用户名: 密码: 验证码:
波浪运动升沉补偿液压平台关键问题试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究拟构造一个具有升沉运动补偿功能的波浪补偿模型平台,通过一定的控制策略驱动液压系统进行广义升沉运动补偿,使平台的广义升沉运动幅值较舰船甲板的广义升沉运动幅值大幅度降低,使得在海上航行的船舶具有一局部区域,能够克服船舶在恶劣海况下由于波浪作用而产生的横摇运动、纵摇运动、升沉运动以及这些运动互相耦合的影响,保持与运动船舶的相对平稳。如直升机起降平台、船舶之间的货物补给甚至是作战舰艇上的导弹补给、海底电缆和管道的铺设和深海采矿作业系统等,从而提高海上作业的安全性和工作效率。
     本文采用理论研究、计算机仿真和模型试验相结合的研究方法对平台升沉运动补偿系统进行研究。主要研究工作包括:
     升沉补偿系统的建立,通过耐波理论和试验分析,利用电液比例技术建立了船舶试验模型、船舶运动模拟系统模型和升沉补偿系统模型,为后续关键问题研究提供试验平台。船舶运动数据的获取、预处理及可用性提高;本文建立了基于FFT时频转换的频域积分方法结合滤波技术以及积分结果趋势项去除技术来处理加速度信号积分问题的处理方案,解决了波浪补偿稳定平台随船运动响应所测得的加速度信号通过时域直接积分变换为位移信号时不可用的缺陷,同时减少了积分耗时,能够获得比较满意的波浪补偿稳定平台的响应位移,为进一步实现波浪补偿平台的升沉补偿奠定了基础。建立本系统电液比例阀控缸机构模型及升沉补偿系统数学模型,在原电液比例阀控缸的机理模型基础上,使用系统辨识技术分别建立了电液比例阀控缸机构的差分方程模型和NARMAX模型,并对两类建模方案进行了对比分析和试验研究。构建“新息-贡献”准则和矩阵求逆定理的双向回归递推识别算法只需通过少量的运算就可同时得到模型的结构和参数,从而得到最优多项式NARMAX模型,对系统的运动机构进行了详细的受力分析和联合建模,得到了各机构相互的位移-力数学关系。通过船舶模型预报试验,对广义升沉运动预报的有效性及仿真预报结果进行分析。构建以时间差分(TD)方法和动态反向传播(DBP)算法相结合的网络学习算法(TD-DBP学习算法)来克服BP算法不能对Elman网络进行直接在线训练的局限性,实现Elman网络的在线渐进训练。分别验证了、基于AR模型的实时多步预报算法、基于具有艏前波观测量的ARMA模型的实时多步预报算法和基于PAR模型的实时多步预报算法,比较了时间序列分析法的几种不同模型的实时预报算法(包括非线性模型PAR模型)。船舶运动模拟系统和升沉补偿系统的仿真以及控制策略研究,在仿真实验的基础上采用了前馈和反馈相结合的控制方法,使系统响应加快,补偿精度增加;位移协调控制策略的引入,限制了液压缸运动步调不一致造成的各液压缸间矛盾力的产生;力反馈控制策略则有利于系统振荡的衰减和力的协调;预测控制解决大滞后、大惯量等问题。针对各种控制算法,并对其控制效果进行了分析和研究。
The dissertation focuses on building a wave compensation hydraulic platform which has the generalized heave motion compensation function. The generalized heave motion amplitude of platform will decline more than the deck’s generalized heave motion by hydraulic system. So there will be a local zone on the ship, which can overcome the impact of ship movement (rolling, pitching and heaving) and keep the relative balance of the ships. Thereby, the system can enhance work efficiency and the safety of jobs , such as landing platform of shipborne helicopters, cargo replenishment between ships, missilery replenishment of warship, and abyssal mining.
     The research is carried out by theory analysis, computer simulation and model test in the dissertation. The main problems that will be solved in this paper are as the following:
     Scheme design of the heave compensation platform system is completed by using the electro-hydraulic proportional technique after seakeeping capability testing, arranged for afterward research.Data acquisition、pretreatment and usability enhancing of ship movement. This paper builds up a processing scheme of acceleration signal integral based on frequency domain integral of FFT time-frenquency transforming blending filter technique and polynomial trend eliminating. We solve the problem of acceleration signal transform to displacement signal, which is not available by time domain integral, and condenses the integral time consuming, and establishes the basement for afterward research.The mathematic model of the heave compensation experimental system is established in the paper. A differential equation and an NARMAX model are set up according to system identification theory and combining with experimental data. This paper applies a two-way recursive identification algorithm based on equal dimension new information and inverse matrix calculation to determine the parameters of the optimal NARMAX model only by littleness arithmetic labor. After force analysis and Joint Modeling for moving mechanism of the system, we get displacement-force mathematical relation of the system.Using time series analysis to forecast generalized heave motion, a real-time multi-step prediction algorithm based on auto-regressive model (AR model), a real-time multi-step prediction algorithm based on auto-regressive moving average model (ARMA model) and a real-time multi-step prediction algorithm based on nonlinear polynomial auto-regressive model (PAR model) are analyzed and compared .A multiplex controller, combining feedforward and feedback control strategy, can improve the compensating precision of the heave compensation system. The displacement coordination control strategy can suppress the inconsistent forces that result from the inconsistent movements of the cylinders. The force feedback control strategy is advantaged for attenuation of oscillations and coordination of forces. A predictive control scheme can effectively solve the big delay problem of the heave compensation system.
引文
[1]邵曼华,寇雄,赵鹏程.几种船用起重机波浪补偿装置[J].机械工程师, 2004(02):14-16.
    [2]刘绍兴,周江涛,杨清璞.船用液压起重机加装波浪补偿装置的研究[J].机电设备, 1999(05):21-25.
    [3]陆卫杰.舰艇并靠导弹补给及波浪补偿系统研究[D].南京:南京理工大学, 2006.
    [4]肖体兵,吴百海.深海采矿扬矿管重载被动型升沉补偿系统的研究[J].液压与气动, 2007(01):13-16.
    [5]栾苏,于兴军.深水平台钻机技术现状与思考[J].石油机械, 2008(09):135-139.
    [6]孙传伟,高正,孙文胜.舰面流场对直升机着舰时悬停操纵的影响[J].南京航空航天大学学报, 1999, 31(6): 614-619
    [7] Zhang H., Prasad J.V.R., Mavris D.N.. Ship airwake effects on helicopter rotor aerodynamics[R]. AIAA 94-3509, Arizona, August, 1994
    [8]孙文,毕玉泉,白春华.舰载直升机的舰面效应研究[J].航空计算技术, 2006, 36(2): 9-12
    [9]刘锦程,李世亮,杨智.直升机与海上救助[J].世界海运, 2001, 24(4): 15-16
    [10]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社, 1991
    [11]郑相周.大洋采矿补偿平台串并联机构的运动学研究[D].武汉:华中科技大学,2004
    [12]蔡烽,侯建军,万林,等.提高直升机起降海情的频域时域综合预报模式[J].船舶工程, 2003, 25(2): 15-20
    [13]易莉.直升机着舰双摄影测量算法及DSP数字图像处理技术[D].成都:电子科技大学, 2003
    [14] Smith A.J.. The design of visual landing aids for shipborne helicopter operations[J]. Naval Engineers Journal, 2001, 113(3): 67-68
    [15]孙斌.舰载直升机的助降装置[J].现代兵器, 1995, (10): 37-38
    [16]张玉坤.简介直升机着舰装置[J].现代舰船, 2001, (11): 29-31
    [17]豫章.舰载直升机拉降装置的发展[J].直升机技术, 1998, (4): 40-43
    [18]廖漠圣.海洋开发机器与液压技术[M].北京:海洋出版社, 1988
    [19]方华灿.海洋石油钻采设备理论基础[M].北京:石油工业出版社, 1984
    [20]肖体兵.深海采矿装置智能升沉补偿系统的研究[D].广州:广东工业大学, 2004
    [21]吴百海,龙建军,肖体兵,等.海洋采矿起伏补偿电液控制信号采集的研究[J].液压与气动, 2002, (7): 18-19
    [22]赵志高,杨建民,王磊,等.动力定位系统发展状况及研究方法[J].海洋工程, 2002, 20(1): 91-97
    [23]孙树民,李悦.浅谈水下定位技术的发展[J].广东造船, 2006, (4): 19-24
    [24]李守军,包更生,吴水根.水声定位技术的发展现状与展望[J].海洋技术, 2005, 24(1): 130-135
    [25]吴永亭,周兴华,杨龙.水下声学定位系统及其应用[J].海洋测绘, 2003, 23(4): 18-21
    [26]陈慧,李健利,闫保中,等.无线电定位中的多载波研究[J].无线电工程, 2003, 33(3): 50-52
    [27]周信.卫星全球定位技术[J].铁道知识, 2001, (6): 8-9
    [28]孔志宏.全球卫星定位系统原理及应用[J].山西科技, 2006, (1): 27-28
    [29]徐景硕.惯性传感器技术及发展[J].传感器技术, 2001, 20(5): 1-4
    [30] Granttan K.T.V., Sun T.. Fiber optic sensor technology: an overview[J]. Sensors and Actuators, 2000, 82: 40-61
    [31] Bronnimann R., et al. Packaging of fiber optics sensors for civil engineering appliations[A]. Symposium D.D.. Reliability of Photonics Materials and Structures[C]. San Francisco, USA: 1998
    [32] Ecke W., et al. Optical fibre grating strain sensor network for X-33 spacecraft health monitoring[A]. Proc. of the SPIE[C]. 2000, 4185: 888-891
    [33] Willsch R.. Application of optical fibre sensors: technical and market trends[A]. Proceedings of the SPIE[C]. 2000, 4074: 24-31
    [34] Morey W.W., et al. Fiber optic Bragg grating sensors[A]. Proc SPIE[C]. 1989, 1169: 98-107
    [35] Othons A., Kalli K.. Fiber Bragg gratings[M]. Boston, London: Artech House Inc, 1999
    [36] Ferdinand P., et al. Mine operating accurate stability control with optical fibre sensing and Bragg grating technology[J]. J. Lightwave Technl, 1995, 13(1): 303-313
    [37] Ferdinand P., et al. Applications of Bragg gating sensors in Europe[A]. Proc. of the Optical Fiber Sensors Conf. (OFS-12)[C]. William sburg, VA, USA, 1997, 14-19
    [38] Vohra S.T., et al. Sixteen channel WDM fiber Bragg grating dynamic strain sensing system for compsite panel slamming tests[A]. Proc. of the Optical Fiber Sensors Conf. (OFS-12)[C]. William sburg, VA, USA: 1997: 662-665
    [39] Friebele P., et al. Fibre Bragg grating strain sensors: present and future applications in smart structures[J]. Optics and Photonics News, 1998, 9: 33-37
    [40] Hammon T.E., et al. Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fibre Bragg grating as a reference[A]. Proc. of the 11 International Conf. on Optical Fibre Sensors[C]. Sapporo, Japan: 1996: 566-569
    [41]肖体兵,肖世耀,廖辉,等.三位四通电液比例阀控缸动力机构的数学建模[J].机床与液压,2008,36(8):80-82
    [42]马晓宏,陈冰冰,甘学辉,等.电液比例阀控缸位置控制系统的建模与仿真研究[J].机械设计与制造,2008,(4):43-45
    [43]黄卉.关于比例阀控非对称缸系统的建模问题[J].机械设计与制造, 2000,(4):43-45
    [44]季天晶,王洪杰,毛新涛,等.船用舵机位置控制单元的建模与仿真研究[J].液压与气动,2004,(4):15-16
    [45]苏东海,于江华,王连鹏,等.高压SF6断路器液压操动机构的阀控缸系统数学模型及其速度特性分析[J].组合机床与自动化加工技术,2007,(2):12-13
    [46]袁朝辉,董骥,刘存颖,等.阀控缸的非线性建模和分析[J].机床与液压,2008,36(9):249-251
    [47]李洪人,关广丰,郭洪波,等.考虑阀口误差的阀控非对称液压缸系统建模、仿真与试验[J].机械工程学报,2007,43(9):35-36
    [48]关浩.液压仿形刀架的计算机动态仿真[J].组合机床与自动化加工技术,2000,(8):6-8
    [49]谈宏华,张业建.阀控缸伺服系统建模与仿真研究[J].武汉化工学院学报,2005,27(5):68-71
    [50]周恩涛,高磊,赵亮.功率键合图在研究阀控缸液压冲击中的应用[J].机床与液压,2006,(11):124-125
    [51]赵强,李洪人.液压并联机器人的键图建模[J].南京理工大学学报,2006,30(2):203-207
    [52]冯志君.电液伺服系统的参数辨识研究[J].机床与液压,2006,(11): 129 -130
    [53]陈章位.电液伺服系统建模及其状态特征辨识[J].机电工程,1998,(4): 35-36
    [54]杨华勇,骆季皓,路勇祥.电液比例技术在液压电梯中的应用[J].液压与气动,1992,(3):3-4
    [55]张齐生,高殿荣,朱晓民.电液比例方向控制液压系统分析[J].液压与气动,1998,(3):1-2
    [56]李晶,牛春立.电液比例控制步进式系统的调节分析[J],液压与气动,2000,(3):25-27
    [57]任淑霞.电液比例控制技术在石油钻机刹车系统中的应用[J],液压与气动,1998(1):19-20
    [58]丁杰,曲为壮,向为明.液压比例流量控制技术在步进式加热炉上的应用[J].液压与气动,1999,(2):20-21
    [59]陈健,徐鸣谦.大型构件计算机控制液压同步提升系统的实时控制算法[J],机床与液压,1999,(5),20-23
    [60] Liu G.P. and Daley S. Optimal-tuning PID control for industrial systems [J]. Control Engineering Practice, 2001, (9):1185-1194
    [61] Gi Sang Choi, Han Koo Lee and Gi Heung Choi. A study on tracking position control of pneumatic actuators using neural network [A].Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society [C].Germany,1998:1749-1753
    [62] Tafazoli S. Tracking control of an electrohydraulic manipulator in the presence of friction[J]. IEEE Transactions on Control Systems Technology, 1998,6(3),401-411
    [63]陈远明,叶家玮,宋鑫.波浪运动补偿稳定平台系统液压机构的仿真试验[J].船海工程,2007,36(6):103-106
    [64]肖体兵,吴百海,龙建军.深海作业装置主动型升沉补偿系统控制器的研究[J].液压与气动,2008,(4):18-21
    [65]肖体兵,吴百海.高精度电液比例阀控缸位置伺服系统控制器的设计[J].机床与液压,2005,(11):53-55
    [66]黄合成,韩轶霞.基于电液比例阀的模糊智能PID控制系统的研究[J].试验技术与试验机,2007,(4):56-60
    [67]周立鑫,石爱国.舰船运动极短期预报技术综述[J].航海科技动态, 2001, (11): 1-5
    [68]赵希人,彭秀艳,沈艳,等.舰船运动极短期建模预报的研究现状[J].船舶工程, 2002, (3): 4-8
    [69] Kaplan P.,A study of prediction techniques for aircraft carrier motion at sea[A]. AIAA 6th Aerospace Sciences Meeting[C]. 1968, (68): 1-42
    [70] Triantafyllou M., Athans M.. Real Time Estimation of Motions of Destroyer Using Kalman Filtering Techniques[R]. Laboratory for Information and Decision System Rep. MIT Cambridge, 1983
    [71]余滋红,於家鹏.船舶横摇非线性运动最大值预报[J].中国造船,1997,137(2):26-31
    [72]谢美萍,沈艳,彭秀艳,赵希人.舰船运动的一种改进经典谱估计方法[J].船舶工程,2000(4):6-8
    [73]唐慧妍,彭秀艳,于秀萍,等.船舶横向受扰力的周期图建模预测[J].仪器仪表学报, 2004, 25(4): 936-937
    [74]要瑞璞.浮式海洋平台运动实时预报[J].海洋预报, 1997, 14(3): 38-45
    [75]沈艳.神经网络理论研究及在舰船运动预报中的应用[D].哈尔滨:哈尔滨工程大学,2005
    [76]王辉华,刘文化,王航宇.基于神经网络的舰船运动短期预测[J].计算机仿真, 2006, 23(5): 18-20
    [77]李晖,郭晨,李晓方.基于误差反传神经网络的船舶横摇时间序列预报[J].大连海事大学学报, 2003, 29(1): 39-42
    [78] Khan A., Bil C., Marion K.E.. Theory and application of artificial neural networks for the real time prediction of ship motion[A]. Knowledge-Based Intelligent Information and Engineering Systems - 9th International Conference, KES 2005, Proceedings[C]. 2005, 1064-1069
    [79] Yumori I.R.. Real time prediction of ship response to ocean waves using time series analysis[A]. Oceans[C]. New York, 1981: 1082-1089
    [80] Lin N.K.. Times series modeling for prediction of ship motions[A]. Proceedings of the International Conference on Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries[C]. Berlin: Springer-Verlag, 1986: 563-577
    [81] Terada D., Iseki T.. Onboard Ship Motion Analyzer Based on Nonstationary Time Series Analysis[A]. Proc. Int. Offshore Polar Eng. Conf.[C]. 2002, 12: 438-443
    [82]彭秀艳,赵希人,魏纳新,等.大型舰船姿态运动极短期预报的一种AR算法[J].船舶工程, 2001, (5): 5-10
    [83]马洁,李国斌.船舶横摇运动的时间序列预报[J].北京机械工业学院学报, 2006, 21(1): 4-7
    [84]马洁,韩蕴韬,李国斌.基于自回归模型的船舶姿态运动预报[J].舰船科学技术, 2006, 28(3): 28-30
    [85]乔进宝,陈宇,袁朔,等.船舶运动建模及预报方法的研究[J].黑龙江自动化技术与应用,1999,18(6):8-11
    [86]朱文谱,陈碧云,胡震.船舶运动自适应TAR模型预报方法[J].船舶力学, 1998, 2(4): 13-22
    [87]彭秀艳,尹中凤,高奇峰.船舶运动预报仿真系统设计[J].仪器仪表学报, 2008, 26(8): 457
    [88]彭秀艳,赵希人,高奇峰.船舶姿态运动实时预报算法研究[J].系统仿真学报,2007,19(2):267-271
    [89]张忠华,吴孟达.船摇数据实时滤波与预报的时序法[J].中国惯性技术学报,2000,8(6): 24-30
    [90]刘钢,吴智勇,李圣怡,范大鹏、胡德文.基于自适应长自回归模型的船舶运动实时预报[J].弹箭与制导学报,2003,23(4):223-225
    [91]周淑秋,赵希人.舰船航态极短期预报的非线性方法[J].哈尔滨工程大学,1996,17(4):1-7
    [92]陈远明,叶家玮,宋鑫.波浪运动补偿稳定平台系统的设计与建模[J].机床与液压, 2007, 35(10): 115-117
    [93] YE Jia-wei, CHEN Yuan-ming, WANG Dong-jiao, et al. Wave motioncompensation scheme and its model tests for the salvage of an ancient sunken boat[J]. China Ocean Engineering, 2006, 20(4): 635-643
    [94]丁汉哲.试验技术[M].北京:机械工业出版社, 1982
    [95]陆严,姚香根,曲以义.用于三峡升船机模型试验的液压均衡系统[J].液压气动与密封, 1995, (4): 26-29
    [96]王冬姣.海运海洋平台时最大惯性力的计算[J].中国海洋平台, 2005, 20(3): 15-18
    [97]胡晓,王济. MATLAB在振动信号处理中的应用[M].中国水利水电出版社,知识产权出版社, 2006.
    [98]马明建,周长城.数据采集与处理技术[M].西安:西安交通大学出版社, 1999.
    [99]刘继承,徐庆华,查建新.用加速度传感器测量振动位移的方法[J].现代雷达, 2007(05):69-71.
    [100] Andrew Smyth, Meiliang Wu,Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring[J]. Mechanical Systems and Signal Processing ,2007,21(5):706-723.
    [101]蒋良潍,姚令侃,吴伟.边坡振动台模型实验动位移的加速度时程积分探讨[J].防灾减灾工程学报, 2009(03):261-266.
    [102] XIE Nan QIAN Guo Liang GUO. A Measurement System of Ship Motions during ModelTests and Full Scale Seakeeping Trials[J]. Journal of Ship Mechanics , 2001,5(3):26-32.
    [103]Zadeh L.A.. From crcuit teory to system theory[A]. Proceeding of the Institute of Radio Engineers[C]. America: IEEE,1962: 856-865
    [104]赵瞻. FESTO TP701液压实验台电液位置控制系统研究[D].长沙:中南大学,2006
    [105]许益民.电液比例阀控缸机构分析与设计[M].北京:机械工业出版社, 2005
    [106]李连升,刘绍球,著.液压伺服理论与实践[M].北京:国防工业出版社, 1990
    [107]席爱民.计算机控制系统[M].北京:高等教育出版社,2004.
    [108] Holland J.H.. Outline for a logical theory of adaptive system [J]. Journal of the Association for Computing Machinery, 1962, 3:297-314
    [109]刘金琨.先进PID控制MATLAB仿真[M].第2版.北京:电子工业出版社,2004
    [110]周明,孙树栋.遗传算法原理及应用[M],北京:国防工业出版社,1999.
    [111]郑启富,徐明仙.运用改进的遗传算法估计发酵动力学模型参数[J].天津化工,2003,17(1):56-57
    [112] Srinvas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm [J].IEEE Trans on System, Man and Cybernetics, 1994,24(4)
    [113]王小平等.遗传算法[M].西安:西安交通大学出版社,2002.
    [114] YUAN Xiaohui, CAO Ling, XIA Liangzheng. Adaptive genetic algorithm with the criterion of premature convergence[J]. Journal of Southeast University (English Edition),2003,19(1):40-43
    [115] Leontaritis I J, Billings S A. Input-output parametric models for non-linear systems .Part I: Deterministic non-linear systems [J]. International Journal of Control, 1985, 41 (2): 1991-2008
    [116] Chen S, Billings S A. Representations of non-linear systems: The NARMAX model [J]. International Journal of Control, 1989, 49(3): 1013-1032
    [117] Dimitrov S.D., Kamenski D.I.. A Parameter Estimation Method for Rational Function [J].Computers Chem,1991, (15): 657-662
    [118] Worden K, Stansby P K, Tomlinson G R, Billings S A. Identification of Nonlinear Wave Forces: Time Domain Analysis [J], J. Fluids and Structures, 1994, (8): 19-71
    [119] Billings S.A. , Fadzil M B. Identification of A Nonlinear Difference Equation Model of an Industrial Diesel Generator [J]. Mechanical System s and Signal Processing, 1988, (2): 59-76
    [120] Rumelhart D E, et al. Learning Representation by BP Errors. Nature (London),1986,7:149-154
    [121]韩万林,张幼蒂.用改进算法估算矿石品位[J].系统工程,2000,9(3):80-82.
    [122]沈艳.神经网络理论研究及在舰船运动预报中的应用[D].哈尔滨.哈尔滨工程大学.2005,5:83
    [123]董长虹. Matlab神经网络与应用[M].北京:国防工业出版社,2005,1:76
    [124]陶永华,编.新型PID控制及其应用[M].第2版.北京:机械工业出版社, 2002
    [125]刘汉敏.积分分离PID控制算法在炉温控制系统中的应用[J].武汉船舶职业技术学院学报, 2006, (6): 30-31
    [126]冯国良,严利.一种新型PID控制算法及其仿真分析[J].重庆科技学院学报(自然科学版), 2006, 8(3): 77-79
    [127]黄国建,虞平良,曾芬芳,等编著.微型计算机应用技术[M].上海:上海交通大学出版社, 1995
    [128]陈平.不完全微分型PID控制的应用研究[J].机电技术, 2006, (4): 31-32
    [129]郑义民,王永初.不同结构PID控制性能的分析和比较[J].华侨大学学报(自然科学版), 2005, 26(1): 69-71
    [130]林瑞全,杨富文,邱公伟.一类不完全微分PID控制的实现方法[J].福州大学学报(自然科学版), 2004, 32(1): 31-34
    [131]卢铭娜,朱学峰,郭永玲,等. PID控制器微分算法的改进研究和仿真[J].自动化技术与应用, 2006, 25(10): 43-47
    [132]王伟,张晶涛,柴天佑. PID参数先进整定方法综述[J].自动化学报, 2000, 26(3): 347-355
    [133]薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社, 1996
    [134]陈福祥,杨志雄. PID调节器自整定的PM法及其公式推导[J].自动化学报, 1993, 19(6): 736-740
    [135] Liu G.P., Daley S.. Optimal-tuning PID control for industrial systems[J]. Control Engineering Practice, 2001, 9(11): 1185-1194
    [136] Astrom K. J., Hagglund T.. PID Controllers: Theory, Design and Tuning[M]. 2nd Edition. Research Triangle Park, North Carolina: Instrument Society of America, 1995
    [137]诸静,等著.模糊控制原理与应用[M].第2版.北京:机械工业出版社, 2005
    [138] Chen Cheng-Liang, Kuo Fong-Chih. Design and analysis of a fuzzy logic controller[J]. International Journal of Systems Science, 1995, 26(5): 1223-1248
    [139] Baba A.F.. Fuzzy logic controller[J]. Nuclear Engineering International, 2004, 49: 36-38
    [140] Cansever G., Engin S.N., Ozguven O.F., et al. Fuzzy logic controller in modern control systems: an industrial application[J]. Advances in Modeling & Analysis C, 1994, 43(1): 41-63
    [141] Lu Bin. Research on universal fuzzy logic controller[A]. 2006 IEEE International Conference on Mechatronics and Automation[C]. 2006, 1593-1597
    [142] Sepehri N., Corbet T., Lawrence P.D.. Fuzzy position control of hydraulic robots with valve deadbands[J]. Mechatronics, 1995, 5(6): 623-643
    [143] Lim C.M.. Implementation and experimental study of a fuzzy logic controller for dc motors[J]. Computers in Industry, 1995, 26(1): 93-96
    [144] Chou Chih-Hsun, Teng Jen-Chao. A fuzzy logic controller for traffic junction signals[J]. Information Sciences, 2002, 143(1-4): 73-97
    [145] Tunyasrirut S., Wangnipparnto S.. Level control in horizontal tank by fuzzy logic controller[A]. 2006 SICE-ICASE International Joint Conference[C]. 2006, 2491-2494
    [146] Lygouras J.N., Botsaris P.N., Vourvoulakis J., et al. Fuzzy logic controller implementation for a solar air-conditioning system[J]. Applied Energy, 2007, 84(12): 1305-1318
    [147]肖体兵,吴百海,吴冉泉,等.模糊-PID控制的比例补偿同步系统的设计和试验[J].机床与液压, 2001, 121(4): 57-59
    [148] Guzelkaya M., Eksin I., Yesil E.. Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer[J]. Engineering Applications of Artificial Intelligence, 2003, 16(3): 227-236
    [149] Kukollj D.D., Kuzmanovic S.B., Levi E.. Design of a PID-like compound fuzzy logic controller[J]. Engineering Applications of Artificial Intelligence, 2001, 14(6): 785-803
    [150] Lu J., Chen G., Ying H.. Predictive fuzzy PID control: Theory, design and simulation[J]. Information Sciences, 2001, 137(1-4): 157-187
    [151] Parnichkun M., Ngaecharoenkul C.. Kinematics control of a pneumatic system by hybrid fuzzy PID[J]. Mechatronics, 2001, 11(8): 1001-1023
    [152]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社, 2004
    [153]冯冬青,马书磊,费敏锐,等.一类非线性大滞后系统的智能前馈控制策略与算法[J].信息与控制, 2004, 33(1): 9-12
    [154]王哲,魏晓燕.前馈控制系统的补偿方案与应用[J].江西化工, 2003, (4): 182-185
    [155]黄坚.自动控制原理及其应用[M].北京:高等教育出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700