用户名: 密码: 验证码:
2D阀控制电液激振器及在疲劳试验系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳试验是现代工程技术领域中的一项基本试验,也是工业产品研发的重要手段,工业生产中的各种材料、零部件、构件以至整机都需要经过疲劳试验才能确定它们的力学性能和预期的寿命周期。
     电液疲劳试验机是进行重载疲劳试验的关键设备。随着现代工业和航天航空技术的发展,对电液疲劳试验机的试验频率提出了更高的要求,但现有的电液疲劳试验机的激振频率受激振器中电液伺服阀频率特性的限制难以提高,为此提出了双自由度阀(简称2D阀)控制液压缸驱动活塞实现电液高频激振的新方案。在2D阀中,阀芯具有周向旋转和轴向滑动双自由度。当2D阀阀芯连续转动时,阀芯台肩上沟槽和阀套上窗口的特殊几何结构布置使得液压缸两腔内的油液压力发生交替变化,驱动液压缸活塞来回往复运动,对试验对象实施交变载荷的疲劳试验。液压缸活塞的振动频率和幅值分别由2D阀阀芯的转速和轴向滑动控制,同时还并联了一个伺服阀对活塞位移的偏置进行控制,实现对频率、幅值和偏置的独立控制。由于2D阀阀芯为惯性很小的细长结构,又处于油液很好的润滑环境中,因此很容易通过提高阀芯转速来实现高频激振。论文的主要研究工作和成果如下:
     1、针对传统的电液激振器的激振频率受电液伺服阀频响限制难以提高的现状,提出了2D阀控制电液激振器的方案,以实现在5~200Hz的频率范围内对试验对象实施疲劳加载,并保持频率、幅值和偏载能独立地进行闭环或开环控制。
     2、在分析2D阀控电液激振器工作原理的基础上,建立2D阀控电液激振器的数学模型,应用四阶龙格-库塔法编制数值仿真程序求解活塞位移波形和偏离正弦波的失真度曲线,结合2D阀对液压动力机构的运动过程进行讨论。
     3、针对2D阀控电液激振器的频率、幅值和偏置独立控制并相互耦合的特性,提出采用解耦控制方法对其进行解耦控制研究。在分析2D阀控电液激振器的解耦控制原理的基础上,应用数值仿真程序,求解出不同激振频率下,2D阀阀芯轴向滑动与活塞位移幅值之间的变化曲线、并联伺服阀阀芯轴向滑动与活塞位移偏置之间的变化曲线以及幅值和偏置间的耦合特性,并给出系统的幅频特性曲线以研究幅值随激振频率的变化规律。
     4、针对多轴疲劳试验系统中加载载荷的相位同步要求,对2D阀控电液激振器的相频特性进行研究。介绍电液四轴高频结构强度疲劳试验系统的结构组成;在分析2D阀结构的基础上,提出了2D阀控电液激振器的同步控制策略和初始相位同步控制方法,求解出2D阀控电液激振器的相频特性曲线,研究表明当激振频率在固有频率的0.048~0.870倍时,激振频率和2D阀阀芯轴向滑动对相位的影响可以忽略不计,为2D阀控电液激振器在开环控制应用于同步加载的多轴疲劳试验系统提供理论依据。
     5、搭建了基于2D阀控电液激振器的单轴电液疲劳试验系统和多轴电液结构强度疲劳试验系统进行实验研究。通过位移和载荷传感器测取5~200Hz频率范围内的活塞位移和输出力波形,对仿真结果进行验证。
Fatigue test is not only an essential test in the field of modern engineering technology, but also an important method in industrial product development, a variety of materials, parts, components in industrial production have to make fatigue testing in order to determine their mechanical properties and expected life cycle.
     Electro-hydraulic fatigue testing machine was the key equipment in fatigue test. With the development of modern industrial and aerospace technology, the higher test frequency is put forward to electro-hydraulic fatigue testing machine; but the vibration frequency is difficult to improve which is restricted by the frequency characteristics of electro-hydraulic servo valve. A novel scheme for an electro-hydraulic vibrator controlled by a two-dimensional valve (called 2D valve) is therefore proposed to achieve higher frequency. The spool of 2D valve has two degrees of freedom including circumferential rotation and axial sliding. When the spool of 2D valve rotates continuously, the special geometry layout between grooves in spools and windows in sleeves makes the oil pressure change alternately to drive the piston of hydraulic cylinder go back-and-forth reciprocating motion which is making fatigue testing to test object. Vibration frequency and amplitude of piston of cylinder is controlled by the rotary speed and axial sliding, and a parallel servo valve is also used to realize the offset control of the displacement of piston in cylinder. So the frequency, amplitude and offset of displacement of piston in cylinder can be contolled independently. The spool of 2D valve is small and slender with few inertial, and in oil environment with a good lubricating, it is easy to achieve higer frequency by increasing rotary speed of the spool of 2D valve. The main research of this paper as follows:
     1. The working frequency of the conventional electrohydraulic vibration exciters is limited to fairly narrow range by the frequency response capability of the servo valve. A scheme of electrohydraulic vibration exciter using a 2D valve is therefore proposed to carry out fatigue test in 5 ~ 200Hz, and maintain the the frequency, amplitude and offset of piston disaplacement be controlled independently in closed or open loop.
     2. The mathematical model of the electro-hydraulic valve controlled by 2D valve is established based on the analysis of principle of the electro-hydraulic valve controlled by 2D valve, the displacement curve of piston and distortion curve deviated from sine wave are solved using the numerical simulation program based on the fourth-order Runge - Kutta method, the movement of the hydraulic power mechanism is discussed combined with 2D valve.
     3. The decoupling control method is proposed to contol the exciter frequency, amplitude and offset of displacement of electro-hydraulic exciter controlled by 2D valve which are controlled indenpendently and coupled each other. The curve between the amplitude and the axial sliding of 2D valve’spool, the curve between the offset and the axial sliding of bias valve’s spool and the coupling laws between amplitude and offset in different frequency are drived using the numerical simulation program based on the introduce of decoupling control principle of electro-hydraulic exciter controlled by 2D valve, and the amplitude-frequency curves are also given to study the laws between amplitude and vibratin frequency.
     4. The phae-frequency characteristic of electro-hydraulic exciter controlled by 2D valve is studied according to the requirement of phase synchronization of load in multiaxial fatigure test system. The structural of electro-hydraulic four-axis high-frequency structural strength fatigue testing system is described. The synchronous control strategy and the initial phase synchronization control method of electro-hydraulic exciter controlled by 2D valve are proposed bason in the analysis of structure of 2D valve and the phase-frequency characteristic curve of electro-hydraulic exciter controlled by 2D valve is derived; Research shows that when the excitation frequency among 0.048 ~ 0.870 times of natural frequency, the impact to the phase from the excitation frequency and the 2D axial sliding spool valve is negligible, which can provide the theoretical basis for the electro-hydraulic exciter used in synchronous multi-axis fatigue test system under the open loop control.
     5. The single-axis fagitue test system and multi-axial structural strength fatigue test system based on the electro-hydraulic exciter controlled by 2D valve are established to carry out experimental study. The test displacement wavrform of pistion in 5~200Hz is measured by force and displacement sensors to verify the simuliation results.
引文
[1] Schutz, W A. History of Fatigue [J]. Engineering Fracture Mechanics, 1996 , 54(2): 263-300.
    [2] Suresh S著,王中光等译.材料的疲劳[M] .国防工业出版社,1999.
    [3] Stephen Timoshenko.Strength of Materials, Part I, Elementary Theory and Problems, U.S.A.:D. Van Nostrand Company, 3rd Ed, 1955.
    [4] Didion M. Notice sur la vie et les ouvrages du général J. V. Poncelet [M]. France: L’Académie nationale de Metz, 1870: 101–159.
    [5] W?hler A. Theorie rechtekiger eiserner Brückenbalken mit Gitterw?nden und mit Blechw?nden [J]. Zeitschrift für Bauwesen, 1855 (5): 121-166.
    [6] W?hler A.über die Festigkeitsversuche mit Eisen and Stahl[J], Zeitschrift für Bauwesen, 1870 (20) : 73-106
    [7] W?hler A. W?hler's experiments on the strength of metals[j].Engineering, 1867(4): 160-161.
    [8] W?hler A. (1871) Engl. Abstr [J]. Engineering, 1871(2):123-128.
    [9] Bonnand V, Chaboche J.L., Cherouali H., Gomez P. etal. EXPERIMENTAL AND THEORETICAL COMPARISON OF SOME MULTIAXIAL FATIGUE DESIGN CRITERIA IN THE CONTEXT OF LIFE ASSESSMENT OF ROTATING PARTS IN TURBOENGINES [C].Proceeding of 25th ICAF Symposium, Rotterdam, 2009 : 743-764.
    [10] Crossland B. Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel [C], Proceedings of the International conference on Fatigue of Metals, Institution of Mechanical Engineers, London, 1956.
    [11] Brown M.W. and Miller K.J. A theory for fatigue failure under multiaxial stress-strain conditions [J]. Proc Inst Mech Engrs, 1973(187) : 745-755.
    [12] Fatemi A. and Socie D.F.a critical plane to multiaxial fatigue damage including out-of-phase loading [J]. Fatigue Fract Eng Mater Struct, 1988, 11(3): 149-165.
    [13] Smith K.N., Watson P. and Topper T.H. A stress-strain function for the fatigue of metals [J].Journal of Materials Science, 1970, 5(4): 767-776.
    [14] Gon?alvès C. A., Araujo J.A., and Mamiya E. N., Multiaxial fatigue: a stress based criterion for hard metals [J]. Int. J. of Fatigue, 2005(27): 177-187.
    [15] Chaudonneret M., Gilles P. LaTourette R., Policella H. (1997) Machine d'essais de traction biaxiale pour essais statiques et dynamiques [J]. La RecherchéAerospatiale, 1977: 299-305.
    [16]孙志礼.机械设计[M].沈阳:东北大学出版社, 2000.
    [17] Gao V. Machine Testing to Assess the Life of Surface Damaged Railway Track. Proceedings of the Institution of Mechanical Engineers, 2001, 215(4).
    [18] Magnus Holmgren, Thoma Svensson, Erland Johnson and Klas Johansson.Reflections regarding uncertainty of measurement,on the results of a Nordic fatigue test interlaboratory comparison[J],Accer Qual Assur,2005(10): 208-213.下5个
    [19]王孙安,盛万兴,史维祥等.新型电液伺服飞机发动机模拟系统及其智能控制[J],航空学报,1995(1):109-113.
    [20]曹阳,张敏顺,李天石.多通道电液伺服协调加载系统的动态神经网络自适应控制[J],机械与电子,2001(1):11-13.
    [21] Yonekawa M., Isllii T., Ohmi M. and Takada F. Development of a remote-controlled fatigue test machine using a laser extensometer for investigation of irradiation effect on fatigue properties [J], Journal of Nuclear Materials, 2002 (11):1613-1618.
    [22] Saito S., Kikuchi K., Onishi Y. and Nishino T. Development of piezoelectric ceramics driven fatigue testing machine for small specimens [J], Journal of Nudes Materials,2002 (11):1609-1612.
    [23] Stroud R.C., Hamma G.A. and Underwood M.A et al. A Review of Multiaxis/Multiexciter Vibration Technology [J]. Sound and Vibration.1996, 30(4):20-27.
    [24]张巧寿,振动试验系统现状与发展,航天技术与民品,2000(8): 67-69
    [25]胡志强,液压振动台应用前景的探讨,测控技术,1993(5): 2-5
    [26] Masakazu Kobayashi, Kouki Zen, Guangqi Chen.Shaking. Table Test on the Improvement Dimension of Permeable Grouting Method for Liquefaction Countermeasure[C].Proceeding of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2009), Honolulu, Hawaii, USA, 2009: 275-281.
    [27] Young D. H., Timoshenko Stephen.Vibration Problems in Engineering [M], U.S.A.: D. Van Nostrand Company, 3rd Ed. 1955.
    [28] Gere J. M. and Timoshenko Stephen. Mechanics of Materials[M], U.S.A.: D. Van Nostrand Company, 1st edition,1972
    [29] Au F T K, Cheng Y S and Cheung Y K. Vibration analysis of bridges under moving vehicles and trains: an overview [J]. Prog. Struct. Engng Mater, 2001(3): 299-304.
    [30] Yang YB, Yau JD and Hsu LC. Vibration of simple beams due to the trains moving at high speeds [J]. Engineering Structures 1997, 19(11): 936-944.
    [31] Yang YB, Chang CH and JD. An element for analysing vehicle-bridge systems considering vehicle’s pitching effect [J]. International Journal for Numerical Methods in Engineering 1999(46): 1031-1047.
    [32]郝建功,张耀成.新型电液激振装置的性能研究[J].太原理工大学学报, 2003, 34(6): 706-709.
    [33]唐生碌.机械振动台的新结构讨论[J].环境技术,1998(3):21-23.
    [34]奚德昌.振动台及振动试验[M].北京:机械工业出版社,1985: 85-93.
    [35]屈维德.机械振动手册[M].北京:机械工业出版社,1992:124-167.
    [36] Lang, George Fox. Electrodynamics shaker fundamentals [J]. S V Sound and Vibration. 1997:14-23.
    [37] Lang, G.F, Snyder, D. Understanding the physics of electrodynamics’shaker performance [J].S V Sound and Vibration. October, 2001: 324-335.
    [38]廉红珍,寇子明.振动机械液压激振方式的特点分析和发展综述[J].煤矿机械,2007(11):12-14.
    [39]吴昌聚,沈润杰,何闻等.大尺寸高频振动台的设计[J].机电工程, 2002(4): 62-64.
    [40]冯小兰,姜丰新.成型机振动台激振器及其改进[J].重庆工学院学报, 2005(5): 145-149.
    [41]刘小勇,施仁.一种新型电动机械振动台测控系统[J].仪器仪表学报, 2003(6): 281-285.
    [42]夏树杰,薛进学.感应式电动振动台特性计算[J].现代电子技术, 2005(9): 10-12.
    [43]李敏霞.电液伺服振动台的振动控制技术及应用[J].振动、测试与诊断, 1997(3):55-60.
    [44]项德明,高富强.电液式振动台智能控制器的研制[J].控制工程, 2003(9): 396-397.
    [45]周苏枫.振动试验与分析一体化系统简介[J].应用力学学报, 2001(18): 137-141.
    [46] Grasty, Lawrence. New electro-magnetic shaker technology [J]. S V Sound and Vibration, 2002: 68-78.
    [47] SU Donghai, CUI Xiao, WU Xihong,Analysis and Simulation of Dynamic Properties of High Frequency Hydraulic Vibration[C], 7th International Conference on Progress of Machining Technology, 2004: 918-922
    [48]殷建,陆明刚,杜威.基于虚拟仪器的滚动轴承滚动体疲劳试验机监控系统[J].机电工程, 2004, 21(9) : 1-4.
    [49]顾平,谭正三.全自动曲轴弯曲疲劳试验机测控系统的研究[J].小型内燃机,1995, 24(6): 47-50.
    [50]苏晓云,赵劲松,段连钢,王晶.重轨疲劳试验机在线监测软件开发[J].包钢科技,2002 , 28(5) : 32-33.
    [51]罗剑波,姜伟.一种基于FPGA技术的高频疲劳试验机控制器的研制[J].测控技术与设备,2001,27(9): 33-34.
    [52]胡燕慧,张峥,钟群鹏,韩邦成.金属材料超高周疲劳研究进展[J].机械强度, 2009, 3l(6): 979-985.
    [53] Morrissey R,Nicholas T.Staircase testing of a titanium alloy in the gigacycle regime [J].International Journal of Fatigue,2006,28:1577-1582.
    [54] Naito T, Ueda H, Kikuchi M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface [J]. Metallurgical Transactions A, 1984, 15A:1431-1436.
    [55]赵建玉,王旭东,何芳,黄明键.电液伺服疲劳试验机的计算机控制研究[J].仪器仪表学报, 2002,23(3) : 320-323.
    [56]王旭束.电液伺服力控制系统的智能控制策略研究[J].机床与液压,1995(15): 255-258.
    [57]刘小勇,施仁.一种新型电动机械振动台测控系统[J].仪器仪表学报, 2003 ,24(3) : 281-294.
    [58]安正信.机械振动台无强迫导向双向振动机理[J].现代电子技术, 2008 31(22) : 70-73.
    [59]黄浩华,杨学山,程建伟,董玲等.小型伺服式电动振动台[J].世界地震工程, 2002 18(3) : 69-72.
    [60]李晓蕾,樊尚春.低频电动振动台的关键技术[J].航空计测技术, 2003 23(5):1-4.
    [61] George Fox Lang and Dave Snyder. Understanding the physics of electrodynamic shaker performance [J]. Sound and vibration, 2001:1-10.
    [62]胡小弟,朱伟繁.涉及电动振动台选型的结构与技术的评价和分析[J].环境技术,2002(5): 1-4.
    [63]杜芳,曹文清.振动台试验中提高地震波模拟精度的补偿原理和方法[J].世界地震工程, 2002, 18(1): 129-132.
    [64]胡继云,廉振红,邵洪涛.单自由度简谐振动机械弹性支承刚度和激振力的设计[J].河南工业大学学报(自然科学版), 2006, 27(4): 11-14.
    [65]韩俊伟,于丽明,赵慧.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报,1999,31(3):21~23, 28.
    [66]尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域[J].液压与气动, 2001(6): 5-10.
    [67]关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨工业大学博士学位论文, 2007.
    [68] Yonekawa M, Ishii T, Ohmi M, Takada F. Development of a remote-controlled fatigue test machineusing a laser extensometer for investigation of irradiation effect on fatigue properties 2002:307-311.
    [69]胡军宏,周亚,君宝钢.宝钢连铸试验平台结晶器电液伺服振动系统研究[J].冶金自动化, 2005(6): 6-10.
    [70] MTS. MTS Landmark 200 Hz Elastomer Test System [EB/OL]. http://www.mts.com/stellent/groups/public/documents/library/dev_003810.pdf, 2008-2.
    [71] MTS. 1000 Hz High-Cycle Fatigue Test System [EB/OL]. http://www.mts.com/stellent/groups/public/documents/library/dev_002041.pdf, 2001-9.
    [72] Jill M. Morgan and Walter W. Milligan. A 1 kHz SERVOHYDRAULIC FATIGUE TESTING SYSTEM[C]. Published in proceedings of the conference“High Cycle Fatigue of Structural Materials”, TMS, Warren dale PA, 1997: 305-312.
    [73] MTS. MTS Landmark? Testing SEB/OLutions [EB/OL]. http://www.mts.com/stellent/groups/public/documents/library/dev_004324.pdf, 2009-8.
    [74] MTS. High Rate Testing Systems [EB/OL]. http://www.mts.com/stellent/groups/public/documents/library/dev_004212.pdf, 2008-10.
    [75] MTS. MTS Planar Biaxial Test System with Torque [EB/OL]. http://www.mts.com/stellent/groups/public/documents/library/dev_003388.pdf, 2007-3.
    [76] INSTRON. 8800 Planar Biaxial Cruciform Test Systems [EB/OL]. http://www.instron.co.uk/wa/product/8800-Planar-Biaxial-Cruciform-Systems.aspx.
    [77] INSTRON. 8802TT Axial-Torsion Dynamic Fatigue Testing System [EB/OL]. http://www.instron.co.uk/wa/product/8802TT-AxialTorsion-Fatigue-Tester.aspx.
    [78] INSTRON. ElectroPuls? Electromechanical Systems [EB/OL]. http://www.instron.co.uk/wa/products/electrodynamic/electropuls/default.aspx?DF.
    [79] SHIMADZU. EHF-E/U Series Fatigue testing machines [EB/OL]. http://www.shimadzu.com/products/test/fatigue/oh80jt0000001c29.html.
    [80] Tinius Olsen. High Capacity Super“L”Series [EB/OL]. http://www.tiniusolsen.com/pdf/SuperLHighCap.pdf, 2003-2.
    [81] TINIUS OLSEN. Floor Standing High Force Electromechanical Materials Testing Machines [EB/OL]. http://www.tiniusolsen.com/pdf/B160C.pdf, 2010-1.
    [82] Wolpertwilson. http://www.wolpertwilson.com/
    [83] Zwick/Roell. Model HA: 50 to 500 KN [EB/OL]. http://www.zwick.com/en/products/fatigue-strength-testing-machines/servohydraulic-testing-machines/ha-model-50-to-500-kn.html.
    [84] Zwick/Roell. Model HB: 50 to 2500 KN [EB/OL]. http://www.zwick.com/en/products/fatigue-strength-testing-machines/servohydraulic-testing-machines/model-hb-50-to-2500-kn.html
    [85] Zwick/Roell. Biaxial Testing Machines with Electrical Synchronization [EB/OL]. http://www.zwick.com/en/products/specialized-test-equipment/biaxial-testing-machines/biaxial-electro-mechanical-testing-machines/biaxial-testing-machines-with-electrical-synchronization.html.
    [86] Zwick/Roell. Biaxial Testing Machines with Mechanical Synchronization [EB/OL]. http://www.zwick.com/en/products/specialized-test-equipment/biaxial-testing-machines/biaxial-electro-mechanical-testing-machines/biaxial-testing-machines-with-software-synchronization.html
    [87]孙增折.计算机控制理论及应用[M].北京:清华大学出版社, 1989.
    [88]温钢云,黄道平.计算机控制技术[M].广州:华南理工大学出版社, 2001.
    [89]中国汽车工业总公司重庆汽车研究所. ZCZ-A型汽车转向传动轴扭转疲劳试验台使用说明书[R], 2001.
    [90] http://www.hongshan.net.cn/.
    [91]天山红水. PLU型电液伺服结构疲劳试验机[EB/OL]. http://www.hongshan.net.cn/html/product4/200908311436229549.html.
    [92]天山红水.微机控制电液伺服2000kN动静三轴试验机[EB/OL]. http://www.hongshan.net.cn/html/case/200908310114068398.html.
    [93]瑞格尔仪器. RF-9000系列电液伺服万能试验机[EB/OL]. http://www.reger.com.cn/products_1.asp?menuid=37&menuidd=64&id=169.
    [94] http://www.ccsyjc.com/.
    [95]李木国,张群,王静,马洪连等.大型液压伺服混凝土静动三轴试验机[J].大连理工大学学报:2003(6):812-817.
    [96]李跃光,姬战国.国内高频疲劳试验机的技术现状及其发展[J].试验技术与试验机,2006,23(5):43-48.
    [97]孙海军.高频疲劳试验机改造中静负荷的自动控制[J].试验技术与试验机, 2000(6):26-32.
    [98] King P J, Mamdani E H. The application of fuzzy control system to industrial process[C].Special Interest Discussion on Fuzzy Automata and Decision Processes,6th IFAC World Congr. Boston:Mass, 1975.
    [99] Yang Yanxi,Liu Ding.Optimal design for 2-DOF PID controller based on fuzzy genetic algorithms [J].Chinese Journal of Scientific Instrument, 2006, 27(8):868-872.
    [100]张福波,王贵桥,杜林秀,王国栋.电液伺服疲劳试验机波形幅值的模糊补偿[J].振动、测试与诊断,2008(2):96-99.
    [101]王长陶.基于可拓控制策略的材料试验机电液比例控制系统的研究[D].浙江大学博士学位论文,2002.
    [102]颜永安.万能试验机专用微机系统的研制[D].哈尔滨工业大学硕士学位论文, 2002.
    [103]孙义忠.数控往复式摩擦磨损试验机及其测试系统的研究[D].哈尔滨工业大学硕士学位论文,2005.
    [104]徐宝亮.新型弯扭联合作用疲劳试验机的设计研究[D].哈尔滨工业大学硕士学位论文,2006.
    [105]张军.抽油机加载系统控制方法研究[D].西安交通大学硕士毕业论文, 2002.
    [106]郭正红.新型疲劳试验机控制系统研究[D].北京航空航天大学硕士学位论文,2002.
    [107]程永全.PWS-100A电液伺服动静万能试验机的研制[D].天津大学硕士毕业论文,2004.
    [108]朱光华.同步带疲劳寿命试验机的开发与研究[D].长春理工大学硕士毕业论文,2004.
    [109]苏艳萍.基于模糊神经网络的HC轧机板形控制的研究[D].燕山大学硕士学位论文, 2005.
    [110]李斌.电液扭转材料试验机计算机控制系统的研究[D].西北工业大学硕士学位论文,2006.
    [111]任昌山.数字式自适应动态电液疲劳试验机的研究与实现[D].北京交通大学硕士学位论文, 2008.
    [112]宋苏,任红格,于建均,孙亮,阮晓钢.基于谐振跟踪的液压振动台的DSP实现[J].计算机测量与控制, 2007, 15(8):1020-1022.
    [113]栾海英.电液伺服控制线性摩擦焊系统关键技术的研究[D].机械科学研究总院博士学位论文, 2007.
    [114]廉红珍,寇子明.振动机械液压激振方式的特点分析和发展综述[J].煤矿机械,2007, 27(11):12-14.
    [115]李其朋,丁凡,电液伺服阀技术研究现状及发展趋势,液压·液力,2003(6):pp28-29
    [116]李洪人.液压控制系统,国防工业出版社.1990.
    [117]曾尚璀,沈利,俞振利.基于Matlab系统的信号FFT频谱分析及显示[J].科技通报,2000(7).
    [118]谭子尤,张雅彬.离散傅立叶变换快速算法的研究与Matlab算法的实现[J].中国科技信息,2006(7).
    [119]周浩敏,王睿.测试信号处理技术[M].北京:北京航空航天大学出版社,2004: 147-152.
    [120]李力等.机械信号处理及其应用[M].湖北:华中科技大学出版社,2007: 155-160.
    [121]黄忠霖.自动控制原理的MATLAB实现[M].北京:国防工业出版社,2007: 381-383.
    [122]吴大正,杨林耀等.信号与线性系统分析[M].北京:高等教育出版社,2002: 125-127.
    [123] Ruan J, Burton R and Ukrainetz P“An Investigation Into the Characteristic of a Two Dimensional“2D”Flow Control Valve”,ASME,Journal of Dynamic Systems Measurement and Control: 214-220.
    [124] Ruan J, Burton R, Ukrainetz P, Xu Y M. Two-dimensional pressure control valve[C]. Proc Instn Mech Engrs Vol215 Part C, 2001:1031-1039.
    [125] Fisher D.K. and Posehn M.R. Digital Control System for a Multiple-Actuator Shaker[C].47th Shock and Vibration Bulletin.NM: Albuquerque, 1977:79-96.
    [126] Blekham I.I.Synchronization in nature and technology [M].New York: ASME press, 1988.
    [127] Blekham I I, Fradkov A L, Tomchina O P, et al. Self-synchronization and controlled synchronization: general definition and example design [J], Mathematics and Computers in Simulation, 2002, 58:367-384.
    [128] Wen B C, Guan L Z. Synchronization theory of self synchronous vibrating machines with two asymmetrical vibrators[C], Proc. of Int. Conf. on Mechanical Dynamics, Shenyang: Northeast University of Technology, 1987:434-439.
    [129]韩俊伟,丁丽民,赵慧,王忠义.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报, 1999, 31(3): 21-24.
    [130]袁宏杰,李传日.正弦加随机振动控制技术的研究[J].航空学报.2002, 21(4):383-384.
    [131]闻邦椿,赵春雨,范俭.机械系统同步理论的应用与发展[J].振动工程学报,1997,10(3):264-272.
    [132] Bai E W, Lonngren K E. Synchronization and control of chaotic systems [J].Chao Solitons & Fractal, 1999,10 (9):1571一1575.
    [133] Glass L. Synchronization and rhythmic processes in physio1ogy [J], Nature,200l,410:277-284.
    [134]闻邦椿,刘树英,何勍.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700