter algorithm, the two-step tracking procedure is formed. Firstly, the rationality of target movement trace is ensured by spatial trace matching processing and the noise characteristics are estimated. Then the self-learning target motion model is built by the results of former step, and the limited memory self-learning adaptive filer is executed. The spatial trace matching principle can effectively control the accuracy of tracking model, weaken the jitters of the trace and preserve the stability of the data processing system. This two-step tracking algorithm can be used in the measurement point fusion processing of multiple radar networks. In the synchronous fusion and the in-sequence measurement asynchronous fusion, sequential processing is merely required during the second step of the time domain filter. While in the out-of-sequence measurement asynchronous fusion, target state estimation can be carried out through the spatial trace matching processing singly.
     For the reason of target temporary lost, the break-continue method in trace processing under the condition of the lack of measuring data is studied to protect the continuous tracking of the same target. In the environment of multiple targets and clutters, the data could be also associated even the target measurement appears discontinuously. The improved logic law is used in the track initiation. After the trace is formed stably, it is not canceled immediately when the target is lost temporarily, but adaptive blind tracking method is used to lock its motion pattern to keep tracking with opportune batches until the target redetection. Some problems involved in blind tracking, such as multi-step state prediction, times setting, association bound adjustment, trace smoothing after the target is recaptured and the trace termination logics, are studied in detail. To resolve the problem of trace interruption caused by traces intersection, an algorithm called multiple hypothesis cheap joint probability data association is proposed to allocate the data.
     The combination of tracking and detection can prevent the detected target from missing easily, suppress effectively the false alarms caused by the non-background noise, and improve the performance of target data continuous processing. Signal detection is firstly processed during the spectrum data of a single batch. Those targets with strong echoes can be detected in the basic signal detection. While for those weak target echoes, the zone of signal detection are adjusted according to the state prediction information and sheltered tracking signal detection is processed with low threshold. Considering the multiple target situations which appear frequently in the lower Doppler velocity region during the sea surveillance, a whole-peak-outlier- elimination criterion is proposed to depress the overvalued detection threshold for the sake of avoiding the weaken target is shielded. Target detection in tracking is applied for confirming the target by the temporary trace quality parameter, identifying the false trace and forming the clutter map.
     The target data processing system in HF Radar is designed and realized, which has been applied in the real project. This system is divided into several parts such as system parameter setting, target motion design, spectrum data generation, target detection and tracking and state display, etc. The processing results of experiment data and simulation of various target motion show that the synthesis target data processing methods proposed in this dissertation have perfect trace processing performance with continuity, stability, celerity and validity.
引文
1周文瑜,焦培南等.超视距雷达技术.电子工业出版社, 2008:2~5, 459~460, 253, 6~22
    2王小谟,张光义,贺瑞龙等.雷达与探测—现代战争的火眼金睛.国防工业出版社, 2004:143~145
    3 J. M. Headrick, J. F. Thomason. Applications of High-frequency Radar. Radio Science. 1998, 33(4):1045~1054
    4 J. M. Headrick. Looking Over the Horizon [HF radar]. IEEE Spectrum. 1990, 27(7):28~31
    5 M. I. Skolnik. Introduction to Radar Systems. McGraw-Hill Book Company. 1980:366~395
    6沈一鹰.高频地波超视距雷达信号检测的研究.哈尔滨工业大学博士论文. 1999:1~3, 17~21, 62, 76, 86, 71~72
    7朱宝明.超视距雷达的新发展.微波与雷达. 1998, (3):1~4
    8 R. E. Moutray, A. M. Ponsford. IMS Integrates Surface Wave Radar with Existing Assets for Continuous Surveillance of the EEZ.‘Challenges of our changing global environment’Conference proceedings. Raytheon Canada Ltd., Waterloo, Ont., Canada, OCEANS MTS/IEEE. 1995, 2:696~702
    9 H. C. Chan. Iceberg Detection and Tracking Using High Frequency Surface Wave Radar. Defence Research Establishment Ottawa Report No.1310. 1997:66~74
    10邓大松.俄罗斯陆基预警雷达系统大解剖.电子工程信息. 2006, (2):10~15
    11 P. Podvig. Russian Early Warning System and Danger of Inadvertent Launch. Physics and Society. 2003, 32(1):1~6
    12陈富生.外军预警探测系统发展现状与趋势.外军信息战. 2005, (3):1~5
    13卢长建.超视距雷达的发展现状.船舶电子对抗. 2006, 29(5):33~36
    14蒋庆全.新体制雷达发展述评.电子科学技术评论. 2004, (3):37~44
    15 H. Caitlin. US May Pursue Over-the-horizon Radar Technology. Jane’s Defense Weekly. 2006, (10):10~12
    16 J. F. Thomason. Development of Over the Horizon Radar in the United States. Proceedings of the International Radar Conference. 2003:599~602
    17 B. Samuel. Project Jindalee: From Bare Bones to Operational OTHR. IEEE International Radar Conference. 2000:825~830
    18 S. J. Anderson. Directional Wave Spectrum Measurement with Multistatic HF Surface Wave Radar. Proceedings of IGARSS. 2000, (7):2946~2948
    19澳大利亚防御雷达的发展:从1939年至今.电子工程信息. 2006,(2):6~9
    20 Y. T. Liu. Target Detection and Tracking with a High Frequency Ground Wave Over-the-horizon Radar. CIE International Conference of Radar Proceedings. 1996:29~33
    21 X. Tang, Y. Han, W. Zhou. Skywave Over-the-horizon Backscatter Radar. CIE International Conference of Radar Proceedings. 2001:90~94
    22 P. Jiao. Some New Experimental Research of HF Backscatter Propagation in CRIRP. Asia-Pacific Radio Science Conference Proceedings. 2004:13~16
    23吴世才,杨子杰.高频地波雷达的东海试验.武汉大学学报(理学版). 2001, 47(2):111~117
    24 Y. Y. Shen, Y. T. Liu. Cancellation of Impulsive Disturbances in HF Radar Echoes by Statistical Signal Processing. Chinese Journal of Electronics. 1999, 8(4):352~356
    25杨万海.多传感器数据融合及其应用.西安电子科技大学出版社, 2004:4, 68~69, 83, 97
    26邓自立.最优滤波理论及其应用——现代时间序列分析方法.哈尔滨工业大学出版社, 2000:47, 269
    27张旭东,陆明泉.离散随机信号处理.清华大学出版社, 2005:2
    28周宏仁,敬忠良,王培德.机动目标跟踪.国防工业出版社, 1991:25~28, 219~232
    29 R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME, Journal of Basic Engineering. 1960, 82(2):34~45
    30 R. E. Kalman, R. S. Bucy. New Results in Linear Filtering and Prediction Theory. Transactions of the ASME, Journal of Basic Engineering. 1961, 83(3):95~108
    31 K. V. Ramachandra. Optimum Steady State Position, Velocity, and Acceleration Estimation Using Noisy Sampled Position Data. IEEE Transactions on Aerospace and Electronic Systems. 1987, 23(5):705~708
    32 D. Gleason. Steady State Analysis for Discrete Tracking Filters. IEEE Transactions on Aerospace and Electronic Systems. 1989, 25(5):768~771
    33 J. H. Painter, D. Kerstertrer, S. Jowers. Reconciling Steady-state Kalman and Alpha-Beta Filter Design. IEEE Transactions on Aerospace and Electronic Systems. 1990, 26(6):986~991
    34 R. Gazit. Digital Tracking Filters With High Order Correlated Measurement Noise. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(1):171~177
    35 L. R. Rabiner, B. H. Juang. An Introduction to Hidden Markov Models. IEEE Acoust., Speech, Signal Processing Mag. 1986, 3(1):4~16
    36 B. O. Anderson, J. Moore. Optimal Filtering. Prentice-Hall, Inc. 1979:193~305
    37 S. C. Zhang, S. H. Liu, G. D. Hu. Tracking a Ballistic Target with Unscented Iterative Kalman Filter. Industrial Electronics Society (IECON), 31st Annual Conference of IEEE. 2005:1~5
    38 N. Kasdin, G. Haupt. Second-order Correction and Numerical Consideration for the Two-step Optimal Estimator. Journal of Guidance, Control and Dynamics. 1997, 20(2):362~369
    39 J. Garrison, P. Axelrad, N. J. Kasdin. Ill-conditioned Convariance Matrices in the Fist-order Two-step Estimator. Journal of Guidance, Control and Dynamics. 1998, 21(5):754~760
    40 P. Gurfil, N. K. Jeremy. Two-step Optimal Estimator for Three Dimensional Target Tracking. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(3):780~793
    41 M. Norgaard, N. K. Poulsen, O. Ravn. New Developments in State Estimation for Nonlinear System. Automatica. 2001, 36(11):1627~1638
    42 K. Ito, K. Xiong. Gaussian Filters for Nonlinear Filtering Problems. IEEE Transactions on Automatic Control. 2000, 45(5):910~927
    43 D. L. Alspach, H. W. Sorenson. Nonlinear Bayesian Estimation Using Guassian Sum Approximations. IEEE Transactions on Automatic Control. 1972, 17(4):439~448
    44 M. R. Morelande, C. M. Kreucher, K. Kastella. A Bayesian Approach to Multiple Target Detection and Tracking. IEEE Transactions on Signal Processing. 2007, 55(5):1589~1604
    45 J. Liu, R. Li. Hierarchical Adaptive Interacting Multiple Model Algorithm. Control Theory & Applications, IET. 2008, 2(6):479~487
    46 T. Cheng, Z. He, T. Tang. Adaptive Update Interval Racking Based onAdaptive Grid Interacting Multiple Model.Radar, Sonar & Navigation, IET. 2008, 2(2):104~110
    47 X. R. Li, X. Zhi, Y. Zhang. Design and Evaluation of Model-Group Switching Algorithm for Multiple-Model Estimation with Variable Structure. Proceedings of SPIE Conference on Signal and Data Processing of Small Targets. 1997, 3163(7):1~12
    48 S. Julier, J. Uhlmann, H. F. Durrant-Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic Control. 2000, 45(3):477~482
    49 S. Julier. The Scaled Unscented Transform. Proceedings of the American Control Conference. Anchorage, AK. 2002:4555~4559
    50 T. Brehard, J. P. Le Cadre. Hierarchical Particle Filter for Bearings-only Tracking. IEEE Transactions on Aerospace and Electronic Systems. 2007, 34 (4):1567~1585
    51 C. Kwok, D. Fox, M. Meila. Real-time Particle Filters. Proceedings of the IEEE. 2004, 92(3):469~484
    52 M. S. Arulampalam, S. Maskell, N. Gordon. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesial Tracking. IEEE Transactions on Aerospace and Electronic Systems. 2002, 55(2):174~188
    53 J. Vermaak, S. J. Godsill, P. Perez. Monte Carlo Filtering for Multi Target Tracking and Data Association. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(1):309~332
    54 C, Qi, P. Bondon. A new unscented particle filter. Acoustics, Speech and Signal Processing( ICASSP), 2008:3417~3420
    55 A. X. Wang, J. J. Li, A. Y. Yan. The Semi-Iterative Unscented Particle Filtering. Intelligent Systems and Applications, 2009:1~4
    56 S. McGinnity, G. W. Irwin. A Multiple Model Bootstrap Filter for Maneuvering Target Tracking. IEEE Transactions on Aerospace and Electronic Systems. 2002, 36(3):1006~1012
    57 B. O. Anderson, J. Moore. Optimal Filtering. Prentice-Hall, Inc., 1979: 193~305
    58 G. Storvik. Particle Filters for State-space Models with the Presence of Unknown Static Parameters. IEEE Transactions on Signal Processing. 2002, 50(2):281~289
    59徐宁寿.随机信号估计与系统控制.北京工业大学出版社, 2001:255~262
    60周荻.寻的导弹新型导引规律.国防工业出版社, 2002:97~188
    61 H. Byung-Moon, B. Byong-Yeul, S. J. Ovaska. Reference Signal Generator for Active Power Filters Using Improved Adaptive Predictive Filter. IEEE Transactions on Industrial Electronics. 2005, 52(2):576~584
    62 M. A. M. Laia, P. E. Cruvinel. Soil Science Tomographic Projections Filtering using Discret Kalman and Neural Networks. Latin America Transactions, IEEE (Revista IEEE America Latina). 2008, 6(1):114~121
    63 A. J. Isaksson, F. Gustafsson. Comparison of Some Kalman Filter Based Methods for Maneuver Tracking and Detection. Proceedings of the 34th Conference on Decision & Control, New Orleans, 1995:1525~1528
    64 B. J. Lee, J. B. Park, Y. H. Joo, S. H. Jin. Intelligent Kalman Filter for Tracking a Maneuvering Target. IEE Proceedings of Radar, Sonar and Navigation. 2004, 151(6):344~350
    65张晶炜,熊伟,何友.扩展式机动目标可调白噪声模型.火力与指挥控制. 2004, 29(5):28~30
    66 Y. T. Chan, A. G. C. Hu, J. B. Plant. A Kalman Filter Based Tracking Scheme with input estimation. IEEE Transactions on Aerospace and Electronic Systems. 1979, 15(2):237~244
    67 Y. Bar-Shalom, K. Birmiwal. Variable Dimension Filter for Maneuvering Target Tracking. IEEE Transactions on Aerospace and Electronic Systems. 1982, 18(5):611~619
    68 R. A. Singer. Estimating Optimal Tracking Filter Performance of Manned Maneuvering Targets. IEEE Transactions on Aerospace and Electronic Systems. 1970, 6(4):473~482
    69 R. L. Moose , H. F. Vanlandandingham, D. H. Mecabe. Modeling and Estimation for Tracking Maneuvering Targets. IEEE Transactions on Aerospace and Electronic Systems. 1979, 15(3):448~456
    70 J. D. Kendrick, P. S. Maybeck, J. G. Reid. Estimation of Aircraft Target Motion Using orientation measurements. IEEE Transactions on Aerospace and Electronic Systems. 1991, 17(2):254~259
    71周宏仁.机动目标当前统计模型与自适应算法.航空学报. 1983, 14(1):73~86
    72 K. Mehrotra, P. R. Mahapatra. A Jerk Model for Tracking Highly ManeuveringTargets. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(4):1094~1105
    73 C. Schell, S. P. Linder, J. R. Zeider. Tracking Highly Maneuverable Targets with Unknown Behavior. IEEE Proceedings. 2004, 92(3):558~574
    74 V. P. Jilkov, D. S. Angelova, T. Z. A. Semerdjiev. Design and Comparison of Mode-Set Adaptive IMM Algorithms for Maneuvering Target Tracking. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(1):343~345
    75 P. Mookerjee, F. Reifler. Reduced State Estimators for Consistent Tracking of Maneuvering Targets. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(2):608~619
    76丁春山,安瑾,何佳洲.机动目标跟踪典型算法评述.船舶电子工程. 2006, 26(1):25~31
    77 M. R. Morelande, S. Challa. Maneuvering Target Tracking in Clutter Using Particle Filters. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(1):252~270
    78何友,修建娟,张晶炜,关欣等.雷达数据处理及应用.电子工业出版社, 2006:1~3, 75, 204, 235~236, 83
    79 X. Yi, Y. He, X. Guan. Cooperative Location Model under the Nearest Neighbor Criterion. IEEE PLANS, Monterey, CA, USA, 2004:658~661
    80 S. B. Colegrove, S. J. Davey. PDAF with Multiple Clutter Regions and Target Models. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(2):110~123
    81 S. Puranik, J. K. Tugnait. Tracking of Multiple Maneuvering Targets Using Multiscan JPDA and IMM Filtering. IEEE Transactions on Aerospace and Electronic Systems. 2007, 43(1):23~35
    82 S. S. Blackman. Multiple Hypothesis Tracking for Multiple Target Tracking. IEEE Aerospace and Electronic Systems Magazine. 2004, 19(1):5~18
    83 W. S. Wijesoma, L. D. L. Perera, M. D. Adams. Foward Multidimensional Assignment Data Association in Robot Localization and Mapping. IEEE Transactions on Robotics and Automation. 2006, 22(2):350~365
    84 G. W. Pulford. Multi-Target Viterbi Data Association. International Conference on Information Fusion. 2006:1~8
    85 R. Karlsson, F. Gustafsson. Mote Carlo Data Association for Multiple Target Tracking. The Institution of Electrical Engineers. IEE, Savoy Place, London,2001, 13:1~5
    86 X. Wang, D. Musicki. Low Elevation Sea-Surface Target Tracking Using IPDA Type Filters. Radar 2003, IEEE. 2003:472~478
    87董志荣.论航迹起始方法.情报指挥控制系统与仿真技术. 1999, (2):1~6
    88王国宏,苏峰,何友.三维空间中基于Hough变换和逻辑的航迹起始.系统仿真学报. 2004, 16(8):2198~2200
    89 L. Lin, T. Kirubarajan, Y. Bar-Shalom. 3D Track Initiation in Clutter Using 2-D Radar Measurements. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(4):1434~1441
    90 P. W. Sarunic, K. A. B. White, M. G. Rutten. Over-the-horizon Radar Multipath and Multisensor Track Fusion Algorithm Development. DSTO Report. 2002, DSTO-RR-0223
    91 H. Liu, Q. Pan, Y. Liang, Y. Cheng, M. Chen. Comments on“A Multipath Data Association Tracker for Over-the-horizon Radar”. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(3):1147~1150
    92何友,王国宏,陆大丝金,彭应宁.多传感器信息融合及应用(第二版).电子工业出版社, 2007:115~165
    93 M. G. Rutten, S. Maskell, M. Briers, N. J. Gordon. Multipath Track Association for Over-the-horizon Radar Using Lagrangian Relaxation. SPIE. 2004, 5428:452~463
    94 M. G.. Rutten, N. J. Gordon, D. J. Percival. Track Fusion in Over-the-horizon Radar Networks. ISIF, 2003, 1:334~341
    95 K. C. Chang, Z. Tian, S. Mori. Performance Evaluation for MAP State Estimate Fusion. IEEE Transactions on Aerospace and Electronic Systems. 2004, 40(2):706~714
    96 W. R. Wallace. The Use of Track-Before-Detect in Pulse-Doppler Radar. IEEE Radar 2002, (10):315~319
    97 S. Buzzi, M. Lops, L. Venturino. Track-Before-Detect Procedures for Early Detection of Moving Target from Airborne Radars. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(3):937~954
    98 P. Uruski, M. Sankowski. On Estimation of Performance of Track-Before-Detect Algorithm of 3D Stacked-Beam Radar. IEEE MIKON-2004 15th International Conference. 2004, 1:97~100
    99强勇.超视距雷达抗干扰与目标检测方法.西安电子科技大学博士论文.2004:109~116
    100 S. D. Blostein, H. S. Richardson. A Sequential Detection Approach to Target Tracking. IEEE Transactions on Aerospace and Electronic Systems. 1994, 30(1):197~212
    101 L. A. Johnston, V. Krishnamurthy. Performance of a Dynamic Programming Track Before Detect Algorithm. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(1):228~242
    102 R. Liou, M. R. Azimi-Sadjadi. Multiple Target Detection Using Modified High Order Correlations. IEEE Transactions on Aerospace and Electronic Systems. 1998, 34(2):553~567
    103 Y. Boers, H. Driessen. Multitarget Particle Filter Track Before Detect Application. IEEE Proceedings on Radar, Sonar and Navigation. 2004, 151(6):351~357
    104 L. M. Ehrman, W. D. Blair. Comparison of Methods for Using Target Amplitude to Improve Measurement-to-track Association in Multi-target Tracking. 9th International Conference on Information Fusion. 2006, 7:1~8
    105 L. M. Ehrman, C. Burton, W. D. Blair. Using Target RCS to Aid Measurement-to-track Association in Multi-target Tracking. Proceeding of the 38th Southeastern Symposium on System Theory. 2006, 3:89~93
    106 S. B. Colegrove, S. J. Davey, B. Cheung. A Tracker Assessment Tool for Comparing Tracker Performance. Scientific & Technical Report, DSTO Information Science Laboratory, 2005
    107 S. B. Colegrove, B. Cheung, S. J. Davey. Tracking System Performance Assessment. Proceedings of the 6th International Conference on Information Fusion. 2003, 926~933
    108 A. Benavoli, L. Chisci, A. Farina, S. Immediata, L. Timmoneri, G. Zappa. Knowledge-based System for Multi-target Tracking in a Littoral Environment. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(3):1100~1119
    109 R. H. Khan. Ocean-Clutter Model for High-Frequency Radar. IEEE Journal of Oceanic Engineering. 1991, 16(2):181~188
    110 M. I. Skolnik.雷达系统导论.左群声,徐国良,马林,王德纯等.第三版.电子工业出版社, 2006:175~176, 7
    111谢俊好,袁业术.高频地波超视距雷达的超分辨处理.现代雷达, 1997,19(6):1~5
    112 J. Wang, P. He, T. Long. Use of the Radial Velocity Measurement in Target Tracking. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2):401~413
    113 H. Kamel, W. Badawy. A Fuzzy Logic Framework to Estimate the Angular Turn Rate for High-Performance Target Tracking. IEEE International Midwest Symposium on Circuits and Systems, 2006, 1:302~305
    114 X. R. Li, V. P. Jilkov. Survey of Maneuvering Target Tracking-Part I: Dynamic Models. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(4):1333~1364
    115屈耀红,闫建国.曲线拟合滤波在无人机导航数据处理中的应用.系统工程与电子技术, 2004, 26(12):1912~1914
    116高耀文,钱卫平,郭军海.具有控制项的限定记忆卡尔曼滤波器.现代雷达, 2004, 26(7):44~47
    117 M. Lei, C. Han. Sequential Nonlinear Tracking Using UKF and Raw Range-Rate Measurements. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):239~250
    118 J. Nasi, A. Sorsa, K. Leiviska. Sensor Validation and Outlier Detection Using Fuzzy Limits. Proceedings of the 44th IEEE Conference on Decision and Control, 2005:7828~7833
    119 B. G. Amidan, T. A. Ferryman, S. K. Cooley. Data Outlier Detection Using the Chebyshev Theorem. IEEE Conference on Aerospace, 2005:1~6
    120吴今培,孙德山.现代数据分析.机械工业出版社, 2006:261~263
    121 X. Xia, Z. Wang, Y. Gao. Gross Error Detection Using Fuzzy-set Theory. 3rd International Symposium on Instrumentation Science and Technology, Harbin Institute of Technology Press, 2004:120~127
    122王中宇,夏新涛,朱坚民.非统计原理及其工程应用.科学出版社, 2005:50~60
    123韩崇昭,朱洪艳,段战胜等.多源信息融合.清华大学出版社, 2006:124
    124杨宜康,祝转民,孙国基,黄永宣.基于数值微分技术构造鲁棒估计模型的方法及其应用仿真.系统仿真学报, 2002, 14(9):1117~1120
    125贾瑞明,张弘,李靖华.拟合修正Kalman滤波在弱小目标跟踪中的应用.激光与红外, 2005, 35(12):974~977
    126余安喜,胡卫东,周文辉.多传感器量测融合算法的性能比较.国防科技大学学报, 2003, 25(6):39~44
    127 Z. J. Hu, H. Leung. Statistical Performance Analysis of Track Initiation Techiniques. IEEE Transactions on Aerospace and Electronic Systems, 1997, 45(2):445~456
    128 D. B. Reid. An Algorithm for Tracking Multiple Targets. IEEE Transactions on Automatic Control, 1979, 24:843~854
    129 D. P. Michal, D. R. Fuhrmann. Multiple Target Detection for an Antenna Array Using Outlier Rejection Methods. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1993:45~48
    130 G. N. Schoenig, M. L. Picciolo, L. Mili. Improved Detection of Strong Nonhomogeneities for STAP via Projection Statistics. IEEE International Radar Conference, 2005:720~725
    131 A. R. Rickard, G. M. Dillard. Adaptive Detection Algorithms for Multiple Target Situations. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(4):338~343
    132 G. E. Ioup, J. W. Ioup. Higher Order Statistical Analysis of Ocean Noise Measurements for Performance Prediction. Grant #N00014-95-0648, Technical Report for 22Feb1995–21Feb1996, 1996:87~108
    133沈一鹰,郁发新,刘永坦.性能优异的复信号恒虚警检测器设计.哈尔滨工业大学学报, 2000, 32(6):33~36
    134 R. J. Prengaman, R. E. Thurber, and W. G. Bath. A Retrospecive Detection Algorithm for Extraction of Weak Targets in Clutter and Interference Environments. IEE International Conference on Radar. 1982, 10:341~345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700