用户名: 密码: 验证码:
纳米壳聚糖和纳米TiO_2-壳聚糖对真丝(绸)的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于绿色化学和生态纺织品的理念,成功制备了两种纳米材料的分散体系:一是纳米天然有机高分子材料——纳米壳聚糖,二是制备天然有机高分子材料与纳米无机材料的复合物——纳米二氧化钛—壳聚糖。旨在充分利用其纳米材料的特性以及壳聚糖和二氧化钛本身所具有的优异性能,克服真丝的弱点。
     纳米壳聚糖分散体系采用降解后的低分子量壳聚糖(粘均分子量为2.1×104),根据离子凝胶法的原理制备;纳米二氧化钛—壳聚糖分散体系以钛酸四丁酯为前驱体,先制成纳米二氧化钛溶胶,再将纳米二氧化钛溶胶均匀分散于低分子量壳聚糖的柠檬酸溶液中制成。本论文探索了纳米壳聚糖体系中各组分用量、pH值、制备温度等因素对纳米壳聚糖粒径分布的影响,确定了用于真丝改性处理的纳米壳聚糖和纳米二氧化钛—壳聚糖分散体系的制备工艺。采用激光粒度分析、透射电镜等现代分析手段,分析了纳米壳聚糖和纳米二氧化钛—壳聚糖中纳米粒子的形成机理和分布状态等,所制备的纳米壳聚糖粒径分布在15~30nm范围内,平均粒径为20.82nm,多分散指数为0.43;制备的纳米二氧化钛—壳聚糖中纳米粒子的平均粒径为36.71nm,多分散指数为0.46。
     采用扫描电镜、傅利叶红外光谱、X射线衍射、热分析和X射线光电子能谱等现代分析手段,系统研究了经两种纳米材料处理前后蚕丝纤维的结构,发现处理后蚕丝纤维内部结构呈现β化趋势,结晶度和热稳定性均有一定程度的提高,处理后的蚕丝纤维通过柠檬酸与壳聚糖之间产生了共价交联作用。
     经两种纳米材料处理后,柞蚕丝和桑蚕丝纤维的断裂强度和伸长率提高,杨氏模量、断裂功、弹性和急弹性增大;柞蚕丝和桑蚕丝织物对酸性染料的上染率和染色深度增加,活性染料的上染率、固色率和染色深度提高,高粱红天然染料媒染染色的深度增大;柞蚕丝和桑蚕丝织物的急、缓弹性折皱回复角有不同程度的提高,抗皱性能有所改善;柞蚕丝和桑蚕丝织物对大肠杆菌和金黄色葡萄球菌均有较高的抑菌性能,抑菌率超过85%。
     本研究成功制备了纳米壳聚糖和纳米二氧化钛—壳聚糖,并将这两种纳米材料应用于真丝材料的改性,提高了柞蚕丝和桑蚕丝纤维的热稳定性和力学性能,实现了对柞蚕丝和桑蚕丝织物的抗皱、抗菌、提高染色性能的目标,为开发功能性真丝新材料提供了一条新的途径。
The two nano-materials dispersion system of natural organic macromolecular nano-chitosan and composite of nano-TiO2 and chitosan were prepared based on the idea of green chemistry and ecological textiles in this dissertation. The purpose of this work is to make full use of special properties of nano-particles, chitosan and TiO2 to overcome the weak point of silk fibers and fabrics.
     Nano-chitosan dispersion system was prepared with low molecular weight chitosan (viscosity average molecular weight is 2.1×104) according to the mechanism of ionotropic gelation action, and nano-TiO2 and chitosan dispersion system was prepared with sol-gel method using tetrabutyl-titanate as a precursor, the precursor was first made into stable nano-TiO2 sol, and then the sol TiO2 was dispersed into acid solution of chitosan homogeneously. The factors that affected nano-particles sizes including usage of the contents in the system, pH value, preparation temperature were discussed, and the optimum preparation technology was determined. Then the formation mechanism and dispersed state of nano-chitosan and nano-TiO2/chitosan were analysized by means of modern analysis of the laser size detector and transmission electron microscope. The average diameter of the prepared low molecular nano-chitosan was 20.82nm, and the polydispersity index was 0.43. The average diameter of nano-TiO2 and chitosan was 36.71nm, and the polydispersity index was 0.46.
     The structures of Bombyx mori (B. mori) silk and tussah silk fibers treated with nano-chitosan and nano TiO2-chitosan were studied systematically by Fourier transform infrared microspectroscopy ( FT-IR), X-ray diffraction (XRD), thermal analysis and X-ray photoelectron spectroscopy (XPS) analysis. It was found that the interior structure of the two treated silk fibers tended to formβ-structure, and the crystallinity and thermal stability increased at the same time. Furthermore, the covalent crosslinking reaction occurred among silk fiber, citric acid and chitosan.
     The mechanical properties, dyeing properties, wrinkle-resistant perfo rmance and anti-bacteria performance of B. mori silk and tussah silk treated with the two nano-materials were tested. It was found that the breaking strength, breaking elongation, Youngs modulus, rupture work, elasticity and immediate-elasticity of the two silk fiber increased; the dyeing uptake and depth of acid dyes, the dyeing uptake fixation and depth of reactive dyes, the dyeing depth of sorghum red natural mordant dye improved; the wrinkle-resistant performance of immediate-elastic and delay-elastic crease recovery angle of the treated silk fabrics improved. The modification of the two silk fabrics gives high anti-bacteria properties to bacillus coli and staphylococcus aureus, the bacterial reductions were all more than 85%.
     The dispersion system of nano-chitosan and composite of nano-TiO2 and chitosan were prepared successfully. When applying the two nano-material system to B. mori silk and tussah silk fibers, the mechanical performances of the silk fibers improved, as well as thermal properties. And the aim of increasing the wrinkle-resistant performance, anti-bacteria performance and dyeing properties of B. mori silk and tussah silk fabrics were achieved. This paper offered a new for developing novel functional silk materials.
引文
[1]瞿才新,张荣华.纺织材料基础[M].北京:中国纺织出版社,2004.
    [2]付田霞,王学英,李群,等.柞蚕丝素粉多孔性结构的电子显微镜观察[J].沈阳农业大学学报,2005,36(4):485~487[0].
    [3]王曙中.高科技纤维在产业用纺织品中的应用及发展趋势[J].纺织导报,2002,(3):58,60,63~64.
    [4] Kawahara Yutaka, Shioya Masatoshi. Characterization of microvoids in mulberry and tussah silk fibers using stannic acid treatment[J]. Journal of Applied Polymer Science, 1999, (6): 363~367.
    [5]林红,陈宇岳,周静洁.锡盐作用下桑蚕丝与柞蚕丝的形态及应力特征研究[J].丝绸,2002,(3):12~14,22.
    [6]陈宇岳,邹利云,盛家镛,等.柞蚕丝经低温氧等离子体处理后的结构变化研究[J].丝绸,2001,(12):7~9.
    [7]陈宇岳,邹利云,王建南,等.柞蚕丝与桑蚕丝的形态差别化特性研究[J].苏州丝绸工学院学报, 2000,20(4): 21~27.
    [8]邹利云,陈宇岳,盛家镛,等.微波辐照后的真丝纤维结构及其性能研究[J].丝绸,2001(4):8~10.
    [9]清水[日],孙云嵩.柞丝绸的黄变及其防止加工研究[J].丝绸,1991(11):14~16.
    [10]曲旭煜.柞丝绸膨化的研究[J].丝绸,1999(4).11~14.
    [11]陈超译.碱处理柞蚕丝的甲基丙烯酰胺接枝加工[J].国外丝绸,1999(3):25~27.
    [12]管辛,顾平.差别化柞/桑弹力真丝织物水渍状况研究[J].丝绸,2001(10):28~30.
    [13]刘今强.柞丝绸水迹及色变成因探索[J].浙江丝绸工学院学报,l992(4):6~11.
    [14]邢铁玲.防皱整理剂P M I的合成及在柞丝绸上的应用[J].丝绸,2001(12):10~11,12.
    [15]谢洪德,王红卫,管新海,等.柞丝绸等离子体接枝甲基丙烯酸羟乙酯研究[J].纺织学报,2003,24(5):38~40.
    [16] Kawahara Yutaka. Graft polymerization of methacrylamide onto wild silk fibers treated with an alkaline solution[J]. Journal of Macromolecular Science-Physics, 1999 (7): 471~478.
    [17] Kawahara, Y., Shioya M., Takaku, A. Influence of swelling of noncrystalline regions in silk fibers on modification with methacrylamide[J]. Journal of Applied Polymer Science, 1996(1): 51~56.
    [18] Kawahara Y., Shioya M. Mechanical properties of Tussah silk fibers treated with methacrylamide[J]. Journal of Applied Polymer Science, 1997(10): 2051~2057.
    [19] Masuhiro Tsukada, Yoko Goto, Giuliano Freddi, et al. Structure and physical properties of epoxide-treated tussah silk fibers[J].Journal of Applied Polymer Science, 1992 (12): 2203~2211.
    [20]吴坚,杨涛,邓丽丽.柞蚕丝织物的柠檬酸抗皱整理[J].印染,2003,(9):10~12.
    [21] Peng X. J., Sun J., Wang J.Y., et al. Study on the silk finishing process with epoxy resins[J]. Journal of the Textile Institute Part 1: Fibre Science and Textile Technology, 1997, 88(2): 143~148.
    [22] Tsukada M, Arai T, Winkler S. Chemical modification of tussah silk with acid anhydrides[J]. Journal of Applied Polymer Science. 2000, (10): 382~391.
    [23]Gotoh Y, Minoura N, Miyashita T. Preparation and characterization of conjugates of silk fibroin and chitooligosaccharides[J].Colloid Polymer Science, 2002, 280:562~568.
    [24]王霞,王天元,刘艳,等.丙酮酸乙酯对鞣化柞蚕丝的改性研究[J].黑龙江纺织,2002,(4):9~10.
    [25]王霞,王天元,黄庆雨.柞蚕丝抗菌整理研究初步[J].黑龙江纺织,2004,(1):9~10.
    [26] Jiong Y. J., Cha S. Y., Yu W. R., et al.Changes in the Mechanical Properties of Chitosan-Treated wool Fabric[J]. Textile Research Journal, 2002, 72(1):70~76.
    [27]陈宇岳.丝绸纤维技术的研究进展及未来发展趋势.全省丝绸工业技术进步工作座谈会材料. 2002.5.
    [28]周宏湘.真丝绸改性加工的进展[J].丝绸,1993,(7):54~55.
    [29]刘京奇,刘羿君,封云芳,等.丝素整理剂对真丝绸抗皱性能影响研究[J].浙江理工大学学报,2005,22(1):5~9.
    [30]谈金麒,陈国强,姜建华.生物整理剂在真丝绸防缩抗皱整理中的应用[J].江苏丝绸,2002,(1):18~20.
    [31]叶露.真丝织物的化学接枝和化学整理剂改性技术[J].丝绸,1999,(2):24~28.
    [32] Tsukada M, Shiozaki H. Characterization of Methacrylonitrile-grafted Silk Fibers[J]. Journal of Applied Polymer Science, 1990(3): 1289~1297.
    [33]施予长.真丝纤维经乙二醛和氨基甲酸酯处理后的耐洗性[J].印染译丛,1995,(5):65~67.
    [34]Masuhiro Tsukada. Studies on Some Physical Properties and Structural Characteristics of Methyl Methacrylate-Grafted Silk Fiber[J]. Journal of Applied Polymer Science , 1988 , 35: 965~972.
    [35] Chung Jin Soon, Kim Han shik, Chae Kyu Ho. Preparation of photocross Linkable polymer shaving coumarin side groups and their properties, Korea polym[J].1995, 3 (1):172~181.
    [36]徐红梅,杜宗良,吴大诚.真丝织物的环氧化合物改性进展[J].印染助剂,2002,19(2):17~20.
    [37]黄才荣,陈国强.真丝的化学改性技术[J].四川丝绸,2002,(1):25~29.
    [38]Achwal W B. Achwal. Flame retardant finishing of cotton and silk fabrics. Colourage,1987,(6):16~30.
    [39] Kako T,Katayama A.Performance properties of silk fabrics-flame proofed with organic phosphorus agent[J].J.seric .Sci.Jpn.1995,64(2):124~131.
    [40]薛涛,孟家光.纳米防螨抗菌真丝针织服装的研究[J].西安工程科技学院学报,2005,19(1):16~19.
    [41]陈宇岳.差别化柞/桑弹力真丝的形态和性能研究[J].纺织学报,2000,(4):18~21.
    [42]陈宇岳.真丝新材料膨体弹力真丝的结构与性能[J].苏州丝绸工学院学报.1996(2):10~17.
    [43]加藤弘.塩縮、分繊処理による捲縮绢糸の開発[J].日本蚕丝学杂志,1990,59(4):271~279.
    [44]水岛繁三郎.特开昭61-70074号;特开昭61-70075号.
    [45]钱家鹤,马颖.真丝变形丝的分析及研制.丝绸,1991,(1):11~13.
    [46]盛家镛,周本立,徐回祥,等.桑蚕膨松丝的力学性质与理化性能研究.苏州丝绸工学院学报,1993,13(4):5~11.
    [47] Takabayashi chiyuki. Development of the reeling methods of“High Bulk Silk”and“Super Flat Silk”by using same reeling machine, the 5th China International Silk Conference, 2004, ( 9 ):378~381.
    [48]路艳华,林杰,程万里.高粱红天然染料对柞丝织物的染色性能研究[J].纺织导报,2005,109(5):109~112.
    [49] Yanan Yang, Peng Wang. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process[J]. Polymer, 2006, 47 (8): 2683~2688.
    [50]程万里.天然染料姜黄对真丝织物的染色性能研究[J].印染助剂,2002.19(1):32~34.
    [51]路艳华.高粱红色素对几种天然纤维的染色性能研究[D].苏州大学硕士学位论文,2004.6.
    [52] Lu Y. H., Lin H., Chen Y.Y., et al. Structure and Performance of Bombyx mori Silk Modified with Nano-TiO2 and Chitosan[J].Fibers and Polymers, 2007,8(1):1-6.
    [53] Runying Chen, Kathryn A. Jakes, Dennis W. Foreman. Peak-Fitting Analysis of Cotton Fiber Powder X-ray Diffraction Spectra[J]. Journal of Applied Polymer Science, 2004, 93: 2019.
    [54] GB 73023-2006,抗菌针织品.
    [55] Stoffer J O, Bone T. Polymerization in Water-in-Oil Microemulsion Systems[J]. Journal of Polymer Science Part A: Polymer Chemistry Edition.1980,18(2):641~648.
    [56]张阳德.纳米生物材料学,北京:化学工业出版社[M].2005,132.
    [57]Paleos C M. Polymerization in organized media[M]. New York: Gordon and Breach Science Publishers, 1992. 283~326.
    [58]陈建勇,刘冠峰.壳聚糖改性及用其整理纺织品抗菌性能的研究.功能高分子学报[J],2002,(2):194~198.
    [59]黄玉丽.壳聚糖对棉织物整理性能的影响[J].印染,1993,23(3):22~24.
    [60]关立平,陈维国.羊毛壳聚糖处理及缩绒性能的研究[J].毛纺科技,1999,(1):41~43.
    [60][0]Muzzarelli R A A. Chitin Enzymology,Ⅱ[M]. European Chitin Society: Lyon and Ancona, 1996.
    [61]王蔚,陈建勇,刘今强,等.壳聚糖在纺织品抗菌整理中的应用研究[J].浙江丝绸工学院学报,1996,13(6):1~7.
    [62]陆淼泉,尹秀,王蔚,等.壳聚糖加工布料的抗菌性研究[J].浙江医科大学学报,1997,26(6):255~257.
    [63]封云芳,章哲承,袁骏.XPS分析壳聚糖与棉纤维的交联情况[J].浙江工程学院学报.2001,18(3):129~132.
    [64]蒋挺大.甲壳素[M].北京:中国环境科学出版社,1999,61~69.
    [65]曾名勇,陈金芬.微晶甲壳质用作冰淇淋乳化剂的初步研究[J].食品工业科技,1996,(2):65~66.
    [66]许加超,赫爱华.微晶甲壳质在乳白鱼肝油中的应用[J].海洋湖沼通报,1994,(3):33~38.
    [67]Tobio M., Gerf R., Sanchez A., et a1. Stealth PLA PEG nanoparticls as Protein Carriers for Nasal Administration[J]. Pharm Res, 1998, (15): 270~275.
    [68] Janes K A, Calvo P, Alonso M J. Polysaccharide Colloidal Particles as Delivery Systems for Macromolecules[J]. Advanced Drug Delivery Review, 2001, 47(1): 83~97.
    [69] Pan Y, Li Y J, Zhao H Y, et a1. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo[J]. Int J Pharm, 2002, 249(1-2): 139.
    [70]丁德润,沈勇.壳聚糖衍生物及其纳米粒的抗菌性能研究.印染,2005(14):12~14.
    [71]董炎明,阮永红,王锦山,等.β-甲壳素/壳聚糖纳米级微粒的制备初步研究,厦门大学学报(自然科学版)2003,42(1):128~129.
    [72] Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs[J]. J Control Rdease, 1996, 39(1):17~25.
    [73] Tian X. X., Groves M. J. Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles[J]. J PharmPharmacol, 1999, 51(2):151~157.
    [74] Cui Z R, Mumper R J. Chitosan-based Nanoparticles for Topical Genetic Immunization [J]. Journal of Controlled Release, 2001, 75: 409~419.
    [75] Bodmeier R., Chen H. G., Paeratakul O. A novel approach to the oral delivery of micro or nanoparticles[J]. Pharm Res, 1989, 6(5): 413~417.
    [76] Ohya Y., Shiratani M., Kobayashi H., et al. Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity[J]. Pure Appl Chem, 1994, A31:629~642.
    [77] Shikata F., Tokumistu H, Ichikawa H, et al. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-captue therapy of cancer[J].Eur J Pharm Biopharm, 2002, 53(1):57~63.
    [78] Mooren FC, Berthold A,D omschke W, et al. Influence of chitosan microspheres on the transport of prednisolone sodium phosphate across HT-29 cell monolayers[J].Pharm Res, 1998, 15(1):58~65.
    [79] Bodmeier R., Chen H.G., Paeratakul O.A novel approach to the oral delivery of micro- or nanoparticles[J].Pharmaceutical Research, 1989, 6(5): 413~417.
    [80] Cairo P., Remunan-Lopez C., Vila-Jato J.L., et a1. Novel hydrophilic chitosan- polyethylene oxide nanoparticles as protein carriers[J].Journal of Applied Polymer Science, 1997, (63):125~132.
    [81] Pan Y., Li Y. J., Zhao H.Y., et a1. Bioadhesive polysaccha-ride in protein delivery system:chitosan nanoparticles improve the intestinal absorption of insulin in vivo[J]. Int J Pharm, 2002.249(1-2): 139~147.
    [82] Mitra S,Gaur U,Ghosh PC,et a1.Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier[J].J Control Release, 2001, 74(1-3):317~323.
    [83] Angela M. de Campos, Yolanda Diebold, Edison L. S. Carvalho, et al. Chitosan Nanoparticles as New Ocular Drug Delivery Systems: in Vitro Stability, in Vivo Fate, and Cellular Toxicity[J]. Pharmaceutical Research.2004, 21(5): 803~810.
    [84] Corsi K., Chellat F., Yahia L., et al. Mesenchymal stem cells,MG63 and HEK293 transfection using chitosan-DNA nanoparticles[J]. Biomaterials, 2003, 24(7): 1255~1264.
    [85] Vander Lubben IM, Verhoef JC, BorchardG, et a1. Chitosan for mucosal vaccination[J]. Adv Drug Deliv Rev, 2001, 52(2):139~144.
    [86] Ouattara B., Simard R. E., Piette G., et al. Inhitition of surface spoilage bacterial in processed mats by application of atimiccrobial films prepared with chitosan[J]. International Journal of Food Microbiology, 2000, 62:139~148.
    [87] Shin Y., Yoo D. L., Jang J. Molecular weight effct on antimicrobial activity of chitosan treated cotton fabrics[J]. Journal of Applied polymer science. 2001, 80: 2495~2501.
    [88] Chiang M. T., Yao T. H., Chen H.C. Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Bioscience, Biotechnology and Biochemistry, 2000, 64: 965~971.
    [84] Kathleen Van de Velde, Paul Kiekens. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR[J]. Carbohydrate Polymers, 2004, (58): 409~416.
    [85] Khan, T. A. A., PEh, K. K., Ch’ng. H. S. Reporting degree of deacetylation values of chitosan: the influence of analytical methods[J]. Journal of Pharmaceutical Sciences, 2002, 5(3): 205~212.
    [86]孙琳,江渊,万方.用红外光谱法测定壳聚糖的脱N-乙酰基度的探讨[J].纺织科学研究,1993(3):9~12.
    [87]董炎明,王勉,吴玉松,等.壳聚糖衍生物的红外光谱分析[J].纤维素科学与技术,2001,9(2): 42~56.
    [88] Samuels R.J. Solidtate characterization of the structure of chitoan films[J].J Polym Sci, Polym Phys Edi,1981,19:1081-1105.
    [89] Calvo P., Remunan-Lopez C., Vila-Jato J. L., et al. Novel Hydrophilic Chitosan/Polyethylene Oxide Nanoparticles as Protein Carries[J]. J Appl Polym Sci, 1997,63(1):125~132.
    [90] Yu Jia-hui, Du Yu-min, Zheng Hua. Blend Films of Chitosan/Gelation [J]. J Wuhan Univ (Nat Sci Ed), 1999, 45(4): 440~444.
    [91] Chen Xin, Li Wen-jun, Yu Ton-yin. Investigation of Adsorption Properties ofChitosan/Cu (II) Complex in Chitosan-Silk Fibroin Blend Membranes as Adsorbents for Urea[J]. Chinese J Biomed Eng, 1997,16: 284~288.
    [92]徐咏梅,杜予民.低分子量壳聚糖纳米粒子缓释药物性能的研究[J].武汉大学学报(理学版),2003,49(04):47O~474.
    [93]Knaul J. Z., Hudson S. M., Creber K. A. M. Improved Mechanical Properties of Chitosan Fibers [J]. J Appl Polym Sci, 1999, 72:1721~1731.
    [94] Brow D. D., Flord A. J., Sainburg M. Organic Spectroscopy [M]. New York: John Wiley inc. 1988. 24~50.
    [95] Kim J. H., Lee Y. M. Synthesis and Properties of Diethylamine Ethyl Chitosan[J]. Polymer, 1993, 34 (9):1952~1957.
    [96] Salt H., Tabeta R., Ogawa K. High-Resolution solid-State 13C NMR Study of Chitosan and Its Salt with Acids. Conformational Characterization of Polymorphs and Helical Structures as Viewed from the Conformation Dependent 13C Chemical Shifts[J]. Macromolecules, 1987, 20(10):2424~2430.
    [97] Monti P., Freddi G.., Arosio C., et al. Vibrational spectroscopic study of sulphated silk proteins. Journal of Molecular Structure[J]. 2007, 202~206:834~836.
    [98]味沢昭義.絹の溶解機構とその応用に関する研究[D].1998.9.
    [99]李汝勤,宋钧才.纤维和纺织品的测试原理与仪器[M].北京:中国纺织大学出版社.1995.
    [100]陈烯.化学纤维实验教程[M].北京:中国纺织工业出版社.1988.
    [101]Xuming Chen, Christian Burger, Dufei Fang. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions[J]. Polymer 2006,47 (8): 2839~2848.
    [102]周岚,邵建中,郑今欢.特殊热处理对蚕丝丝素结构及其性能的影响[J].浙江工程学院学报,2004,2l(2):81~85.
    [103] Han M. G., Cho S. K., Oh S. G., et al. Preparation and characterization of polyaniline nanoparticles synthesized f rom DBSA micellar solution[J]. Synth Met, 2002, 126 :53~60.
    [104] Yung K. C., Zeng D. W., Yue T. M.. XPS investigation of Upilex-S polyimide ablated by 355 nm Nd:YAG laser irradiation[J]. Applied Surface Science, 2001,173( 3-4):193~202.
    [105]章哲承.壳聚糖作为天然染色增深剂的研究初探[D].浙江丝绸工学院,1998.12.34~44.
    [106]刘白玲,贾艳伟,曾祥成,等.等离子体处理对聚乙烯醇的表面性质及其生物降解性的影响[J]. 1998, 2.中国学术期刊文摘:http://202.195.136.50/wfrs_mirror/qikan/periodical.articles /zgxsqkwz/980209.htm.
    [107] Mézerette D., Belmonte T., Hugon R., et al. Surface cleaning and passivation of an iron foil by a nitrogen post-discharge surface treatment[J]. Surface and Coatings Technology, 2001, 761:142~144.
    [108]汪澜,李卓.多羧酸与纤维素纤维反应机理的分析研究[J ].纺织学报,2000,21(1):18~20.
    [109]邵建中,王东升,郑今欢,等.蚕丝丝素的表面结构与活性染料的染色性能的关系[J].染整技术,2003,25 (5): 1~5.
    [110]吴徵宇,金宗明,徐力群.丝素的结晶度和结构变化的研究[J].蚕业科学,1993,19(2):105~110.
    [111] Choi Hyung-min. Nonformaldehyhyde Crease-Resistant Finishing of Silk with Glyoxal[J] ,Textile Chemist and Colorist,1998,30(12) :41~45.
    [112]张福甲,王延勇,李海蓉,等. Alq3/ITO结构的表面和界面电子状态的XPS研究[J].发光学报,2001, 22 (4): 351~356.
    [113] Manso M., Rodriguez A., Paul A., et al. Plasma functionalization, surface characterization and protein retention of multiple-sized polymer beads[J]. Surf. Interface Anal. 2006, 38:322~325.
    [114]Wang S. X. Uniformdeposition of ultrathin polymer films on the surfaces of Al203 nanoparticles by a plasma treatment[J].Applied Physics letters,2001,78(9):1243~1245.
    [115]Miguel A. Stabilization of CdS semiconductor nanopartles against photodegradation by a silica coating procedure[J].Chemical Physics Letters,1998,286(5):497~501.
    [116]俞行,刘艾平.纺织专用功能纳米材料及其应用[J].纺织科学研究,2001,(3):1~6.
    [117]吴银清,吕峻峰,王水菊.镀银抗菌、远红外、抗紫外线等新型纳米陶瓷棉纺织品的开发和应用[J].针织工业,2000,(5):30~32.
    [118]邓桦,忻浩忠.纳米TiO2的抗紫外线整理应用研究[J].纺织学报,2005,26(6): 47~49.
    [119] A. Bozzi, T. Yuranova, J. Kiwi. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutilemodification under daylight irradiation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry[J]. 2005, 172: 27~34.
    [120] Yanjun Xing, Xin Ding.UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol-gel surface modification[J]. Journal of Applied Polymer Science. 2007, 103(5):3113~3119.
    [121] Tae-Kyu Lim, Tadataka Murakami, Makoto Tsuboi, et al. Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria[J]. Biotechnology and Bioengineering. 2003, 81(3):299~304.
    [122] A. Bozzi, T. Yuranova, J. Kiwi. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutilemodification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry and Photobiology A: Chemistry. 2005, 172: 27~34.
    [123] Meilert K T, Laub D, Kiwi J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers[J]. Journal of Molecular Catalysis A: Chemical, 2005,237(1~2):101~108.
    [124]闻燕,杜予民,李湛.壳聚糖/纳米TiO2复合膜的制备和性能[J].武汉大学学报,2002,48(6):701~704.
    [125] Esther Pascual, Maia Rosa Julia.The Role of Chitosan in Wool Finishing [J]. Journal of Biotechnology, 2001, (89):289~296.
    [126] El-Tahlawy K. F., El-Bendary, M. A., Elhendawy, A. G., et al. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate polymers, 2005, 60(4): 421~430.
    [127] Chi-Hsiung Jou, Shang-Ming Lin, Ling Yun, et al. Biofunctional properties of polyester fibers grafted with chitosan and collagen[J]. Polymers for Advanced Technologies. 2007,18(3): 235~239.
    [128]黄立新,崔毅华,谢林明.蛹壳聚糖对真丝织物的抗皱整理技术研究[J].纺织学报,2003,24(3):63~65.
    [129]陈翟,黄小华.竹/棉织物的壳聚糖抗皱抗菌整理[J].印染,2006,32(20):9~11.
    [130] Choi P. S. R., Yuen C.W.M., et al. Digital Ink-jet Printing for Chitosan-treated Cotton Fabric[J]. Fibers and polymers.2005, 6(3): 229~334.
    [131]黄惠莉,林文銮.壳聚糖在染色增深方面的应用[J].上海纺织科技,2004, 32(5):44~45.
    [132]黄玲,张小溪,壳聚糖在锦纶织物染色中的应用研究[J].印染,2005,8:5~7.
    [133] Camail M., Humber M. New Acryli Monmers Prepared Via the Esterification of Methacrylic Acid by Titanium Tetraalkoxides [J ] . Polymer ,1998, 39(25): 6525~6531.
    [134] Li Y., White T. J., Lim S. H. Low-Temperature Synthesis and Microst ructural Control of Titania Nano-Particles[J]. Journal of Solid, State Chemistry, 2004,177 (45):1372~1381.
    [135]陈国强.纳米TiO2催化马来酸酐防皱整理[J].印染,1999,(1):14~17.
    [136]王学华,薛亦渝,刘长生.TiO2薄膜的XRD和XPS研究[J].国外建材科技, 2003,24(5):42~46.
    [137]E. K. Evangelou, N. Konofaos, X. Aslanoglou, et al. Characterization of BaTiO3 thin films on p-Si[J]. Materials Science in Semiconductor Processing, 2001,4(1-3): 305~307.
    [138]万涛,王跃川.反胶束溶胶-凝胶法制备纳米TiO2[J].石油化工,2005,34(5):464~469.
    [139]Lindic M. H., Martinez H., Benayad A., et al. XPS investigations of TiOySz amorphous thin films used as positive electrode in lithium microbatteries[J]. Solid State Ionics, 2005, 176(17-18):1529~1537.
    [140] Shibata Y., Kawai H., Yamamoto H., et al. Antibacterial Titanium Plate Anodized by being Discharged in NaCl Solution Exhibits Cell Compatibility. Journal of Dental Research, 2004, 83 (2):115~119.
    [141] Hsieh S. H., Huang Z. K., Huang Z. Z., et al. Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan[J]. Journal of Applied Polymer Science, 2004, 94(5):1999~2007.
    [142] Hsieh S. H., Huang Z. K., Huang Z. Z., et al. Preparation and multifunctional application of meso-chitosan for the woolen process[J]. Journal of Applied PolymerScience, 2004,103 (6): 4080~4086.
    [143][0] Mi-Hee Park, Wonbong Jang. Synthesis and characterization of new functional poly(urethane-imide) crosslinked networks[J]. Journal of Applied Polymer Science, 2005,100 (1):113~123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700