用户名: 密码: 验证码:
液压振动台高精度正弦振动的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正弦振动试验技术是振动力学环境模拟的一项重要内容,广泛应用于国防、航空航天、汽车、土木建筑等工业领域。本文是在“985”二期“重大模拟与仿真装备及其关键技术研究”资助下,进行正弦振动试验关键控制策略的理论与试验研究,从而达到提高正弦振动试验输出精度的目的,这对于保证正弦振动试验的可行性和可信度有重要意义。
     液压振动台是实现大型全尺寸试件正弦振动试验的重要设备。但是,由于其自身的非线性特性以及试验条件的不确定性,液压振动台加速度实际响应信号波形失真严重、幅值稳定度差、较期望加速度信号有较大的幅值衰减、相位滞后。这些问题使正弦振动试验结果的可信度降低,甚至使试验无法进行。
     为了实现高精度的正弦振动试验,在对自适应滤波器相关理论研究分析的基础上,设计了自适应幅相控制器和自适应谐波消除控制器,并在自主研制的伺服控制器上进行了试验研究。本文的研究性工作主要包括如下几个方面:
     为实现振动试验系统的控制算法,研发了基于DSPs的伺服控制器。通过软件、硬件上的一系列前期设计工作,在自定制的DSPs控制器上实现了基于模型的控制程序设计。按这种方式设计控制系统软件,无需手写控制算法代码而由算法的Simulink模型程序自动生成即可,为本文控制算法的设计、调试提供了方便快捷的实现方法。
     为消除加速度响应的相位滞后、幅值衰减、提高幅值稳定度,提出基于ASLMS算法的自适应幅相控制策略,并分析其原理。与基于标准LMS算法的幅相控制策略进行对比试验研究,阐明了提出的幅相控制策略参数选取容易,收敛速度更快,失调量更小。
     为消除加速度响应信号中的高次谐波,提出基于ASLMS算法的自适应谐波消除控制策略。为实现此策略,设计了能同时消除多次谐波的自适应谐波消除器(AHC)的滤波器结构,相对消除单次谐波的传统AHC,该结构没有增加计算量。与基于标准LMS算法的AHC对比试验研究阐明了基于ASLMS算法的AHC在参数设置上有优势,且收敛速度更快、波形失真更小。
Sinusoidal vibration experiment technology is one important aspect of vibration mechanism environment simulation, which is widely used in engineering areas as defense, aerospace, construction. Sponsored by‘great imitation and simulation equipment and its key technique research’of the 2nd phase of‘985’, this paper carried out theoretical and experimental research on key control strategy of sinusoidal vibration, attaining the purpose of improving the output precision of sinusoidal vibration experiment, which is significant to sustain feasibility and credibility of sinusoidal vibration experiment.
     Hydraulic shake table is important equipment for implementing large, full-length specimen sinusoidal experiment. For its nonlinearity and uncertainty of experiment conditions, the actual response waveform of hydraulic shake table acceleration is seriously distorted, with ill amplitude stability, bigger amplitude attenuation and phase lag. These problems lowered the credibility of results of sinusoidal experiment, even made the experiment impossible.
     In order to implement high accuracy sinusoidal vibration experiment, on basis of analyzing theories concerning adaptive filter, adaptive amplitude-phase controller and adaptive harmonic canceler were designed, and experiment was performed on custom servo-controller. Research of this paper includes the following:
     The servo-controller based on DSPs is developed for implementing the control algorithm of vibration experimental system. Through a series of pre-work design based on hardware and software, the model-based design of control system is accomplished for the custom DSPs controller. By this means of software design, the control algorithm code could be generated automatically by the Simulink model instead of hand-writing, providing the convenient implementation of design and debugging of control algorithm in this thesis.
     For eliminating the phase lag and amplitude attenuation of acceleration response and improving the amplitude stability, the control strategy of adaptive ASLMS-based amplitude-phase control is proposed, as well as its principle analysis. After comparing with amplitude-phase control strategy based on the standard LMS, the proposed amplitude-phase control strategy makes the parameter access easier, convergence faster, and the misadjustment smaller.
     The control strategy of adaptive ASLMS-based harmonic cancellation is proposed for eliminating the higher harmonics of acceleration response. For implementing this strategy, the filter structure of adaptive harmonic canceller (AHC) eliminating multi-harmonics simultaneously is proposed, which does not increase the amount of calculation, comparing with the traditional AHC eliminating single harmonic. Experimental research comparing with AHC based on standard LMS, demonstrated that ASLMS-based AHC, which has faster convergence and smaller distortion, owe more advantages in the parameter setting.
引文
1周海亭,陈光治,林卫东.汽车电子部件振动疲劳试验规范设计.振动与冲击. 2003, 22(1): 61~63
    2韩增尧,曲广吉.航天器宽带随机振动响应分析.强度与环境. 2002, 29(2):32~37
    3赵于鉴,马栋.多点控制在导弹随机振动试验中的应用.国外电子测量技术. 2005, 24(10): 37~40
    4吴三灵.实用振动试验技术.兵器工业出版社, 1993: 69~97
    5王坷晟,雷勇军,朱晓莹.系统级产品振动试验的探讨与研究.振动与冲击. 2004, 23(4):112~115
    6邓阳.单轴多点激励随机振动试验的控制方法及实现的研究.北京航空航天大学硕士学位论文. 2003: 6~20
    7张巧寿.振动试验系统现状与发展.航天技术与民品. 2000, (8): 36~39
    8韩俊伟.三向六自由度大型地震模拟振动台的研制.哈尔滨工业大学博士后研究报告. 1996: 27~46
    9关广丰.液压驱动六自由度振动试验系统控制策略研究.哈尔滨工业大学博士论文. 2007: 23~38
    10姚建均.电液伺服振动台加速度谐波抑制研究.哈尔滨工业大学博士学位论文. 2007:2~7,12~15
    11李战明,陈若珠.三片液压升降台高精度同步协调控制.微计算机信息. 2000, (16): 33~35
    12 Y.Zhao, D.C.Cong, J.W.Han. An Integrated Approach for the Realization of the Real-Time Control in Electro-Hydraulic Servo System. Applied Mechanics and Materials.2008,10-12: 513~517
    13吕维迪.多通道电液伺服加载系统同步协调控制器的研制.哈尔滨工业大学硕士论文. 2003
    14延皓,叶正茂,张辉,韩俊伟,赵勇,李洪人.基于Widrow-Hoff学习算法的液压协调加载控制策略研究.地震工程与工程振动. 2006, 26(3):104-108
    15段锁林,魏聪梅,安高成,王明智.不确定性电液位置控制系统的滑模鲁棒跟踪控制.太原重型机械学院学报. 2001, (22): 89~93
    16 S. Ramachandran, P. Dransfield. Interaction Between the Actuators in Loaded Multi-Channel Electrohydraulic Drives. Journal of Dynamic Systems,Measurement, and Control. 1993, (115): 291~302
    17 Yao Jianjun,Cong Dacheng,Jiang Hongzhou. ANN-based acceleration harmonic identification for an electro-hydraulic servo system.2007 IEEE International Conferenceon Integration Technology.China,Shenzhen,2007:398~402
    18 Yao Jianjun,Wang Liquan,Jiang Hongzhou. Adaptive feed-forward compensator for harmonic cancellation in electro-hydraulic servo system. Chinese Journal of Mechanical Engineering.2008,21(1):77~81
    19 Yao Jianjun,Wu Zhenshun,Han Junwei. Adaptive harmonic cancellation applied in electro-hydraulic servo system with ANN. Chinese Journal of Mechanical Engineering.2004,17(4):628~630
    20黄其涛.三向六自由度振动台控制策略研究.哈尔滨工业大学硕士论文. 2002: 2~4, 22~25
    21 Flex Test IIs MAST Controller. Manual. MTS Systems Corporation. 1999: 7~62
    22韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台.地震学报.1998, (6): 327~331
    23李敏霞.电液伺服振动台的振动控制技术及应用.振动、测试与诊断. 1997, (17): 55~60
    24田永波.电液伺服地震模拟振动台的数字控制.武汉理工大学硕士论文. 2004: 19~29
    25叶建华.多点激励随机振动试验控制技术及实现的研究.北京航空航天大学硕士学位论文. 2004: 9~28
    26韩军,陈怀海,许峰,鲍明.基于遗传算法的多振动台随机振动控制方法.航空学报. 2003, 24(1): 39~41
    27刘成,李一兵,王仲范,廖连莹.多输入多输出试验系统的随机波形时域再现.汽车工程. 2003, 25 (2): 171~174
    28刘成.电液伺服道路模拟试验机波形再现的时域控制.武汉理工大学博士学位论文, 2002: 1~8
    29 Widrow. B, M. E. Hoff. Adaptive switching circuits. IRE WESCON Conv. Rec. 1960: 96~104
    30 Widrow. B. Adaptive filters. In Aspects of Network and System Theory. 1970
    31 Zames. G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverse. IEEE Trans. Auto. Control. Vol.AC-26: 301~320
    32 B. Hassibi, A. H. Sayed, T.Kailath. H∞optimality of the LMS algorithm. IEEE Trans. On Signal Processing, 1996, (44): 267~280
    33 B. Hassibi, T.Kailath. H-infinity bounds for least squares estimators. IEEE Trans. Automatic Control. 2001 (46): 309~314
    34 K. Murano. Echo cancellation and applications. IEEE Communication. 1990 (28): 49~55
    35 D. P. Mandic, J. Baltersee, J. A. Chambers. Nonlinear prediction of speech with a pipelined recurrent neural network and advanced learning algorithm. Signal and Prediction. Birkhauser, Boston. 1998: 291~309
    36张璞,黄瑞光.自适应噪声抵消系统的算法讨论与DSP实现研究.噪声控制. 2003, (3):59~62
    37陈可安,马元良.自适应有源噪声控制.西北工业大学出版社, 1992:1~25
    38 Simon Haykin. Adaptive Filter Theory. Prentice Hall.2003:70~243
    39 V. H. Nascimento, A. H. Sayed. On the learning mechanism of adaptive algorithms. IEEE Trans. Signal Processing. 2000 (48): 1609~1625
    40 R. K. Mehra. Approaches to adaptive filtering. IEEE Trans. Autom. Control. 1972: AC-17, 693~698
    41 Dabeer, E. Masry. Analysis of Mean-Square Error and Transient Speed of the LMS Adaptive Algorithm. IEEE Transactions on Information Theory. 2002 (48): 184~189
    42 V. Solo. The stability of the LMS. IEEE Trans. Signal processing. 1997, 45(12): 3017~3026
    43 D. T. M. Slock. On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE trans. Signal Processing. 1993, 45(12): 2811~2825
    44 L. Poole, G. Warnaka, R. Cutter. The Implementation of Digital Filters Using a Modified Widrow-Hoff Algorithm for the Adaptive Cancellation of Acoustic Noise. Acoustics. IEEE International Conference on ICASSP '84. 1984: vol. 9, 215~218
    45 Ikeda, K, Tanaka, S,Wang, Y. Convergence Rate Analysis of Fast Predictor-Based Least Squares Algorithm. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing. 2002, (49): 312~315
    46 Antranik A. Siranosian, Miroslav Krstic. Generation and tracking of sinusoids for shake table control via extremum seeking. ASME International Mechanical Engineering Congress and Exposition. Seattle, Washington, USA,2007.
    47 JOHN R . GOLVER . Adaptive Noise Canceling Applied to Sinusoidal Interference. IEEE Trans. Acoust. Specch. Signal Process. 1977, 25(6):184~491
    48 Hui Ding, Lu Jing, Qiu Xiaojun, Xu Boling. An adaptive speech enhancement method for siren noise cancellation. Applied Acoustics. 2004(65): 385~399
    49 Wang Fenglin, Chris K. Mechefske. Frequency properties of an adaptive lineenhancer. Mechanical System and Signal processing. 2004(18): 797~812
    50 Sinusoidal Signal Amplitude and Phase Control for an Adaptive Feedback Control System. United States Patent.1992
    51 R. L. Campbell Jr., N. H. Younan, J. Gu. Performance analysis of the adaptive line enhancer with multiple sinusoids in noisy environment. Signal Processing. 2002(82): 93~101
    52 B. Widrow. Adaptive noise canceling: Principles and applications. Vol. 63, No. 12: 1692~1716
    53 D. A. Recker. Indrect Adaptive Nonlinear Control of Discrete-Time-Systems Containing a dead zone.Proceeding of the 32nd Conference on Decision and Control. San Antonic, Texas, Dec, 1993:2647~2653
    54 Gang Tao. Adaptive Control of Plants with Unknown Dead-zone.IEEE Trans. on Automatic Control. 1994, 39(1):59~65
    55 Avinash Taware, Gang Tao, Carole Teolis. An adaptive dead-zone inverse controller for systems with sandwiched dead-zones. Proceeding of the American Control Conference. Arlington, VA June 25-27,2001: 2456~2461
    56孔祥臻,刘延俊,王勇,赵秀华.气动比例阀的死区补偿与仿真.山东大学学报(工学版). 2006,36(1): 99~102
    57 T. Knohl, H. Unbehauen. Adaptive position control of electrohydraulic servo systems using ANN. Mechatronics. 2000, 10: 127~143
    58 M. Grundelius, D. Angeli. Adaptive control of systems with backlash acting on the input. Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan, 1996: 4689~4694
    59 Chao He, Yuhe Zhang and M. Meng. Backlash compensation by neural-network online learning. Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Banff, Albertr, 2001: 161~165
    60 Jun Oh Jang, Pyeong Gi Lee, Sang Bae Park and In Seok Ahn. Backlash compensation of systems using fuzzy logic. Proceedings of the American Control Conference. Arlington, 2001: 4788~4789
    61 E. G. Papadopoulos, G. C. Chasparis. Analysis and model-based control of servomechanisms with friction. Proceeding of the 2002 IEEE/RSJ International Conference on Intelligent Robots and System. Lausanne, Switzerland, 2002: 2109~2114
    62 Alina Besancon-Voda, Petr Blaha. Describing function approximation of a two-relay system configuration with application to Coulomb friction identification.Control Engineering practice. 2002, 10: 655~657
    63 Hassan K. Khalil. Nonlinear Systems. London: Prentice-Hall, 2005: 13~42
    64吴晓明,陈俊兰.液压位置伺服系统的摩擦力观测器的设计.液压与气动. 2004, 10: 5~6
    65 Z. Zyada, T. Fukuda. Identification and modeling of friction forces at a hydraulic parallel link manipulator joints. Proceedings of the 40th SICE Annual Conference. 2001: 94~99
    66吕宏庆,苏毅,杨建勇,李著信.电液伺服系统中的非线性及其影响分析.机床与液压. 2002, 1: 116~117
    67 H. M. Paiva, R. K. H. Galvao. Simulation of dynamic systems with output saturation. IEEE Transactions on Education. 2004, 47(1): 385~387
    68 N. Oliveira, K. Kienitz and E. Misawa. A describing function approach to limit cycle controller design. Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA, 2006: 1511~1513
    69 J. E. Tierno, K. Y. Kim and S. L. Lacy. Describing function analysis of an anti-backlash controller. Proceedings of the 2006 American Control Conference. Chicago, Illinois, USA, 2000: 4164~4168
    70 Harold J.Kushner, J. Yang. Analysis of Adaptive Step-Size SA Algorithms for Parameter Tracking. IEEE TRANSACTIONS ON AUTOMATIC CONTROL. 1995,40(8):1403-1410
    71 H. Olsson. Describing function analysis of a system with friction. Proceedings of the 4th IEEE Conference on Control Applications. 1995: 310~315
    72 M. Anand Mohan. Position control in the presence of unknown output backlash. 2005. SSST '05. Proceedings of the 37th Southeastern Symposium on System Theory. Tuskegee, AL, 2005: 102~106
    73 P. C. Borras, H. L. Stalford. Pattern recognition in hydraulic backlash using neural network. Proceedings of the 2002 American Control Conference. Anchorage, AK, 2002: 400~405
    74 M. de la Sen, A. Pena and J. Esnaola. Detection of limit cycles in discrete systems with backlash and resolution. Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonlo, Texes, 1993: 2978~2983
    75 A. Bonchis, P. I. Corke and D. C. Rye. A pressure-based, velocity independent, friction model for asymmetric hydraulic cylinders. Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, Michigan, 1999: 1746~1751
    76余顺周.编译型数控系统及其关键技术的研究.哈尔滨工业大学博士论文.2007: 61~63
    77 Yongliang Zhu, P. R. Pagilla. Static and dynamic friction compensation in trajectory tracking control of robots. Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, 2002: 2644~2647
    78 M. Tomizuka. On the compensation of friction forces in precision motion control. Asia-Pacific Workshop on Advances in Motion Control Proceedings. 1993: 69~74
    79 K. Kiguchi, H. Henrichfreise and K. P. Hesseler. Friction compensation of the electromechanical drive systems using neural networks. The 30th Annual Conference of the IEEE Industrial Electronics Society. Busan, Korea, 2004: 1758~1762
    80李洪人.液压控制系统.国防工业出版社, 1990: 55~72, 99~107
    81徐洋.结构主动控制的鲁棒策略研究.哈尔滨工业大学博士论文. 2006: 19~29, 33~37, 41~50
    82杨志东.三轴六自由度液压振动试验系统控制策略的研究.哈尔滨工业大学硕士论文. 2004: 24~30
    83韩俊伟,于丽明,赵慧.地震模拟振动台三状态控制的研究.哈尔滨工业大学学报. 1999, 31(3): 21~24
    84 Bernard Widrow, Samuel D.Stearns.Adaptive Signal Processing.机械工业出版社, 2008: 302~368
    85 Bernard Widrow, Eugene Walach. Adaptive Inverse Control. Prentice-Hall, 2002: 315~325
    86 Antonello Monti, Enrico Santi, Roger A. Dougal, Marco Riva. Rapid Prototyping of Digital Controls for Power Electronics. IEEE TRANSACTIONS ON POWER ELECTRONICS. 2003,18(3):915~923
    87 TI Incorporated. TMS320C28x系列DSP的CPU与外设(上).张卫宁.第1版.清华大学出版社,2004:1~65
    88 TI Incorporated. TMS320C28x系列DSP指令和编程指南.刘和平.第1版.清华大学出版社,2005:198~233
    89 TI Incorporated. TMS320C28x系列DSP的CPU与外设(下).张卫宁.第1版.清华大学出版社,2004:504~565
    90李真芳,苏涛. DSP程序开发-MATLAB调试及直接目标代码生成.第1版.西安电子科技大学出版社,2003:338~373
    91 W. S. Gan, Y. K. Chong, W. Gong, W. T. Tan. Rapid Prototyping System forTeaching Real-Time Digital Signal Processing. IEEE Transactions on education. 2000,43(1):19-24
    92 Low K.H., Heng Wang, Wang M.Y.. On the development of a real time control system by using xPC Target: solution to robotic system control. IEEE International Conference on Automation Science and Engineering. Edmonton, Canada, 2005:345~350
    93 Mathworks Inc. Control Design Solutions-Model-Based Design for control systems. 2008: http://www.mathworks.com/applications/controldesign/
    94 Stenphen P.Tseng, S.S.Hu, J.S.Shaw. Control and Motion Cues Generation of Stewart Platform with a DSP Based Controller. IEEE International Conference on Mechatronics. Taipei,Taiwan,2005:96~101
    95 Cypress Semiconductor Corporation. Cy7c025 Data Sheet. 2004:1~21
    96 Simon Haykin.自适应滤波器原理.郑宝玉等译.电子工业出版社,2003
    97 H. J. Kushner. Approximation and Weak Convergence Methods for random Processes with Applications to Stochastic System Theory. MIT Press, 1984
    98 A. E. Albert, L. S. Gardner. Stochastic Approximation and nonlinear Regression. MIT Press, 1984
    99 J. R. Zeidler. Performance analysis of LMS adaptive prediction filters. Proc. IEEE, 1990, 78(12): 1781~1806
    100 K. R. Rao, P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, 1990
    101 Wilmar Hernández. Improving the response of a wheel speed sensor using an adaptive line enhancer. Measurement. 2003, 33: 233~235
    102 C. G. Boukis, E. V. Papoulis. A normalised adaptive amplitude nonlinear gradient descent algorithm for system identification. Proceedings of the 2003
    10th IEEE International Conference on Electronics, Circuits and Systems. 2003, 3: 1042~1043
    103 S. Kalyani, K. Giridhar. Quantised decision based gradient descent algorithm for fast fading OFDM channels. IEEE 60th Vehicular Technology Conference. 2004, 1 534~537
    104 C. G. Boukis, D. P. Mandic. A global gradient descent algorithm for hierarchical FIR adaptive filters. The 14th International Conference on Digital Signal Processing. 2002, 2: 1285~1288
    105全一子等.数字信号处理基础.北京邮电大学出版社, 2002:145~169
    106 Flex Test IIs MAST Controller. Manual. MTS Systems Corporation. 1997: 7~62
    107吴斌,赵学增,滕志军.基于自适应陷波器的工频电力通信信号检测.电力系统自动化. 2003, 27(25): 35~39
    108 Widrow. B. Adaptive filters. In Aspects of Network and System Theory. 1970
    109 Widrow B, Mccool J M. A comparison of adaptive algorithms based on the methods of steepest descent and random search[J]. IEEE Trans Antennas Propag, 1976, 4(1): 615-637
    110 J. Glover. Adaptive noise canceling applied to sinusoidal interference. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1977, 25(6): 484~491
    111 S. C. Douglas, T. H. Meng. A nonlinear error adaptive notch filter for separating two sinusoidal signals. 1991 Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers. 1991: 673~677
    112 M. Ferdjallah, R. E. Barr. Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals. IEEE Transactions on Biomedical Engineering. 1994, 41(6): 529~536
    113 D. B. Rao, S. Y. Kung. Adaptive notch filtering for the retrieval of sinusoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1984, 32(4): 791~802
    114 K. Hirano, S. Nishimura and S. Mitra. Design of Digital Notch Filters. IEEE Transactions on Communications. 1974, 22(7): 964~970
    115 Huijun Wang; Dong-Hee Lee and Zhen-Guo Lee. Vibration Rejection Scheme of Servo Drive System with Adaptive Notch Filter. 37th IEEE Power Electronics Specialists Conference. 2006: 1~6
    116 R. Merched, A.H. Sayed. Order-recursive RLS Laguerre adaptive filtering. IEEE Trans. Signal Processing. 2001 (10): 253~260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700