用户名: 密码: 验证码:
微生物胞外多糖的结构及其抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋和南极特殊环境微生物产生的胞外多糖,由于其新颖的结构特征、独特的化学性质、丰富的生物活性以及潜在的商业价值,成为了近几年新的研究热点。本文以十六种海洋和极地来源的微生物产生的胞外多糖为研究对象,对其产率、理化性质、单糖组成以及抗氧化活性进行分析,从中筛选出三种分别由海洋迟钝型爱德华氏细菌(Edwardsiella tarda)、南极树粉孢属真菌(Oidiodendron truncatum)以及海南蕾二岐灯芯柳珊瑚(Dichotella gemmacea)共附生真菌赭曲霉(Aspergillus ochraceus)产生的胞外多糖,进行分离纯化、结构研究以及抗氧化活性评价。研究结果如下:
     1.十六种微生物胞外多糖的产率为0.03-0.45 g/L,糖含量为57.20%-94.71%,蛋白含量为3.41%-15.50%,葡萄糖醛酸的含量为0.75%-6.03%,葡萄糖胺的含量为0.3%-12.4%,所有胞外多糖中硫酸根的含量均低于检测限。两株南极真菌产生的胞外多糖的单糖组成以甘露糖、葡萄糖和半乳糖为主;海洋微生物来源的十四种胞外多糖的单糖组成有十种以甘露糖为主,两种以葡萄糖和半乳糖为主,两种(FU-FANG和QD08-1)以葡萄糖占绝对优势。结果表明,不同环境来源的微生物产生的胞外多糖,在理化性质、单糖组成和DPPH自由基清除能力等方面均具有较大差异。最终选取了抗氧化活性较强的三种胞外多糖作进一步的研究,这三种胞外多糖分别由海洋迟钝型爱德华氏细菌(Edwardsiella tarda)、南极树粉孢属真菌(Oidiodendron truncatum)以及海南蕾二岐灯芯柳珊瑚(Dichotella gemmacea)共附生真菌赭曲霉(Aspergillus ochraceus)产生。
     2.海洋迟钝型爱德华氏细菌产生的胞外多糖经Q-Sepharose F.F.阴离子交换柱层析和Sephadex G150凝胶柱层析分离纯化获得两种分子量分别为29.0 kDa和70.0kDa的胞外多糖,ETW1和ETW2。经HPLC、GC、甲基化、GC-MS、IR及NMR分析表明这两种胞外多糖均是由[β-D-Manp(1→]、[→2)-α-D-Manp(1→]、[→3)-α-D-Manp(1→]、[→2,3)-α-D-Manp(1→]和[→3,6)-α-D-Manp(1→]糖基以约2:1:2:1:1的摩尔比组成的;二者均是以[→3)-α-D-Manp(1→]为主链的七糖重复单元组成的甘露聚糖,并且[β-D-Manp(1→]和[→2)-α-D-Manp(1→]以Manp(β1→)和Manp(β1→2)Manp(α1→)的形式分别连接在主链的C-6位和C-2位上;ETW1约由26个该类型的七糖重复单元组成,而ETW2由大约62个该类型的七糖重复单元组成。这是首次从新型迟钝型爱德华氏细菌产生的胞外多糖中获得结构新颖尚未见报道的甘露聚糖。
     3.南极树粉孢属真菌胞外多糖经Q-Sepharose F.F.阴离子交换柱层析和Sephadex G100凝胶柱层析分离纯化获得五种胞外多糖AFW1、AFW2、AFS1、AFS2和AFS3,分子量依次为60.0 kDa、7.5 kDa、64.5 kDa、19.0 kDa和9.0 kDa。其中AFS1、AFS2和AFS3中含有少量蛋白,蛋白含量依次为1.8%、1.9%和5.1%。经HPLC、GC、GC-MS、IR及NMR分析表明AFW2是由[→6)-α-D-Glcp(1→]糖基组成的线性葡聚糖;AFS2的主链也是[→6)-α-D-Glcp(1→]糖基,但平均每六个糖基中有一个糖基在C-3位存在[α-D-Glcp(1→]的分支;AFS3的糖链则是由[→2)-α-D-Glcp(1→]和[→6)-α-D-Glcp(1→]:糖基以1:6的摩尔比组成;AFW1是由[→6)-α-D-Glcp(1→]、[→4,6)-α-D-Glcp(1→]、[→2,4,6)-α-D-Manp(1→]和[Galp (1→]糖基以1:1:1:3的摩尔比组成;AFS1是由[→6)-α-D-Glcp(1→]、[→4,6)-(1]α-D-Glcp(1→]、[→2,4,6)-α-D-Manp(1→]、[→2)-α-D-Manp(1→]和[Galp(1→]糖基以约1:1:1:1:3的摩尔比组成,其中[α-D-Galp(1→]和[β-D-Galp(1→]连接于AFW1和AFS1糖链的非还原末端。其中,AFW2属于具有广泛应用价值的Dextran系列的线性葡聚糖。
     4.蕾二岐灯芯柳珊瑚共附生真菌赭曲霉的胞外多糖经Q-Sepharose F.F.阴离子交换柱层析和Saphacryl S-400凝胶柱层析分离纯化获得两种分子量分别为29.0kDa和7.4 kDa的半乳甘露聚糖,AW1和AW2。采用可控酸降解的方法制备寡糖,并结合Bio-Gel P4凝胶柱层析获得八个寡糖组分;经GC、ESI-MS、ESI-CID-MS/MS、GC-MS和NMR分析表明,所得寡糖的聚合度为2-9,且以罕见的[→5)-β-D-Galf(1→]糖基的形式存在。AW1和AW2的GC-MS和NMR的分析结果表明,AW1和AW2中的甘露糖以[a-D-Manp(1→]、[β-D-Manp(1→]、[→2)-a-D-Manp(1→]和[→2,6)-a-D-Manp(1→]糖基的形式存在,而半乳糖以[β-D-Galf(1→]和[→5)-β-D-Galf(1→]糖基的形式存在;经可控酸降解后AW1和AW2中的[→2)-α-D-Manp(1→]糖基的摩尔比显著上升而[→2,6)-α-D-Manp(1→]和[→5)-β-D-Galf(1→]糖基的摩尔比显著下降,说明不同聚合度的呋喃型半乳寡糖以[→5)-β-D-Galf(1→]糖基的形式连接于以[→2)-α-D-Manp(1→]为主链的核心甘露聚糖的C-6位上。该研究首次从赭曲霉(Aspergillus ochraceus)产生的胞外多糖中获得了两种结构新颖尚未见报道的半乳甘露聚糖,同时提供了一个从海洋微生物获取罕见的[→5)-β-D-Galf(1→]寡糖的新途径,也为“海洋糖库”提供了新型的特征寡糖。该研究对海洋共附生真菌胞外多糖的研究具有重要的参考价值。
     5.通过DPPH自由基清除能力、羟基自由基清除能力、超氧阴离子自由基清除能力、抗脂质过氧化能力以及BSA氧化损伤的SDS-PAGE分析表明,纯化后的七种胞外多糖都表现出较强的清除自由基和抑制脂质过氧化的能力,并在一定程度上能对BSA的氧化损伤起到保护作用。七种胞外多糖的抗氧化活性顺序为:AFS3>AFS2>AFS1>ETW1>AFW2>ETW2>AFW1。其中AFS3清除DPPH自由基和超氧阴离子自由基的EC50值分别为0.46mg/mL和0.55mg/mL。体内抗氧化实验表明,AFS3可以提高D-半乳糖诱导的衰老模型小鼠体内抗氧化酶SOD.GPx和CAT的活力,有效降低脂质过氧化产物MDA的水平,在一定程度上达到对抗氧化应激的功效;AFS3也可能通过提高小鼠的免疫功能或通过体外抗氧化的作用模式而达到清除ROS的功效。胞外多糖抗氧化活性的差异与其分子量有一定的相关性,推测20-30 kDa左右的多糖抗氧化效果较佳;另外,多糖复合物中的蛋白也与其抗氧化活性相关。
The exopolysaccharides(EPSs) produced by marine and Antarctic derived microorganisms of special environments become a new research front due to their novel structural characteristics, particular chemical properties, various bioactivities as well as commercial opportunities in recent years. In this paper, the yield, chemical properties, monosaccharide component and antioxidant activity of the EPSs obtained from 16 marine and Antarctic microorganisms were analyzed, based on the analysis results the EPSs produced by marine bacterium Edwardsiella tarda, Antarctic fungi Oidiodendron truncatum and Dichotella gemmacea epiphytic fungi Aspergillus ochraceus were further purified, their structural characteristics and antioxidant activities were investigated. The research results are as follows:
     1. The yields of the EPSs produced by 16 marine and Antarctic microorganisms were 0.03-0.45g/L, and their content of sugar, protein, GlcA and GlcN were 57.20%-94.71%,3.41%-15.50%,0.75%-6.03% and 0.3%-12.4%, respectively, while their sulfate content were all below the detection limit. The two EPSs obtained from Antarctic fungi were mainly composed of Man, Glc and Gal; Ten EPSs produced by marine microorganisms were mainly contained Man with various contents of Glc and Gal; two EPSs mainly consisted of Glc and Gal, while the rest two contained majority of Glc. The results showed that the chemical properties, monosaccharide component and DPPH radicals scavenging abilities of the EPSs obtained from microorganisms varying with their living environments. Finally, the EPSs with better antioxidant activities produced by marine bacterium E. tarda, Antarctic fungi O. truncatum and epiphytic fungi A. ochraceus were screened out for further investigation.
     2. Two purified EPSs, ETW1 and ETW2 with molecular weights of 29.0 kDa and 70.0 kDa, respectively, were isolated from the crude EPS of E. tarda using Q-Sepharose F.F. anion exchange chromatography and Sephadex G150 gel permeation chromatography. The results indicated that ETW1 and ETW2 had a similar structure with [β-D-Manp(1→], [→2)-α-D-Manp(1→],[→3)-α-D-Manp(1→], [→2,3)-α-D-Manp(1→] and [→3,6)-α-D-Manp(1→] in a molar ratio of 2:1:2:1:1. Both of them had a heptasaccharide repeating unit with a [→3)-α-D-Manp(1→] backbone chain, which were substituted by Man(β1→2)Man(α1→) and Man(β1→) at the C-2 and C-6 positions, respectively. ETW1 and ETW2 were composed of 26 and 62 the repeating units, respectively. The two mannans with novel structures separated from the fermentation broth of the unusual E. tarda are firstly reported in this paper.
     3. Five purified EPSs AFW1, AFW2, AFS1, AFS2 and AFS3 were isolated from the crude EPS of O. truncatum, their molecular weights were 60.0 kDa,7.5 kDa,64.5 kDa,19.0 kDa and 9.0 kDa, respectively. The protein content of AFS1, AFS2 and AFS3 were 1.8%,1.9% and 5.1%, respectively. The results indicated that AFW2 was a linear glucan with [→6)-α-D-Glcp(1→] glycosyls as its backbone chain; AFS2 also had a [→6)-α-D-Glcp(1→] glycosyl backbone chain with an average branch of [α-D-Glcp(1→] at the C-3 position of every six [→6)-α-D-Glcp(1→] glycosyls; AFS3 had a linear structure with [→6)-α-D-Glcp(1→] and [→2)-a-D-Glc(1→] in a molar ratio of 6:1; AFW1 was composed of [Galp(1→], [→4,6)-α-D-Glcp(1→], [→2,4,6)-a-D-Manp(1→] and [→6)-α-D-Glcp(1→] glycosyls in a molar ratio of 3: 1:1:1; AFS1 consisted of [Galp(1→], [→6)-α-D-Glcp(1→], [→4,6)-a-D-Glcp(1→], [→2,4,6)-a-D-Manp(1→], and [→2)-α-D-Manp(1→] in a molar ratio of 3:1:1:1:1. The branches of AFW1 and AFS1 were majority of [α-D-Galp(1→] and [β-D-Galp(1→] glycosyls. Among them, AFW2 belongs to the dextran series linear glucan with wide applications.
     4. Two novel galactomannans, AW1 and AW2 with molecular weights of 29.0 kDa and 7.4 kDa, respectively, were obtained from the crude EPS of A. ochraceus. Both of them were subjected to depolymerization by controllable acid hydrolysis with optimized conditions, and nine oligosaccharides were obtained by Bio-Gel P4 chromatography. The results indicated that galacto-oligosaccharides with consecutive degrees of polymerization from one to nine were in the uncommon form of [→5)-β-D-Galf(1→], the mannopyranosyls in AW1 and AW2 were in the form of [a-D-Manp(1→], [β-D-Manp(1→], [→2)-α-D-Manp(1→],[→2,6)-a-D-Manp(1→], while the galactofuranosyls were in the form of [β-D-Galf(1→] and [→5)-β-D-Galf(1→]; After depolymerization the molar ratio of [→2)-α-D-Manp(1→] glycosyls increased observably in AW1 and AW2, while [-+2,6)-a-D-Manp(1→] and [→5)-β-D-Galf(1→] glycosyls decreased remarkably, all of which suggested that the galacto-oligosaccharides should be linked to the C-6 positions of the mannan core, whose backbone chain was [→2)-α-D-Manp(1→] glycosyls. This study provides a new way to obtain uncommon [→5)-β-D-Galf(1→] linked oligosaccharides from marine microorganisms; and supplies novel characteristics of galacto-oligosaccharide for the "marine carbohydrate database".
     5. All of the seven purified EPSs exhibited various degrees of antioxidant activities in vitro, which were evaluated by DPPH radicals, hydroxyl radicals and superoxide radicals scavenging abilities, lipid peroxidation inhibition and BSA oxidation damage SDS-PAGE assays. Their antioxidant activities were in the order of AFS3>AFS2> AFS1>ETW1>AFW2>ETW2>AFW1. The EC50 values of AFS3 on DPPH radicals, superoxide radicals were 0.46 mg/mL and 0.55 mg/mL, respectively. AFS3 also showed antioxidant activity in D-Gal induced aging mice by improving the activities of antioxidant enzymes (SOD, GPx and CAT), it restored the high levels of lipid peroxidation product MDA and inhibited the "oxidative stress" in D-Gal induced aging mice. In addition, its antioxidant activity may also exerted by enhancing the immune function of the aging mice or scavenging the ROS directly by the tested models in vitro. The molecular weights of EPSs may be related to their antioxidant activities, and 20-30 kDa seems to be good for their antioxidant effects; while the proteins bounded to the EPSs may also play roles in their antioxidant activities.
引文
[1]Nakano M, Kondo A, Kakehi K, et al. Glycomics a new target for pharmaceuticals. Drug Discovery Today:Technologies.2006,3(1):39-47.
    [2]Hemmerich S. Glycomics:coming of age across the globe. Drug Discovery Today,2005,10(5): 307-309.
    [3]Mayer AMS, Rodriguez AD, Berlinck RGS, et al. Marine pharmacology in 2003-4:Marine compounds with anthelmintic antibacterial, anticoagulant, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2007,145(4):553-581.
    [4]朱天骄.南极放线菌药用资源的调查及次级代谢产物研究:[博士学位论文].2009年5月.
    [5]Sutherland IW. Microbial polysaccharides from Gram-negative bacteria. International Dairy Journal,2001,11:663-674.
    [6]Walter RH. Classifications. Polysaccharide Dispersions,1998:157-180.
    [7]林燕文.几种新型微生物多糖食品添加剂的性能、应用及发展前景.食品研究与开发,2006,27(3):137-138.
    [8]Methacanon P, Madla S, Kirtikar K, et al. Structural elucidation of bioactive fungi-derived polymers. Carbohydrate Polymers,2005,60:199-203.
    [9]崔艳红,黄现青.微生物胞外多糖研究进展.生物技术通报,2006,2:25-28.
    [10]Funami T, Noda S, Nakauma M, et al. Molecular structres of gellan gum imaged with atomic force microscopy (AFM) in relation to the rheological behavior in aqueous systems in the presence of sodium chloride. Food Hydrocolloids,2009,23:548-554.
    [11]Nishimura-Uemura J, Kitazawa H, Kawai Y, et al. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiology,2003,20:267-273.
    [12]李八方,陈桂东,毛文君.几种膳食纤维对实验性糖尿病大鼠治疗效果的比较研究.营养学报,1998,21(1):59-64.
    [13]Rodriguez I, Chamorro R, Novoa B, et al. β-Glucan administration enhances disease resistance and some innate immune response in zebrafish (Danio rerio). Fish & Shellfish Immunology,2009,27(2):369-373.
    [14]Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal,2002,12: 163-171.
    [15]Hong WS, Chen HC, Chen YP, et al. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. International Dairy Journal, 2009,19:244-251.
    [16]Xu CL, Wang YZ, Jin ML, et al. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresource Technology,2009,100:2095-2097.
    [17]Moradali MF, Mostafavi H, Ghods S, et al. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology,2007,7: 701-724.
    [18]Yang LQ, Zhang LM. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers,2009,76(3): 349-361.
    [19]赵圆,尚德静.多糖诱导肿瘤细胞凋亡机制的研究进展.中国肿瘤防治杂志,2006,13(6):472-475.
    [20]Bittoun P, Avramoglou T, Vassy J, et al. Low-molecular weight dextran derivatives (f-CMDB) enter the nucleus and are better cell-growth inhibitors compared with parent CMDB polymers. Carbohydrate Research,1999,322:247-255.
    [21]Kishk YFM, Al-Sayed HMA. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT,2007,40:270-277.
    [22]Sun, H.H., Mao, W.J., Chen, Y., et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym,2009,78:117-124.
    [23]Guo SD, Mao WJ, Han Y, et al. Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda. Bioresource Technology,2010,101(12):4729-4732.
    [24]Asker MMS, Ahmed YM, Ramadan MF. Chemical characteristics and antioxidant activity of exopolysaccharide fractions from Microbacterium terregens. Carbohydrate Polymers,2009, 77(3):563-567
    [25]Leung PH, Zhao S, Ho KP, et al. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chemistry,2009,114:1251-1256.
    [26]Sun C, Wang JW, Fang L, et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keisslerella sp. YS 4108. Life Sciences,2004,75:1063-1073.
    [27]Wang J, Zhang QB, Zhang ZS, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 2008,42 (2):127-132.
    [28]Masihi KN, Madaj K, Hintelmann H, et al. Down-regulation of tumor necrosis factor-α, moderate reduction of interleukin-1β, but not interleukin-6 or interleukin-10, by glucan immunomodulators curdlan sulfate and lentinan. Int J Immunopharmac,1997,19:463-468.
    [29]张万科,欧阳林旗,罗志彪.海洋藻类药物研究进展.海南医学,2007,18(6):123-124.
    [30]Dace R, McBride E, Brooks K, et al. Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides. Thrombosis Research,1997,87(1):113-121.
    [31]Fiore MM, Kakkar W. Platelet factor 4 neutralizes heparin sulfate-enhanced antithrombin inactivation of factor Xa by preventing interaction(s) of enzyme with polysaccharide. Biochemical and Biophysical Communications,2003,311:71-76.
    [32]Arena A, Gugliandolo C, Stassi G, et al. An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72:antiviral activity on immunocompetent cells. Immunology letters,2008,123(2):132-137.
    [33]He M, Zhao ZM, Yin LC, et al. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. International Journal of Pharmaceutics,2009, 373(1):165-173.
    [34]Norbedo S, Dinon F, Bergamin M, et al. Synthesis of 6-amino-6-deoxyhyaluronan as an intermediate for conjugation with carboxylate-containing compounds:application to hyaluronan-camptothecin conjugates. Carbohydrate Research,2009,344:98-104.
    [35]Temtem M, Silva LMC, Andrade PZ, et al. Supercritical CO2 generating chitosan devices with controlled morphology. Potential application for drug delivery and mesenchymal stem cell culture. Journal of Supercritical Fluids,2009,48:269-277.
    [36]张旭,徐恒,邓宇等.微生物絮凝剂产生菌的絮凝性能.化工环保,2005,25(2):152-155.
    [37]樊艳春,林波.微生物絮凝剂絮凝机理研究进展.江西化工,2006,3:1-3.
    [38]马放,张金凤,远立江等.复合型生物絮凝剂成分分析及其絮凝机理的研究.环境科学学报,2005,25(1]):1491-1496.
    [39]Chen JH, Lion LW, Ghiorse WC, et al. Mobilization of adsorbed cadmium and lead in aquifer material by bacterial extracellular polymers. Wat Res,1995,29(2):421-430.
    [40]Li WW, Zhou WZ, Zhang YZ, et al. Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresource Technology,2008,99:6893-6899.
    [41]杨建雨,宋志宗,刘庆昌.岔河集油天岔15、39断块黄原胶调剖先导试验.油田化学,2001,18(1):43-47.
    [42]谢荔朋.微生物胞外多糖对养殖动物的免疫增强作用.福建畜牧兽医,2006,28(1):53-54.
    [43]石军,张云刚,陈安国.微生物多糖在水产养殖中的应用研究.水产养殖,2002,4:45-47.
    [44]日科学家拟用微生物替代氮肥.化工学报,2002:684.
    [45]鲍时翔,黄惠琴.海洋微生物学(第一版).青岛:中国海洋大学出版社,2008.
    [46]Tempest DW, Wouters JTM. Properties and performance of microorganisms in chemostat culture.1981,3(4):283-290.
    [47]李江,陈靠山,郝林华等.细菌胞外多糖的研究进展.海洋科学.2006,30:74-77.
    [48]Boyle C D, Reade A E. Appl Enviro Microbiol,1983,46(2):392-399.
    [49]Lee HK, Chun J, Moon E Y, et al. Int J Syst Evol Microbiol,2001,51:661-666.
    [50]Okutaani K,Tandavanitj S.Nippon Suisan Gakkasishi-Bull-etin of the Japanese Sociiety Fisheries,1991,57:1949.
    [51]Raguenes G, Pigner P. Appl Environ Microbiol,1996,62:67.
    [52]Kaczynski Z, Karapetyan G, Evidente A, et al. The structure of a putative exopolysaccharide of Burkholderia gladioli pv. agaricicola. Carbohydrate Research,2006,341(2):285-288.
    [53]Kambourova M, Mandeva R, Dimov D, et al. Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydrate Polymers,2009,77:338-343.
    [54]Nicolaus B, Lama L, Panico A, et al. Production and Characterization of exopolysaccharides excreted by Thermophilic Bacteria from Shallow, marine hydrothermal vents of Flegrean Ares (Italy). System. Appl. Microbiol,2002,35:319-325.
    [55]Maugeri T L, Cugliandolo C, Caccamo D, et al. Biotechnol Lett.2002,24 (7):515-519.
    [56]Jouault SC, Chevolot L, Helley D, et al. Characterization, chemical modi(?)cations and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochimica et Biophysica Acta,2001,1528:141-151.
    [57]Umezawa H, Okami Y, Kurazawa S, et al. Marinactan, antitumor polysaccharide produced by marine bacteria. TheJournal of Antibiotics,1983,5:471-477.
    [58]Kobayashi J, Ishibashi M, Walch M R, et al. Amphidinolide C. The first 25-membered macrocyclic lactone with Potent antineoplastic activity from the Cultured dinoflagellate Amphidinium SP. J Am chem Soc,1988,110:490-495.
    [59]苏文金,黄益丽,黄耀坚,等.产免疫调节活性多糖海洋放线菌的筛选[J].海洋学报,2001,23(6):]14-119.
    [60]Rashid ZM, et al. Isolation of a sulphated polysaccharide from a recently discovered sponge species (Celtodoryx girardae) and determination of its anti-herpetic activity. Int. J. Biol. Macromol.,2009,44(3):286-293.
    [61]Loaec M, Guezenneca M. Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydrate Polymers,1998,35:65-70.
    [62]Iyer A, Mody K, Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Marine Pollution Bulletin,2004,49:974-977.
    [63]Zhou WZ, Wang Z, Shen B, et al. Biosorption of copper(II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium.Colloids and Surfaces B: Biointerfaces,2009,72:295-302.
    [64]Li WW, Zhou WZ, Zhang YZ, et al. Flocculation behavior and mechanism of an exo-polysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresource Technology,2008,99:6893-6899.
    [65]胡谷平,佘志刚,吴耀文,林永成,吴雄宇.南海海洋红树林内生真菌(1356号)胞外多糖的研究.中山大学学报(自然科学版),2002,41(1):121-122.
    [66]佘志刚,胡谷平,等.南海红树林真菌(1356号)真菌多糖的分离提取及甲醇解研究.中山大学学报(自然科学版),2001,40(6):123-124
    [67]郭志勇,佘志刚,陈东淼等.南海海洋红树林种子内生真菌2508号多糖G-22a的研究.
    [68]陈东淼,佘志刚,郭志勇等.南海海洋红树林真菌2560号多糖A2的研究.
    [69]Yang, X. B.; Gao, X. D.; Han, F.; Tan, R. X. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochimica et Biophysica Acta, General Subjects,2005,1725(1),120-127.
    [70]Yang, X. B.; Gao, X. D.; Han, F.; Xu, B. S.; Song, Y. C.; Tan, R. X. Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie (2005),87(8),747-754.
    [71]Barbosa AM, Steluti RM, Dekker RFH, et al. Structural characterization of Botryosphaeran:a (1→>3; 1→-β-D-glucan produced by the ascomyceteous fungus, Botryosphaeria sp. Carbohydrate Research,338(16):1691-1698.
    [72]Schmid F, Stone BA, McDougall BM, et al. Structure of epiglucan, a highly side-chain/branched (1→3; 1→6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht. Carbohydrate Research,2001,331:163-171.
    [73]Yan JK, Li L, Wang ZM, et al. Structural elucidation of an exopolysaccharide from mycelial fermentation of a Tolypocladium sp. Fungus isolated from wild Cordyceps sinensis. Carbohydrate Research,2010,79(1):125-130.
    [74]Madi NS, Harvey LM, Mehlert A, et al. Synthesis of two distinct exopolysaccharide fractions by cultures of the polymorphic fungus Aureobasidium pullulans. Carbohydrate Polymers, 1977,32(3-4):307-314.
    [75]Sun C, Wang JW, Fang L, et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sciences,2004,75:1063-1073.
    [76]Sun C, Shan CY, Gao XD, et al. Protection of PC12 cells from hydrogen peroxide-induced injury by EPS2, an exopolysaccharide from a marine filamentous fungus Keissleriella sp. YS4108. Journal of Biotechnology,2005,115(2):137-144.
    [77]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers, 2009,78:117-124.
    [78]Yasuhara-Bella J, Lu Y. Marine compounds and their antiviral activities. Antiviral Research, 2010.
    [79]Banat I.M.BIosurfactants production and possible uses in microbial enhangced oil recovery and oil pollution remediation:A review. Bioresource Technology,1995,5:1-12.
    [80]Satpute SK, Banat IM, Dhakephalkar PK, et al. Biosurfactants, bioemulsifiers and exo-polysaccharides from marine microorganisms. Biotechnology Advances,2010.
    [81]Perry MB, Maclean LL, Patrauchan MA, et al. The structure of the exocellular polysaccharide produced by Rhodococcus sp. RHA1. Carbohydrate Research,2007,342: 2223-2229.
    [82]Fusconi R, Godinho MJL, Hernandez ILC, et al. Gordonia polyisoprenivorans from groundwater contaminated with landfill leachate in a subtropical area:characterization of the isolate and exopolysaccharide production. Brazilian J of Microbiology,2006,37:168-174.
    [83]Bae SY, Yim JH, Lee HK, et al. Activation of murine peritoneal macrophages by sulfated exo polysaccharide from marine microalgal Gyrodinium impudicum(strain KG03).Involvement of the NF-nB and JNK pathway. International Immunopharmacology,2006,6:473-484.
    [84]Arena A, Maugeri T, Pavone B, et al. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis.International Immunopharmacology,2006,6:8-13.
    [85]Arena A, Gugliandolo G, Stassi G, et al. An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72:Antiviral activity on immunocompetent cells. Immunology Letters,2009,123:132-137.
    [86]苏传东.蓝杆藻113菌株(Cyanothece sp.113)胞外多糖的研究:[博士学位论文].2005年.
    [87]Onofri S, Selbmann L, Zucconi L, et al. Antarctic microfungi as models for exobiology. Planetary and Space Science,2004,52:229-237.
    [88]曾胤新,陈波.南极低温微生物研究及其应用前景.极地研究,1999,11(2):144-152.
    [89]Rojas JL, Martin J, Tormo JR, et al. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Marine Genomics,2009,2:33-41.
    [90]Connell L, Redman R, Craig S, et al. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biology & Biochemistry,2006,38:3083-3094.
    [91]Hodkinson ID, Wookey PA. Functional ecology of soil organisms in tundra ecosystems: towards the future. Applied Soil Ecology,1999,11:111-126.
    [92]王鹏,王风平.南极阿德雷岛淡水湖沉积物细菌群落研究.极地研究,2009,21(2): 100-108.
    [93]Arenz B E, Held BW, Jurgens JA. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology & Biochemistry,2006,38:3057-3064.
    [94]Brunati M, Rojas JL, Sponga F, et al. Diversity and pharmaceutical screening of gungi from benthic mats of Antarctic lakes. Marine Genomics,2009,2:43-50.
    [95]Asta J, Orry F, Toutain F, et al. Micromorphological and ultrastructural investigations of the lichen-soil interface. Soil Biology & Biochemistry,2001,33:323-337.
    [96]Kawahara H, Nakano Y, Omiya K, et al. Production of two types of ice crystal-controlling proteins in Antarctic bacterium. Journal of Bioscience and Bioengineering,2004,3:220-223.
    [97]Hughes KA, Bridge P, Clark MS. Tolerance of Antarctic soil fungi to hydrocarbons. Science of the Total Environment,2007,372:539-548.
    [98]Selbmann L, Onofri S, Fenice M, et al. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Research in Microbiology,2002,153:585-592.
    [99]李江.南极嗜冷菌Pseudoalteromonas sp. S-15-13胞外多糖的研究:[博士学位论文].2006
    [100]何培青,李江,王防,等.南极细菌胞外多糖糖溶液冻结特性的差示扫描量热研究.生态学报,2009,29(11):5766-5772.
    [101]周维芝,申博玲,刘升波,等.南极海冰细菌胞外多糖的助凝作用及红外光谱分析.光谱学与光谱分析,2009,29(9):2405-2408.
    [102]缪锦来.南极冰藻对UV-B辐射增强的适应性及其抗紫外线辐射活性物质的研究:[博士学位论文].2003年6月.
    [103]Serrato RV, Sassaki GL, Gorin PAJ, et al. Structural characterization of an acidic exohetero-Polysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydrate Polymers,2008,73:564-572.
    [104]Rodriguez-Carvajal MA, Ignacio Sanchez J, Campelo AB, et al. Structure of the high-mole-cular weight exopolysaccharide isolated from Lactobacillus pentosus LPS26. Carbohydrate Research,2008,343:3066-3070.
    [105]Laws AP, Chadha MJ, Chacon-Romero M, et al. Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds. Carbohydrate Research,2008,343:301-307.
    [106]张惟杰主编.糖复合物生化研究技术[M].第二版.杭州:浙江大学出版社,1999.
    [107]林雪,王仲孚,黄琳娟等.改进的PMP柱前衍生化方法用于单糖的组成分析.高等学校化学学报,2006,27(8):1456-1458.
    [108]季宇彬,郭守东.野西瓜成熟果实中多糖的含量测定及毛细管电泳分析.中国药学杂志,2006,41(15):1186-1189.
    [109]Yang B, Yu GL, Zhao X, et al. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS Journal,2009,276:2125-2137.
    [110]Schweikert C, Liszkay A, Schopfer P. Polysaccharide degradation by Fenton reaction-or peroxidase-generated hydroxyl radicals in isolated plant cell wall. Phytochemistry,2002,61: 31-35.
    [111]Schweikert C, Liszkay A, Schopfer P. Scission of polysaccharides by peroxidase-Generated hydroxyl radicals. Phytochemistry,2000,53:565-570.
    [112]Strlic M, Kocar D, Kolar J, et al. Degradation of pullulans of narrow molecular weight distribution-the role of aldehydes in the oxidation of polysaccharides. Carbohydrate Polymers,2003,54:221-228.
    [113]Petit AC, Noiret N, Sinquin C, et al. Free-radical depolymerization with metallic catalysts of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. Carbohydrate Polymers,2006,64:597-602.
    [114]Florea D, Maes E, Strecker G. Primary structure of seven sulfated oligosaccharide-alditols released by reductive β-elimination from oviducal mucins of Rana temporaria Characterization of the sequence HSO3(3)GlcA(β1-3) Gal. Carbohydrate Research,1997, 302:179-189.
    [115]Chen HM, Zheng L, Lin W, et al. Product monitoring and quantitation of oligosaccharides composition in agar hydrolysates by precolumn labeling HPLC. Talanta,2004,64:773-777.
    [116]Penna N, Capellacci S, Ricci F, et al. Study on the maltooligosaccharide composition of mucilage samples collected along the northern Adriatic coast. Carbohydrate Research,2009, 344:120-126.
    [117]Chen MC, Lin SL, Wu SH, et al. High-performance capillary electrophoretic characterization of different types of oligo- and polysialic acid chains. Analyticlal Biochemistry,1998,260:154-159.
    [118]陈海敏,朱鹏,严小军.琼寡糖的制备及其体内抗氧化活性的研究.中国海洋药物杂志,2005,24(3):29-32.
    [119]Yoo DH, Lee BH, Chang PS, et al. Improved quantitative analysis of oligosaccharides from lichenase-hydrolyzed water-soluble barley β-Glucans by high-performance anion-exchange chromatography. Journal of Agricultural and Food Chemistry.2007,55:1656-1662.
    [120]Balance S, Aarstad OA, Aachmann FL, et al. Preparation of high purity monodisperse oligosaccharide derived from mannuronan by size-exclusion chromatography followed semi-preparative high-performance anion-exchange chromatography with pulsed amperometric detection. Carbohydrate Research,2009,344:255-259.
    [121]Anastyuk SD, Shevchenko NM, Nazarenko EL, et al. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydrate Research,2009,344(6):779-787.
    [122]Andrade LR, Salgado LT, Farina M, et al. Ultrastructrue of acidic polysaccharide from the cell walls of brown algae. Journal of Structural Biology,2004,145:216-225.
    [123]Kirby AR, Gunning AP, Morris VJ. Atomic force microscopy in food research:A new. technique comes of age. Trends in Food Science & Technology,1995,6:359-365.
    [124]Xu QB, Zou S, Zhang WK, et al. Single-molecule force spectroscopy on Carrageenan by Means of AFM. Macromol Rapid Commun,2001,22:1163-1167.
    [125]Sletmoen M, Maurstad G, Sikorski P, et al. Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research,2003,338:2459-2475.
    [126]Chandrasekaran R, Radha A. Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends in Food Science & Technology,1995,6:143-148.
    [I]Mayer AMS, Rodriguez AD, Berlinck RGS, et al. Marine pharmacology in 2005-2006:Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochimica et Biophysica Acta,2009,1790(5):283-308.
    [2]张真庆,蒋晓路,管华诗.寡糖的生物活性及海洋性寡糖的潜在应用价值.[J]中国海洋药物,2003,93(3):51-56.
    [3]Sutherland IW. Bacterial exopolysaccharioles. Adv Microbiol Physiol,1972,8:143-212.
    [4]方多瑞.海洋微生物:开发海洋药物的重要资源.中国海洋药物杂志,1998,3:53-56.
    [5]王安利,王维娜,张亚娟等.海洋微生物是开发海洋药物的重要资源.海洋科学,2002,26(9):7-12.
    [6]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers, 2009,78:117-124.
    [7]Mao WJ, Fang F, Li HY, et al. Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydrate Polymers,2008,74,834-839.
    [8]Mao WJ, Li HY, Zhang HJ, et al. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). International Journal of Biological Macromolecules,2009,44:70-74.
    [9]Liu YH, Wang FS. Structural characterization of an active polysaccharide from Phellinus ribis. Carbohydrate Polymers,2007,70:386-392.
    [10]Staub AM. Removal of protein-Sevag method. Methods in Carbohydrate Chemistry,1965,5: 5-6.
    [11]Peng YF, Zhang LN. Characterization of a polysaccharide-protein complex from Ganoderma tsugae mycelium by size-exclusion chromatography combined with laser light scattering. Journal of Biochemical and Biophysical Methods,2003,56:243-252.
    [12]Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    [13]Bitter T, Muir H M. A modified uronic acid carbazole reaction. Analytical Biochemistry,1962, 4:330-334.
    [14]张惟杰主编.糖复合物生化研究技术.第二版.杭州:浙江大学出版社,1999:128.
    [15]Therho, TT, Hartiala, K. Method for determination of the sulfate content of glycosamino-glycans. Anal Biochem,1971,41:471-476.
    [16]Proshlyakov DA. UV optical absorption by protein radicals in cytochrome c oxidase. Biochi-mica et Biophysica Acta (BBA)-Bioenergetics,2004,1655(12):282-289.
    [17]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry,1956,28(3):350-366.
    [18]Zhu HW, Zhang YY, Zhang JW, et al. Isolation and characterization of an anti-complemen-tary protein-bound polysaccharide from the stem barks of Eucommia ulmoides. International immunopharmacology,2008,8(9):1222-1230.
    [19]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,7: 248-254.
    [20]Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem,1973,54:484-489.
    [21]徐瑾,李彤,张庆合.柱前衍生化高效液相色谱等度洗脱分析单糖的方法建立.生命科学仪器,2005,3(2):30-32.
    [22]Shen XD, Perreault H. Characterization of carbohydrates using a combination of derivatization, high-performance liquid chromatography and mass spectrometry. Journal of Chromatography A,1998,811(1-2):47-59.
    [23]Yodoshi M, Tani A, Ohta Y, et al. Optimized conditions for high-performance liquid chromatography analysis of oligosaccharides suing 7-amino-4-methylcoumarin as a reductive amination reagent. Journal of Chromatography A,2008,1203(2):137-145.
    [24]Honda S, Akao E, Suzuki S, et al. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Analytical Biochemistry,180(2):351-357.
    [25]Tseng, YH, Yang JH, Mau JL. Antioxidant properties of polysaccharides from Ganoderma tsugae. Food Chemistry,2008,107:732-738.
    [26]Pabst M, Kolarich D, Poltl G, et al. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Analytical Biochemistry,2009, 384(2):263-273.
    [1]Bergy DW, James S, Krien NR, et al. Manual of determinative bacteriolony (ninth edition) [M]. Baltimore:Lippincott Williams & Wilkins.1994:178,204,225.
    [2]邓显文,谢芝勋,刘加波等.广西斑点叉尾鲴爱德华氏菌的分离鉴定.广西农业科学,2008,39(2):231-235.
    [3]Vinogradov E, Nossova L, Perry MB, et al. Structural characterization of the O-polysaccharide antigen of Edwardsiella tarda MT 108. Carbohydrate Research,2005,340:85-90.
    [4]Wang WS, Wang DH. Enhancement of the resistance of Tilapia and Grass Carp to experimental Aeromonas Hydrophila and Edwardsiella Tarda infections by several polysaccharides. Comp Immun Microbiol infect,1997,20(3):261-270.
    [5]王燕,张晓华,吕俊超等.养殖大菱鲆病原菌迟钝型爱德华氏菌的分离鉴定及其疫苗研制.中国水产科学,2009,5(3):394-403.
    [6]Peng JS, Tsai WC, Chou CC. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int J Food Microbiol,2002,77:8-11.
    [7]Garrett TR, Bhakoo M, Zhang ZB. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science,2008,18:1049-1056.
    [8]Vinogradov E, Nossova L, Perrya MB, et al. The structure of the antigenic O-polysaccharide of the lipopolysaccharide of Edwardsiella ictaluri strain MT104. Carbohydrate Research,2005, 340:1509-1513.
    [9]Crossman L, Maxwell Dow J. Biofilm formation and dispersal in Xanthomonas campestris. Microbes and Infection,2004,6:623-629.
    [10]Li WW, Zhou WZ, Zhang YZ, et al. Flocculation behavior and mechanism of an EPS from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresource Technology,2008,99:6893-6899.
    [11]Liu YT, Strauss J, Camesano TA. Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins.Biomaterials, 2008,29:4374-4382.
    [12]Lan J, Zhang XH, Wang Y, et al. Isolation of an unusual strain of Edwardsiella tarda from turbot and establish a PCR detection technique with the gyrB gene. Journal of Applied Microbiology,2008,105:644-651.
    [13]Mao, W.J., Fang, F., Li, H.Y., et al. Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym,2008,74:834-839.
    [14]Sun, H.H., Mao, W.J., Chen, Y., et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym,2009,78:117-124.
    [15]Cai WR, Gu XH, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohydrate Polymers,2008,71:403-410.
    [16]Ayala-Hernandez I, Hassan A, Goff HD, et al. Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins:Effect of pH and media composition. International Dairy Journal,2008,18:1109-1118.
    [17]Shi Y, Sheng JC, Yang FM, et al. Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry,2007,103:101-105.
    [18]赵峡,苗辉,范慧红等.用GPC法测定硫酸多糖911的分子量和分子量分布.青岛海洋大学学报.2000,30(4):623-626.
    [19]Zhang HJ, Mao WJ, Fang F, et al. Chemical characteristics and anticoagulant activities of a sulfated polyaccharide and its fragments from Monostroma latissimum. Carbohydrate Polymers,2008,71:482-434.
    [20]张惟杰主编.糖复合物生化研究技术.第二版.杭州:浙江大学出版社,1999:128.
    [21]Hakomori S. A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry,1964,55,205-208.
    [22]Cimmino A, Marchi G, Surico G, et al. The structure of the O-specific polysaccharide of the lipopolysaccharide from Pantoea agglomerans strain FL1. Carbohydrate Research,2008,343: 392-396.
    [23]Choma A, Komaniecha I, Sowinski P. Revised structure of the repeating unit of the O-specific polysaccharide from Azospirillum lipoferum strain SpBrl7. Carbohydrate Research,2009, 344:936-939.
    [24]Wang FZ, Fang YC, Zhu TJ, et al. Seven new prenylated indole diketopiperazine alkaloids from holothurian-derived fungus Aspergillus fumigatus. Tetrahedron,2008,64:7986-7991.
    [25]Sun YX, Wang SS, Li TB, et al. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng. Bioresource Technology,2008,99:900-904.
    [26]Simas FF, Gorin PAJ, Wagner R, et al. Comparison of structure of gum exudate polysaccharides from the trunk and fruit of the peach tree(Prunus persica). Carbohydrate Polymers,2008,71:218-228.
    [27]Izabela L., Maria M., Peter C., et al. Human pathogen Candida dubliniensis:A cell wall mannan with a high content of β-1,2-linked mannose residues. Carbohydrate Polymers,2007, 70:89-100.
    [28]Ewa K, Nina AK, George VZ, et al. Structural and serological studies on Hafnia alvei O-specific polysaccharide of a-D-mannan type isolated from the lipopolysaccharide of strain PCM 1223. FEMS. Immunol Med Microbial,2001,30:223-227.
    [29]Maria MC, Antonio E, Rosa L, et al. Antonio Molinaro. Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv.ciccaronei. Carbohydrate Research,2001,330:271-277.
    [30]Evgeny V, Bent P, Klaus B. Structural analysis of the intact polysaccharide mannan from Saccharomyces cerevisiae yeast using 1H and 13C NMR spectroscopy at 750MHz. Carbohydr Res,1998,307:177-183.
    [31]Chihiro H, Yoshinaka Y. A (1→3)-a-D-mannan from a water extract of Dictyophora indusiata Fisch. Carbohydrate Research,1988,173:332-338.
    [32]Izabela L, Maria M, Eva M, et al. Cell wall mannan of human pathogen Candida dubliniensis. Carbohydrate Polymers,2007,68:191-195.
    [33]Yoshio O, Kouichi M, Nobuyuki S, et al. A new mannoheptaose containing a and β-(1→2) linkages isolated from the mannan of Torulaspora delbrueckii:ELISA inhibition studies. Carbohydrate Research,2003,338:1175-1182.
    [1]Rojas JL, Martin J, Tormo JR, et al. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Marine Genomics,2(1):33-41.
    [2]Connell L, Redman R, Rodriguez R. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biology and Biochemistry,2006,38(10):3083-3094.
    [3]Farrell J, Rose, AH. Temperature effects on microorganisms. Annual Review of Microbiology, 1967,21:101-120.
    [4]Abyzov SS, Mitskevich IN, Poglazova, MN, et al. Antarctic sheet as a model in search of life on other planets. Adv Space Res,22(3):363-368.
    [5]Onofri S, Selbmann L, Zucconi L, et al. Antarctic microfungi as models for exobiology. Planetary and Space Science,2004,52:229-237.
    [6]Brunati M, Rojas JL, Sponga F, et al. Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Marine Genomics,2009,2:43-50.
    [7]Rojas JL, Martin J, Tormo JR, et al. Bacterial diversity from benthic mats of Antarctic lakes as a new bioactive metabolites. Marine Genomics,2009,2:33-41.
    [8]Andersen NR, Lorck HOB, Rasmussen PR. Fermentation, isolation and characterization of antibiotic PR-1350. The Journal of Antibiotics,1983,36(7):753-760.
    [9]John M, Krohn K, Florke U, et al. Biologically active secondary metabolites from fungi.12. Oidiolactones A-F, labdane diterpene derivatives isolated from Oidiodendron truncata. Journal of Natural Products,1999,62(9):1218-1221.
    [10]Selbmann L, Onofri S, Fenice M, et al. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Research in Microbiology,2002,153(9):585-592.
    [11]Sun YX, Wang SS, Li TB, et al. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng. Bioresource Technology,2002,66(8):900-904.
    [12]Mao, W.J., Fang, F., Li, H.Y., et al. Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym,2008,74,834-839.
    [13]Sun, H.H., Mao, W.J., Chen, Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr. Polym.,2009,78:117-124.
    [14]张惟杰.糖复合物生化研究技术(第二版).杭州:浙江大学出版社,1999:128.
    [15]Purama RK, Goswami P, Khan AT, et al. Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydrate Polymers,76(1): 30-35.
    [16]Sun ZW, Zhang LX, Zhang B, et al. Structural characterization and antioxidant properties of polysaccharides from the fruiting bodies of Russula virescens. Food Chemistry,2010,118: 675-680.
    [17]Chen Y, Xie MY, Nie SP, et al. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chemistry,2008,107: 231-241.
    [18]Zhang HJ, Mao WJ, Fang F, et al. Chemical characteristics and anticoagulant activities of a sulfated polyaccharide and its fragments from Monostroma latissimum. Carbohydrate Polymers,2008,71:482-434.
    [19]Zha XQ, Luo JP, Luo SZ, et al. Structure identification of a new immunostimulating polysaccharide from the stems of Dendrobium huoshanense. Carbohydrate Polymers,2007, 69:86-93.
    [20]Van Leeuwen SS, Kralj S, Van Geel-Schutten, et al. Structural analysis of the α-D-glucan (EPS 180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF 180 enzyme. Carbohydrate Research,2008,343:1237-1250.
    [21]Bi HT, Ni XZ, Liu XY, et al A novel water-soluble β-(1→6)-D-glucan isolated from the fruit bodies of Bulgaria inquinans (Fries). Carbohydrate Research,344(10):1254-1258.
    [22]Van Leeuwen SS, Kralj S, Gerwig GJ, et al. Structural analysis of bioengineered a-D-glucan produced by a triple mutant of the glucansucrase GTF 180 enzyme from Lactobacillus reuteri strain 180:Generation of (α1→4) linkages in a native (1→3) (1→6)- α-D-glucan. Biomacromolecules,2008,9:2251-2258.
    [23]Uzochukwu S, Balogh E, Loefler RT, et al. Structural analysis by 13C-nuclear magnetic resonance spectroscopy of glucan extracted from natural palm wine. Food Chemistry,2002, 76:287-291.
    [24]Rout D, Mondal S, Chakraborty I, et al. Chemical analysis of a new (1→3)-, (1→6)-branched glucan from an edible mushroom, Pleurotus florida. Carbohydrate Research,2005,340: 2533-2539.
    [25]Barone G, Corsaro MM, Giannattasio M, et al. Structural investigation of the polysaccharide fraction from the mucilage of Dicerocaryum zanguebaricum Merr. Carbohydrate Research, 1966,280:111-119.
    [26]Liu B, Senchenkova SN, Feng L, et al. Structural and molecular characterization of Shigella boydii type 16 O antigen. Gene,2006,380:46-53.
    [27]Carbonero ER, Tischer CA, Cosentino C, et al. Structural characterization of a galactoman-nan from the cyanolichen Leptogium azureum. Carbohydrate Polymers,2003,53:469-473.
    [28]Omarsdottir S, Petersen BO, Barsett H, et al. Structural characterization of a highly branched galactomannan from the lichen Peltigera canina by methylation analysis and NMR-spectroscopy. Carbohydrate Polymers,2006,63:54-60.
    [29]Rodriguez-Carvajal MA, Ignacio Sanchez J, Campelo AB, et al. Structure of the high-molecular weight exopolysaccharide isolated from Lactobacillus pentosus LPS26. Carbohydrate Research,2008,343:3066-3070.
    [30]Ye LB, Zhang JS, Yang Y, et al. Structural characterization of a heteropolysaccharide by NMR spectra. Food Chemistry,2009,112:962-966.
    [1]Dingle J, Mcgee PA. Some endophytic fungi reduce the density of pustules of Puccinia recondite f. sp. Tritici in wheat. Mycological Research,2003,107(3):310-316.
    [2]Sikora RA, Pocasangre L, Felde AZ, et al. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biological Control,2008,46(1):15-23.
    [3]Schulz B, Boyle C, Draeger S, et al. Endophytic fungi:a source of novel biologically active secondary metabolites. Mycological Research,2002,106(9):996-1004.
    [4]Macias-Rubalcava ML, Hernandez-Bautista BE, Jimenez-Estrada M, et al. Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezompae. Phytochemistry,2008,69(5):1185-1196.
    [5]Xu LL, Han T, Wu JZ, et al. Comparative research of chemical contituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine,2009,16(6-7):609-616.
    [6]Ahrazem, O, Gomez-Miranda, B, Prieto, A, et al. An acidic water-soluble cell wall polysaccharide:a chemotaxonomic marker for Fusarium and Gibberella. Mycological Research,2000,104:603-610.
    [7]Carbonero, ER, Cordeiro, LMC, Mellinger, CG, et al. Galactomannans with novel structures from the lichen Roccella decipiens Darb. Carbohydrate Research,2005,340:1699-1705.
    [8]Kumaresan V, Suryanarayanan TS. Occurrence and distribution of endophytic fungi in a mangrove community. Mycological Research,2001,105(11):1388-1391.
    [9]Holler U, Wright AD, Matthee GF, et al. Fungi from marine sponges:diversity, biological activity and secondary metabolites. Mycological Research,2000,104(11):1354-1365.
    [10]Mayer AMS, Rodriguez AD, Berlinck RGS, et al. Marine pharmacology in 2005-6:Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochimica et Biophysica Acta (BBA)-General Subjects,2009,1790(5):283-308.
    [11]胡谷平,佘志刚,吴耀文,林永成,吴雄宇.南海海洋红树林内生真菌(1356号)胞外多糖的研究.中山大学学报(自然科学版),2002,41(1):121-122.
    [12]佘志刚,胡谷平,等.南海红树林真菌(1356号)真菌多糖的分离提取及甲醇解研究.中山大学学报(自然科学版),2001,40(6):123-124.
    [13]Yang B, Yu GL, Zhao X, et al. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS Journal,2009,276:2125-2137.
    [14]Hu K, Liu Q, Wang SC, et al. New oligosaccharides prepared by acid hydrolysis of the polysaccharides from Nerium indicum Mill and their anti-angiogenesis activities. Carbohydrate Research,2009,344:198-203.
    [15]Leung C, Chibba A, Gomez-Biagi RF, et al. Efficient synthesis and protein conjugation of β-(1→6)-D-N-acetylglucosamine oligosaccharides from the polysaccharide intercellular adhesin. Carbohydrate Research,2009,344(5):570-575.
    [16]Petersen BO, Sara M, Mader C, et al. Structural characterization of the acid-degraded secondary cell wall polymer of Geobacillus stearothermophilus PV72/p2. Carbohydrate Research,2008,343:1346-1358.
    [17]Kelly J, Logan SM, Jarrell KF, et al. A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydrate Research,2009,344(5):648-653.
    [18]Nimptsch A, Schibur S, Schnabelrauch M, et al. Characterization of the quantitative relationship between signal-to-noise (S/N) ratio and sample amount on-target by MALDI-TOF MS:Determination of chondroitin sulfate subsequence to enzymatic digestion. Analytica Chimica Acta,2009,635:175-182.
    [19]Ohashi Y, Kubota M, Hatase H, et al. Distinction of sialyl anomers on ESI- and FAB-MS/MS: Stereo-specific fragmentations. J Am Soc Mass Spectrom,2009,20:394-397.
    [20]Daikoku S, Kurimoto A, Mutsuga S, et al. Ion-trap mass spectrometry unveils the presense of isomeric oligosaccharides in an analyte:stage-discriminated correlation of energy-resolved mass spectrometry. Carbohydrate Research,2009,344:384-394.
    [21]Domon B, Costello CE. Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry,1988,27(5):1534-1543.
    [22]Nunes FM, Domingues MR, Coimbra MA. Arabinosyl and glucosyl residues as structural features of acetylated galactomannans from green and roasted coffee infusions. Carbohydrate Research,2005,340:1689-1698.
    [23]Nagaoka, M., Hashimoto, S., Shibata, H., Kimura, I., Kimura, K., Sawaka, H.,& Yokokura, Teruo. (1996). Structure of a galactan from cell walls of Bifidobacterium catenulatum YIT4016. Carbohydrate Research,281:285-291.
    [24]Omarsdottir S, Petersen BO, Paulsen BS, et al. Structural characterisation of novel lichen heteroglycans by NMR spectroscopy and methylation anaysis. Carbohydrate Research,2006, 341:2449-2455.
    [25]Leal JA, Jimenez-Barbero J, Bernabe M, et al. Structural elucidation of a cell wall fungal polysaccharide isolated from Ustilaginoidea virens, a pathogenic fungus of Oriza sativa and Zea mays. Carbohydrate Research,2008,343:2980-2984.
    [26]Leal JA, Jimenez-Barbero J, Gomez-Miranda B, et al. Structural investigation of cell-wall polysaccharides from Neosartorya:relationships with their putative anamorphs of Aspergillus. Carbohydrate Research,1995,273:255-262.
    [27]Ahrazem O, Leal JA, Prieto A, et al. Chemical structure of a polysaccharide isolated from the cell wall of Arachniotus verruculosus and A. ruber. Carbohydrate Research,2001,336: 325-328.
    [28]Tischer CA, Gorin PAJ, De Souza MB, et al. Structures of phosphonogalactomannans isolated from mycelia of Aspergillus versicolor. Carbohydrate polymers,2002,49:225-230.
    [29]Omarsdottir S, Petersen BO, Paulsen BS, et al. Structural characterisation of novel lichen heteroglycans by NMR spectroscopy and methylation anaysis. Carbohydrate Research,2006, 341:2449-2455.
    [30]Ahrazem O, Prieto A, Leal JA, et al. Fungal cell wall polysaccharides isolated from Discula destructive spp. Carbohydrate Research,2007,342:1138-1143.
    [1]Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature,2000,408: 239-247.
    [2]Bakeeva LE, Barskov IV, Egorov MV, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program 2. Treatment of some ROS-and Age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Moscow),2008,73(12):1288-1299.
    [3]Kowaltowski AJ, de Souza-Pinto, NC, Castilho RF, et al. Mitochondria and reactive oxygen species. Free Radical Biology & Medicine,2009,47:333-343.
    [4]Lee VM, Quinn PA, Jennings SC, et al. Neutrophil activation and production of reactive oxygen species in pre-eclampsia. Journal of Hypertension,2003,21(2):395-402.
    [5]Mandavilli BS, Santos JH, Van Houten B. et al. Mitochondrial DNA repair and aging. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis,2002,509(1): 127-151.
    [6]Cruz CI, Ruiz-Torres P, del Moral RG, et al. Age-related progressive renal fibrosis in rats and its prevention with ACE inhibitors and taurine. American Journal of Physiology, Renal Physiology,2000,278(1):F122-9.
    [7]Bomzon A, Ljubuncic P. Oxidative stress and vascular smooth muscle cell function in liver disease. Pharmacology & Therapeutics,2001,89:295-308.
    [8]Nordberg J, Arner ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology & Medicine,2001,31(11):1287-1312.
    [9]Opara EC. Oxidative stress. Dis Mon,2006,52:183-198.
    [10]Tsiapali E, Whaley S, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage fress radical activity. Free Radical Biology & Medicine,2001,30, 393-402.
    [11]龚国清,徐黻本.小鼠衰老模型研究.中国药科大学学报,1991,22(2):101-103.
    [12]崔旭,李文彬,张炳烈等.D-半乳糖脑老化模型的脂质过氧化机理.中国老年学杂志,1998,18:38-40.
    [13]Lei M, Hua XD, Xiao M, et al. Impairments of astrocytes are involved in the D-galactose-induced brain aging. Biochemical and Biophysical Research Communications,2008,369: 1082-1087.
    [14]Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry,1992,40:945-948.
    [15]Tseng, YH, Yang JH, Mau JL. Antioxidant properties of polysaccharides from Ganoderma tsugae. Food Chemistry,2008,107:732-738.
    [16]Halliwell B, Gutteridge JMC, Aruoma 01. The deoxyribose method:A simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Chem,1987, 165:215-219.
    [17]Kishk YFM, Al-Sayed HMA. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT,2007,40:270-277.
    [18]Marklund S, Marklund G. Involvement of superoxide anion radicals in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry,1974,47:469-474.
    [19]Li XM, Li XL, Zhou AG. Evaluation of antioxidant activity of the polysacchairdes extracted from Lycium barbarum fruits in vitro. European Polymer Journal,2007,43:488-497.
    [20]Kweon MH, Hwang HJ, Sung HC. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo(phyllostachys edulis). Journal of Agricultural and Food Chemistry,2001,49:4646-4655.
    [21]Chen HX, Zhang M, Xie BJ. Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chemistry,2005,90:17-21.
    [22]郭尧君.蛋白质电泳实验技术.第二版,科学出版社,2005,5.
    [23]Yang QM, Pan XH, Kong WB, et al. Antioxidant activity of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chemistry, 2010,118(1):84-89.
    [24]Kyselova Z, Rackova L, Stefek M. Pyridoindole antioxidant stobadine protedted bovine serum albumin against the hydroxyl radical mediated cross-linking in vitro. Archives of Gerontology and Geriatrics,2003,36(3):221-229.
    [25]Mayo JC, Tan DX, Sainz RM, et al. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals:comparative effects of melatonin and other antioxidants. Biochimica et Biophysica Aca (BBA)-General Subjects,2003,1620(1-3): 139-150.
    [26]Shi GF, An LJ, Jiang B, et al. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neuroscience Letters,2006,403:206-210.
    [27]Yang Y, Liu WS, Han BQ, et al. Antioxidative properties of a newly synthesized 2-glucose-amine-thiazolidine-4(R)-carboxylic acid (GlcNH2Cys) in mice. Nutrition Research,2006, 26:369-377.
    [28]Li XM, Ma YL, Liu XJ. Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. Journal of Ethnopharmacology,2007,111:504-511.
    [29]Hu TJ, Shuai XH, Chen JR, et al. Protective effect of a Potentilla anserine polysaccharide on oxidative damages in mice. International Journal of Biological Macromolecules,2009,45: 279-283.
    [30]Tian LQ, Cai QY, Wei HC. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free radical Biology & Medicine, 1998,24:1477-1484.
    [31]Wang H, Gao XD, Zhou GC, et al. In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chemistry,2008,106:888-895.
    [32]Naik GH, Priyadarsini KI, Satav JG, et al. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry,2003,63:97-104.
    [33]Dorman HJD, Hiltunen R. Fe(III) reductive and free radical-scavenging properties of summer savory (Satureja hortensis L.) extract and subfractions. Food Chem,2004,88:193-9.
    [34]Naik GH, Priyadarsini KI, Satav JG, et al. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry,2003,63:97-104.
    [35]Nandita S, Rajini PS. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem,2004,85:611-616.
    [36]Halliwell B. Reaction oxygen species in living systems:Source, biochemistry and role in human disease. Am J Med,1991,91:14-22.
    [37]Dong CH, Yao YJ. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. LWT,2008,41:669-677.
    [38]Chen JR, Hu TJ, Zhang RL. Antioxidant activities of Sophora subprosrate polysaccharide in immunosuppressed mice. International Immunopharmacology,2007,7:547-553.
    [39]Tsiapali E, Whaley S, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free radical Biology & Medicine,2001,30(4): 393-402.
    [40]Priyadarsini KI, Maity DK, Naik GH, et al. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free radical Biology & Medicine,2003,35(5):475-484.
    [41]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers, 2009,78:117-124.
    [42]Sun C, Wang JW, Fang L, et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sciences,2004,75:1063-1073.
    [43]Zou C, Du YM, Li Y, et al. Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro. Carbohydrate Polymers,2008,73(2):322-331.
    [44]Wang J, Zhang QB, Zhang ZS, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 2008,42(2):127-132.
    [45]Li XM. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. International Journal of Biological Macromolecules,2007,40:461-5.
    [46]Rohrdanz E, Kahl R. Alterations of antioxidant enzyme expression in response to hydrogen peroxide. Free radical Biology & Medicine,1998,24:27-38.
    [47]Koyama Y, Miyagawa T, Kawaide A, et al. Receptor-mediated absorption of high molecular weight dextrans from intestinal tract. Journal of Controlled Release,1996,41:171-176.
    [48]Dong Q, Yao J, Fang JN, et al. Structural characterization and immunological activity of two cold-water extractable polysaccharides from Cistanche deserticola Y. C. Ma. Carbohydrate Research,2007,342:1343-1349.
    [49]Jaehrig SC, Rohn S, Kroh LW, et al. Antioxidative activity of (1→3), (1→6)-p-D-glucan from Saccharomyces cerevisiae grown on different media. LWT-Food Science and Technology,2008,41(5):868-877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700